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Abstract
Applying game-theoretical tools for measuring the reliability of a network has become
very common. The basic idea is very natural: analyzing an appropriately defined
attacker–defender game might give rise to a relevant security metric. In this paper we
consider a very natural set of games: the Defender chooses a path P between two
given nodes and the Attacker chooses a network element a (that is, an edge or a node).
In all cases, the Attacker has to pay a given cost of attack c(a); if, however, a is on P
then he also gains a given profit of d(a). We determine the value of various versions
of this game and show that the thus arising reliability metrics provide a generalization
of weighted connectivity of graphs. We also prove that the values of the games and
optimum mixed strategies for both players can be computed in strongly polynomial
time.

Keywords Network reliability · Game theory · Connectivity

Mathematics Subject Classification 90B25 · 91A80 · 05C40

1 Introduction

Measuring the reliability of a network is one of the rich and complex areas of combi-
natorial optimization. Since the precise meaning of reliability highly depends on the
application, a large variety of different reliability metrics have been proposed in the
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literature. Applying game-theoretical tools for measuring security has become very
common. The basic idea is very natural: define a game between two virtual players, the
Attacker and the Defender, such that the rules of the game capture the circumstances
under which reliability is to be measured. Then analyzing the game might give rise to
an appropriate security metric: the better the Attacker can do in the game, the lower
the level of security is.

There is an abundance of recent books and papers on game-theoretical tools for
measuring and increasing security. Since all aspects of security are obviously of utmost
importance nowadays and game theory as a tool to address related problems presents
itself very naturally, the literature on this topic is extremely diverse. Much of the
arsenal of game theory has been employed on various applications which very often
have little in common besides somehow being related to security. Interested readers
are referred to the following books and surveys: Alpcan and Başar (2010), Han (2012),
Machado and Tekinay (2008), Manshaei et al. (2013) and Tambe (2012).

In this paper, however, only the theory of two-player, zero-sum games, the simplest
and probably most widely known subfield of game theory will be relied on to analyze
a very naturally arising family of games and thus give rise to new graph reliability
metrics that will turn out to be generalizations of weighted connectivity (meant in
various ways).

The structure of this paper is as follows. We mention a few related results on
network reliability games to motivate the topic of this paper below. In Sect. 2 we
briefly summarize the necessary background in game theory. In Sect. 3 we define
different versions of the st-Path Game and present the new contributions of the paper.
Section 4 concludes the paper.

We follow the notation and terminology of Schrijver (1879). In particular, for a
function f : E → R and a subset U ⊆ E , f (U ) denotes

∑
e∈U f (e).

1.1 Network reliability games

As mentioned above, analyzing appropriately defined attacker–defender games is a
natural approach for measuring the reliability of a network. Many such games known
from the literature fall under the following framework.

Assume that an input graph G is given. G can either be directed or undirected
depending on the application. Besides that, two weight functions are also part of the
input: for each edge e ∈ E(G) the “damage” caused by the loss of e (or in other
words, the “importance” of e) is denoted by d(e); furthermore, the cost of attacking
an edge e is denoted by c(e). Then a two-player, zero-sum game is defined on G
between two virtual players, the Attacker and the Defender as follows. The Attacker
chooses (or “attacks and destroys”) an edge e ofG. Simultaneously (or simply without
knowing the Attacker’s choice) the Defender chooses a subset of the edges Z ⊆ E(G)

that is thought of as some kind of “communication infrastructure” and the precise
requirements on which vary in each application. Regardless of the Defender’s choice,
the Attacker has to pay the cost of attack c(e) to the Defender. There is no further
payoff if e /∈ Z . If, on the other hand, e ∈ Z then the Defender pays the Attacker the
damage value d(e).
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Since these games are two-player, zero-sum games by definition, they have a unique
Nash-equilibrium payoff V (which will simply be referred to as the game value in
this paper) by Neumann’s classic Minimax Theorem (see Sect. 2). Since V is the
highest expected gain the Attacker can guarantee himself by an appropriately chosen
mixed strategy, it makes sense to say that 1

V is a valid reliability metric in the sense
corresponding to the specifics the game.

We remark that it might seem unrealistic in the above described framework that the
Defender should receive the cost of attack c(e) from the Attacker (as the Defender is
indifferent to the costs and efforts associated with an attack, she is only affected by
the damage caused). In other words, it would be more natural to assume that the above
given payoffs only describe the Attacker’s gain while the Defender’s loss depends
exclusively on e, Z and the damage value d(e) (and is thus always bigger by c(e) than
the Attacker’s gain). This would also imply that the game is not zero-sum any more.
However, it is easily shown that the thus-obtained non-zero-sum game is essentially
equivalent to the zero-sum game described above. This equivalency is due to the fact
that the sum of the payoffs only depends on the choice of the Attacker and it more
precisely means that Nash-equilibria of the two versions of the game are identical and
the Attacker’s Nash-equilibrium payoff is unique in the non-zero-sum version of the
game and it is equal to the (unique) Nash-equilibrium payoff corresponding to the
zero-sum version. (An analogous statement would not be true for the Defender.) The
proof of this equivalency is a simple exercise (see Laszka and Szeszlér 2015, Lemma
1 for a proof). We will disregard this point in the remainder of the paper and focus on
the zero-sum game versions described above.

The Spanning Tree Game Perhaps the most natural of the games falling under the
above framework is the following. A connected, undirected graph G, a damage func-
tion d : E(G) → R

+ and a cost function c : E(G) → R are given. The Attacker
chooses an edge e of G and the Defender chooses a spanning tree T of G. Then the
payoff from the Defender to the Attacker is d(e) − c(e) if e is in T and −c(e) other-
wise. This game was first considered in the d(e) ≡ 1 and c(e) ≡ 0 case in Gueye et al.
(2010) and then in the more general d(e) ≡ 1 (and c(e) is arbitrary) case in Gueye
et al. (2011). For the general case, where d(e) ≥ 0 and c(e) are both arbitrary, the
following was proved in Szeszlér (2017). (See Sect. 2 for a precise definition of the
notion of game value.)

Theorem 1 The game value of the Spanning Tree Game is

max∅�=U⊆E(G)

comp(G −U ) − 1 − q(U )

p(U )
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) and comp(G −U ) is the number
of components of the graph obtained fromG by deletingU. Furthermore, there exists a
strongly polynomial algorithm to compute the game value of the Spanning Tree Game
and an optimum mixed strategy for both players.
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We remark that the above formula (without a corresponding strongly polynomial
algorithm)was shown previously in the special case of d(e) ≡ 1 inGueye et al. (2011).
Furthermore, in the special case of c(e) ≡ 0 the result of Schrijver (1879, Corollary
51.8a) is essentially equivalent to the above theorem in a non-game-theoretical setting.
The running time of the algorithm given in Szeszlér (2017) was later substantially

improved to O(|V |4|E | 12 ) in Baïou and Barahona (2018).
It also follows from the above theorem that the spanning tree game is capable

of capturing a known graph reliability metric. The strength of a connected graph G
was defined by Gusfield Gusfield (1983). The idea is quite natural: if we remove a
subset U ⊆ E(G) of the edges then the efficiency of this “attack” against G can
be measured by the ratio of the number of new components created and |U | (that
is, the “effort” required for the attack). Then it makes sense to define the recip-
rocal of the maximum efficiency of an attack to be a security metric: σ(G) =
min

{ |U |
comp(G−U )−1 : U ⊆ E(G), comp(G −U ) > 1

}
, where comp(G −U ) is the

number of components of the graph obtained from G by deleting U . This notion
was extended to a weighted version and its computability in strongly polynomial time
was shown by Cunningham in Cunningham (1985):

Definition 1 Assume that a connected graphG is givenwith a positive weight function
p : E(G) → R

+ on its edges. Then

σp(G) = min

{
p(U )

comp(G −U ) − 1
: U ⊆ E(G), comp(G −U ) > 1

}

is called the strength of G with respect to p.

Corollary 1 (Szeszlér 2017) The game value of the Spanning Tree Game is 1
σp(G)

if

p(e) = 1
d(e) and c(e) = 0 is assumed for all e ∈ E(G).

It is also worth mentioning that Theorem 1was proved in Szeszlér (2017) in a much
more general, matroidal setting which gives rise to a number of natural extensions of
the Spanning Tree Game and readily provides the corresponding modifications of the
notion of graph strength. Interested readers are referred to Szeszlér (2017) for the
details.

The Arborescence Game A naturally arising, directed version of the Spanning Tree
Game was defined in Szeszlér (2017). Call a subset of the nodes R ⊆ V (G) of a
digraph G a source set if every node of G is reachable from a node in R via a directed
path. A vertex r ∈ V (G) is a source node if {r} is a single-element source set. Recall
that an arborescence of a digraph G is a subset A of the arcs that is a spanning tree of
the underlying undirected graph such that the digraph (V (G), A) has a source node.
(It is well-known and elementary that the existence of an arborescence is equivalent
to the existence of a source node.) Then the input of the Arborescence Game is a
directed graph G that has a source node, a damage function d : E(G) → R

+ and a
cost function c : E(G) → R. Analogously to the Spanning Tree Game, the Attacker
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chooses an arc e of G, the Defender chooses an arborescence A of G and the payoff
from the Defender to the Attacker is d(e) − c(e) if e is in A and −c(e) otherwise.

Theorem 2 (Szeszlér 2017) The game value of the Arborescence Game is

max∅�=U⊆E(G)

source(G −U ) − 1 − q(U )

p(U )
,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) and source(G − U ) is the
minimum cardinality of a source set in the digraph obtained from G by deleting U.

The existence of a strongly polynomial algorithm to compute the game value of the
Arborescence Game and an optimum mixed strategy for both players was proved in
Baïou and Barahona (2018).

Analogously to the undirected case, a directed version of the notion of graph strength
presents itself very naturally and then the above theorem shows its connection to
the Arborescence Game. The following notion was defined and its computability in
strongly polynomial time was proved in Szeszlér (2017). The running time was then
again improved in Baïou and Barahona (2018).

Definition 2 Assume that a directed graph G is given that has a source node; assume
further that a positive weight function p : E(G) → R

+ is given. Then

−→σ p(G) = min

{
p(U )

source(G −U ) − 1
: U ⊆ S, source(G −U ) > 1

}

is the directed strength of G with respect to p.

Corollary 2 (Szeszlér 2017) The game value of the Arborescence Game is 1−→σ p(G)
if

p(e) = 1
d(e) and c(e) = 0 is assumed for all e ∈ E(G).

For a survey of some more network reliability games of similar nature interested
readers are referred to Szeszlér (2017).

2 Preliminaries on game theory

A (finite) two-player, zero-sum game is given by a matrix M called the payoff matrix.
Columns of M correspond to one of the players and rows of M to the other, so for the
sake of simplicity one can refer to the two players as Column Player and Row Player.
Columns and rows of M are called the pure strategies of the respective players. The
matrix M defines the game in the following sense: both players choose one of their
pure strategies (simultaneously, without knowing each other’s choices) and then the
corresponding entry of M (that is, the one in the intersection of the chosen row and
column) is payed by the Row Player to the Column Player. (Obviously, a negative
payment means that in reality it is the Column Player who pays the absolute value of
the amount to the Row Player.)

123



Journal of Combinatorial Optimization (2019) 38:72–85 77

A mixed strategy of a player is a probability distribution on their pure strategies.
If M is a k × n matrix then it is natural to store the Column Player’s and the Row
Player’s mixed strategies as n-dimensional column vectors and k-dimensional row
vectors, respectively. If we fix a pair of mixed strategies x ∈ R

n , y ∈ R
k then the

Column Player’s expected gain (or, equivalently, the Row Player’s expected loss) is
obviously yMx. It is sensible for the Column Player to choose a mixed strategy x that
maximizes his worst case expected gain, therefore he is interested in finding an x that
maximizes the minimum value of yMx over all possible mixed strategies y of the Row

Player; in other words, his job is max
x

{

min
y

{yMx}
}

. Analogously, the Row Player’s

task is min
y

{
max
x

{yMx}
}
; that is, she wants to minimize her worst case expected loss.

Neumann’s classic Minimax Theorem (1928) states that these two values are equal

for every payoff matrix M : max
x

{

min
y

{yMx}
}

= min
y

{
max
x

{yMx}
}
. This common

value is called the game value corresponding to M . Since a pair of mixed strategies
(x, y) that attain the corresponding optima is equivalent to the (more general) notion of
a Nash-equilibrium in the special case of two-player, zero-sum games, the game value
is also referred to as a (Nash-)equilibrium payoff in the literature (which is known to
be unique in this special case). However, in this paper we will keep calling it the game
value.

It is useful to mention that the description of the tasks of the two players can be
simplified by observing that it is sufficient for a mixed strategy to “guard against” all
pure strategies of the other player, that will imply that it also guards against all mixed
strategies. For example, if every entry of the column vectorMx is at leastμ for amixed
strategy x, that translates to saying that no matter which pure strategy the Row Player
picks, the Column Player’s expected gain is at least μ. However, this also implies
yMx ≥ μ for every mixed strategy y (since yMx is a convex combination of the
entries of Mx). Hence the Column Player’s task can also be described as maximizing
the minimum entry of Mx over all mixed strategies x (and the Row Player’s case is
analogous).

The above also implies (as it is shown in many textbooks, see e.g. Matoušek and
Gärtner 2007) that two-player, zero-sum games are easy to handle algorithmically via
linear programming: optimummixed strategies for the game given by M can be found
efficiently by solving the following linear program and its dual:

max{μ : Mx ≥ μ · 1, 1 · x = 1, x ≥ 0} (1)

(where 1 denotes the all-1 vector). However, since the size of the payoff matrix M
will be exponential in the size of the input graph G in all applications mentioned in
this paper, this approach will not be viable.

3 The st-path game and its variations

Motivated by the examples mentioned in the Introduction, the following definition
might feel natural.
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Definition 3 Assume that a directed graph G, two nodes s, t ∈ V (G), a damage
function d : E(G) → R

+ and a cost function c : E(G) → R are given. Then
the Directed st-Path Game is defined as follows: the Attacker chooses an edge e of
G, the Defender chooses a directed path P from s to t (which is assumed to exist)
and then the payoff from the Defender to the Attacker is d(e) − c(e) if e is on P and
−c(e) otherwise. TheUndirected st-Path Game is defined analogously with the single
difference being that there G is undirected and the Defender chooses an undirected
path between s and t .

Obviously, the above payoffs correspond to the framework described in the Intro-
duction: the cost of attack c(e)must be paid by the Attacker in all cases, but he receives
the damage value d(e) if he succeeds in hitting the st-path chosen by the Defender.

The Undirected st-Path Game was considered and solved in the d(e) ≡ 1 (and
c(e) is arbitrary) case in Calinescu et al. (2012) and and in the c(e) ≡ 0 (and d(e) is
arbitrary) case is Washburn and Wood (1995). (In Calinescu et al. (2012), a general-
ization of the d(e) ≡ 1 case of the game was also solved: there the Attacker can target
a subset of the edges of a given size and the Defender can choose two paths between
two source–destination pairs.)

Before we claim the following theorem, we need to clarify some terminology: if G
is a directed graph and ∅ �= X �= V (G) is a node set then the set of all edges leaving
X for V (G) − X is called a cut. If G is undirected then the set of all edges between
X and V (G) − X is called a cut. If s ∈ X and t ∈ V (G) − X for some nodes s and t
then the cut is also referred to as an st-cut.

Theorem 3 The game value of the Directed st-Path Game is

max

{{
1 − q(C)

p(C)
: C is an st-cut

}

∪
{

− c(e) : e ∈ E(G)

}}

,

where p(e) = 1
d(e) andq(e) = c(e)

d(e) for all e ∈ E(G). Furthermore, the gamevalue and
an optimum mixed strategy for both players can be computed in strongly polynomial
time.

Proof Let the value of the above maximum be μ. Assume first that μ = −c(e) for
some e ∈ E(G). Then if theAttacker targets ewith a probability of 1, his total expected
gain is obviously at least μ. Now assume that μ = 1−q(C)

p(C)
for an st-cut C and let

the Attacker use the following mixed strategy: assign a probability of p(e)
p(C)

to every
edge of C and 0 to the rest of the edges. Consider an arbitrary directed path P from
s to t and fix an edge e ∈ C . Then e contributes to the Attacker’s expected gain by
p(e)
p(C)

(d(e) − c(e)) = 1−q(e)
p(C)

or p(e)
p(C)

(−c(e)) = −q(e)
p(C)

depending on whether e is on
P or not, respectively. Obviously, the contribution of edges e /∈ C is 0. Since the
Attacker’s expected gain is the total of the above contributions across all edges, this
value is T−q(C)

p(C)
, where T = |C ∩ E(P)|. Observing that T ≥ 1 follows from the fact

that C is a cut, we get that the Attacker’s total expected gain is at least 1−q(C)
p(C)

= μ.
Since in all cases the Attacker has a mixed strategy that guarantees him an expected
gain of at least μ, the game value is also at least μ.
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For every edge e of G let the capacity of e be g(e) = μ · p(e) + q(e). Then,
by the definition of μ, g(e) ≥ 0 holds for every edge e and the total capacity of
every st-cut in G is at least 1. (Indeed, the capacity of the cut C with respect to g is
g(C) = μ · p(C) + q(C). Therefore g(C) ≥ 1 follows from μ ≥ 1−q(C)

p(C)
.) Therefore

there exists a flow f from s to t of overall value 1 by the Ford–Fulkerson theorem.
It is well-known (see Schrijver 1879, Section 10.3) that f is a non-negative linear

combination of characteristic vectors of directed paths from s to t and directed cycles.
Disregarding the directed cycles of such a decomposition we get that there exists
a set of directed paths P1, P2, . . . , Pt in G from s to t and corresponding positive
coefficients α1, α2, . . . , αt such that

∑t
i=1 αi = 1 and

∑

i :e∈E(Pi )

αi ≤ μp(e) + q(e) (2)

holds for each edge e.
Now assume that the Defender uses the following mixed strategy: for every 1 ≤

i ≤ t she assigns the probability αi to Pi and 0 to the rest of the st-paths. Then if the
Attacker targets an edge e then her expected loss is

∑

i :e∈E(Pi )

αi (d(e) − c(e)) −
∑

i :e/∈E(Pi )

αi c(e)

= (d(e) − c(e)) ·
∑

i :e∈E(Pi )

αi − c(e) ·
∑

i :e/∈E(Pi )

αi

= d(e) ·
∑

i :e∈E(Pi )

αi − c(e) ≤ d(e) (μp(e) + q(e)) − c(e) = μ

by (2). Therefore this mixed strategy guarantees the Defender an expected loss of at
most μ. Hence the game value is also at most μ, which implies by the above that it is
exactly μ as claimed.

It also follows from the above that the game value is the minimum value of ν such
that for the capacity function g(e) = ν · p(e)+q(e) there exists a flow of overall value
1 and g(e) ≥ 0 holds for every edge e. Indeed, g(e) ≥ 0 implies ν ≥ −c(e) and the
existence of a flow of value 1 implies ν · p(C) + q(C) ≥ 1 and hence ν ≥ 1−q(C)

p(C)
for

every st-cut C . Therefore ν ≥ μ (where μ still denotes the maximum in the statement
of the theorem). Furthermore, for the minimum of such ν’s obviously either g(e) = 0
must hold for some arc e or the maximum flow value must be exactly 1. In the first
case ν = −c(e) for some arc e while in the second case there exists an st-cut C such
that ν · p(C) + q(C) = 1 and hence ν = 1−q(C)

p(C)
. In both cases we get ν = μ as

claimed.
Determining the minimum value of such a ν is obviously possible either by binary

search or by linear programming, but these approaches would lead to weakly poly-
nomial algorithms. On the other hand, this parametric flow problem was proved to
be solvable in strongly polynomial time by parametric search in Cohen and Megiddo
(1994) or even more efficiently by |E(G)| maximum flow computations in Radzik
(1993). The latter algorithm is briefly described after the proof below. Once μ (that
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is, the minimum value of such a ν) is known, decomposing a flow f of overall value
1 with respect to the capacity function μ · p + q into a convex linear combination of
directed st-paths and directed cycles (which is obviously possible in strongly polyno-
mial time) yields an optimummixed strategy for the Defender according to the above.
Furthermore, if μ = −c(e) for an arc e then targeting e with a probability of 1 is an
optimum mixed strategy for the Attacker as shown above. If not then it also follows
from the above that f is a maximum flow and hence one can easily compute an st-cut
C of capacity 1 from f . C then yields an optimum mixed strategy for the Attacker as
described in the first paragraph of the proof. �

For the sake of completeness we briefly describe the strongly polynomial algorithm
given in Radzik (1993) for determining μ. As shown in the proof above, μ is the
minimum value of ν such that g(e) ≥ 0 holds for every edge e and there exists a flow
of overall value 1 for the capacity function g(e) = ν · p(e) + q(e). The algorithm
keeps generating a seqence of values ν0 < ν1 < · · · < νt = μ and corresponding
flows f0, f1, . . . , ft and cuts C0,C1, . . . ,Ct such that gi (e) ≥ 0 always holds for
the capacity function gi (e) = νi · p(e) + q(e) and fi is a maximum flow and Ci is
a minimum cut with respect to gi . To initialize the algorithm, let ν0 = max{−c(e) :
e ∈ E(G)}; this choice already ensures g0(e) ≥ 0 for every edge e and ν0 ≤ μ by
the above theorem. Whenever, during the procedure, the value of νi is obtained for an
i ≥ 0, the algorithm computes a maximum flow fi and a corresponding minimum cut
Ci with respect to gi . If the overall value of fi is 1 then the algorithm terminates and
outputs μ = νi . If not then it sets νi+1 = 1−q(Ci )

p(Ci )
and continues the procedure (with

νi+1 instead of νi ). Since νi+1 · p(Ci ) + q(Ci ) = 1, the capacity of Ci with respect
to gi+1 is 1 and hence the maximum flow with respect to gi+1 is at most 1. If, on the
other hand, it is exactly 1, then gi+1(C) ≥ 1 for every cut C and gi+1(Ci+1) = 1.
In other words: νi+1 ≥ 1−q(C)

p(C)
for every cut C and νi+1 = 1−q(Ci+1)

p(Ci+1)
. This implies

μ = νi+1 and hence the algorithm works correctly. It is also finite since the number of
cuts is finite. The result proved in Radzik (1993) implies that it terminates in at most
|E(G)| iterations and hence it yields a strongly polynomial algorithm.

We remark that the appearence of max{−c(e) : e ∈ E(G)} in the above theorem
might look counterintuitive. However, its role can be supported by observing that it
compensates for the non-monotoniciy of the function 1−q(Z)

p(Z)
in the following sense:

denote the maximum of 1−q(Z)
p(Z)

across all subsets Z ⊆ E(G) that contain an st-cut as
a subset by μ′. Then μ′ can be strictly bigger than if this maximum were only taken
across st-cuts. On the other hand, it is easy to show thatμ′ is less than or equal to (and
can be strictly less than) the maximum in Theorem 3. (Indeed, since the argument of
the first paragraph of the proof of Theorem 3 can be applied on edge sets containing
an st-cut, it follows that the Attacker can guarantee himself an expected gain of μ′
which implies μ′ ≤ μ.)

An analogous theorem holds for the Undirected st-Path Game:

Theorem 4 The game value of the Undirected st-Path Game is

max

{{
1 − q(C)

p(C)
: C is an st-cut

}

∪
{

− c(e) : e ∈ E(G)

}}

,
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where p(e) = 1
d(e) andq(e) = c(e)

d(e) for all e ∈ E(G). Furthermore, the gamevalue and
an optimum mixed strategy for both players can be computed in strongly polynomial
time.

Proof Let the value of the above maximum be μ. Replace every edge e = {u, v} of
G by the directed arcs e′ = −→uv and e′′ = −→

vu and denote the obtained digraph by
D. Let d(e′) = d(e′′) = d(e) and c(e′) = c(e′′) = c(e) for every edge. Applying
Theorem 3 and noting that the total capacity of each st-cut of D is equal to the total
capacity of the corresponding st-cut of G, we get that the game value of the Directed
st-Path Game played on D is μ. Consequently, there exists a pair of mixed strategies
xD : E(D) → [0, 1] and yD : PD → [0, 1] such that xD guarantees the Attacker
an expected gain of μ and yD guarantees the Defender an expected loss of μ in the
Directed st-Path Game played on D, where PD denotes the set of directed paths from
s to t in D.

Now let xG(e) = xD(e′) + xD(e′′) for every e ∈ E(G). Since the payoff corre-
sponding to a path P and an edge e in the game played on G is at least as big as
the payoff corresponding to the directed version of P and either e′ or e′′ in the game
played on D, it follows that xG guarantees the Attacker of the game played on G an
expected gain of at least μ. Hence the game value is also at least μ.

We claim that it can be assumed without loss of generality that for every e ∈ E(G)

at most one of e′ and e′′ is contained in a directed path P for which yD(P) > 0.
Assume to the contrary that e′ = −→uv is contained in the path P1 and e′′ = −→

vu is
contained in the path P2 and 0 < yD(P1) ≤ yD(P2). Let P1,2 be a directed path from
s to t that is contained in the walk consisting of the first part of P1 leading from s to u
and the second part of P2 leading from u to t . Define P2,1 analogously. Now decrease
yD(P1) and yD(P2) by yD(P1) and increase yD(P1,2) and yD(P2,1) by yD(P1). Since∑{yD(P) : e is on P} was not increased for any arc e of D, the modified yD still
guarantees an expected loss of at most μ to the Defender, however, the number of
paths P with a positive yD(P) containing e′ or e′′ got decreased. Therefore repeating
this modification as many times as needed yields the claim.

Now for every st-path P of G let yG(P) = yD(P ′), where P ′ denotes the directed
version of P . Then the claim of the above paragraph implies that yG guarantees the
Defender an expected loss of at most μ in the game played on G. Hence the game
value is also at most μ.

Since xD and yD can be computed in strongly polynomial time by Theorem 3 and
xG and yG can easily be computed from these according to the above, the proof is
complete. �

Let p : E(G) → R
+ be a positive valued weight function on the edges ofG. Recall

that λp(s, t), the weighted edge-connectivity between s and t with respect to p is the
minimum value of p(C), where C is an st-cut (both in the directed and the undirected
case). It follows directly from Theorems 3 and 4 that the (Directed and Undirected,
respectively) st-Path Game is capable of capturing the notion of λp(s, t) and its game
value can be considered as a sensible generalization of (the reciprocal of) λp(s, t). The
following was also proved in Washburn and Wood (1995) (for the undirected case).
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Corollary 3 If c(e) = 0 for all e ∈ E(G) then the game value of (both the Directed
and the Undirected) st-Path Game is 1

λp(s,t)
, where p(e) = 1

d(e) for every edge e.

We remark that while the reciprocal of the game value of the st-Path Game gen-
eralizes the notion of weighted edge-connectivity between two given nodes, it can
easily be modified so as to capture the notion of (general) weighted edge-connectivity
λp(G), that is, the minimum value of p(C) taken across all cuts ofG. Indeed, consider
the following modification of the game: first the Attacker chooses two distinct nodes
s, t ∈ V (G) and declares them to the Defender. Then the Defender chooses a path
P from s to t and (simultaneously) the Attacker chooses an edge e of G. Finally, the
payoff from the Defender to the Attacker is the same: d(e)− c(e) or −c(e) depending
on whether e is on P or not, respectively. It follows easily from Theorems 3 and 4 that
the value of this game is

μ = max

{{
1 − q(C)

p(C)
: C is a cut of G

}

∪
{

− c(e) : e ∈ E(G)

}}

,

where p(e) = 1
d(e) and q(e) = c(e)

d(e) for all e ∈ E(G) (both in the directed and the
undirected case). To show this, the Attacker should first choose a cut C for which
1−q(C)
p(C)

is maximum and choose s ∈ X and t /∈ X arbitrarily, where C consists of the
edges leaving X . Since the value of the thus arising st-Path Game is μ according to
Theorems 3 and 4, it follows that the Attacker can guarantee himself an expected gain
of at least μ and the Defender can guarantee herself an expected loss of at most μ

and hence the value of this modified game is indeed μ. It also follows directly that if
c(e) = 0 is assumed for all e ∈ E(G) then the game value is 1

λp(G)
.

While all the above results offered a way of capturing and generalizing the notion
of weighted edge-connectivity, it is also possible to modify the st-Path Game so as to
achieve a similar connection with weighted node-connectivity:

Definition 4 Assume that a (directed or undirected) graph G and two nodes s, t ∈
V (G) are given such that t is reachable from s inG via a (directed or undirected) path,
but there is no direct edge from s to t . Furthermore, a damage function d : V0 → R

+
and a cost function c : V0 → R are also given, where V0 = V (G) \ {s, t}. Then the
Node st-Path Game is defined as follows: the Attacker chooses a vertex v ∈ V0, the
Defender chooses a (directed or undirected) path P from s to t and then the payoff
from the Defender to the Attacker is d(v) − c(v) if v is on P and −c(v) otherwise.

A set of nodes Z ⊆ V0 is said to cover all st-paths if every path from s to t contains
at least one node in Z .

Theorem 5 The game value of the Node st-Path Game is

max

{{
1 − q(Z)

p(Z)
: Z ⊆ V0, Z covers all st-paths

}

∪
{

− c(v) : v ∈ V0

}}

,

where p(v) = 1
d(v)

and q(v) = c(v)
d(v)

for all v ∈ V0. Furthermore, the game value and
an optimum mixed strategy for both players can be computed in strongly polynomial
time.
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Proof Assume first that G is directed. Let the value of the above maximum be μ and
let w ∈ V0 such that c(w) = min{c(v) : v ∈ V0}. Split every node v ∈ V0 into two
nodes: replace v by v1 and v2 and let s1 = s2 = s and t1 = t2 = t for the sake of
consistency of the notation. Now add the new arc ev = −−→v1v2 for every v ∈ V0 and
replace every e = −→uv ∈ E(G) by e′ = −−→u2v1. Denote the obtained digraph by D and
let c(ev) = c(v) and d(ev) = d(v) for every v ∈ V0 and let c(e′) = c(w) + 1 and
d(e′) = 1 for every e ∈ E(G).

Consider an st-cut C of D. Using the observation that q(X)
p(X)

≥ min{c(v) : v ∈ X}
holds for every ∅ �= X ⊆ V (G) one easily checks that 1−q(C)

p(C)
≤ −c(w) holds if

e′ ∈ C for an edge e ∈ E(G) (that is, if C contains an arc that corresponds to an
original arc of G). This implies that the maximum in Theorem 3 computed for D is
either −c(w) = −c(ew) or it is attained by an st-cut C of D that only contains arcs
corresponding to nodes of G. Consider the latter case and let the corresponding node
set of G be Z (that is, C = {ev : v ∈ Z}). It is again easy to check that C is an st-cut
of D if and only if Z covers all paths from s to t in G. All these together imply by
Theorem 3 that the value of the Directed st-Path Game played on D is μ.

Consequently, there exists a pair of mixed strategies xD : E(D) → [0, 1] and
yD : PD → [0, 1] such that xD guarantees the Attacker an expected gain of μ and yD
guarantees the Defender an expected loss of μ in the Directed st-Path Game played
on D, where PD denotes the set of directed paths from s to t in D.

Now let xG(v) = xD(ev) for every v ∈ V0 \ {w} and let xG(w) = xD(ew) +∑{xD(e′) : e ∈ E(G)}. Observe that for every e ∈ E(G) the payoff corresponding
to a path P and e′ is always less than or equal to the payoff corresponding to P and
ew. (Indeed, depending on whether e′ is on P or not, the payoff corresponding to P
and e′ is either d(e′) − c(e′) = −c(w) or −c(e′) = −c(w) − 1 and hence it is at
most −c(w). Similarly, the payoff corresponding to P and ew is either d(w) − c(w)

or −c(w), so it is at least −c(w).) This implies that xG guarantees the Attacker an
expected gain of at least μ in the Node st-Path Game played on G and thus the game
value is at least μ.

On the other hand, let yG(P) = yD(P ′) for every st-path of G, where P ′ is the
st-path in D corresponding to P . It follows directly that yG guarantees the Defender
an expected loss of μ in the Node st-Path Game played on G. Hence the game value
is also at most μ and thus it is exactly μ.

Obviously, xG and yG can be computed in strongly polynomial time since the same
holds for xD and yD by Theorem 3 and xG and yG can easily be computed from these
according to the above.

Finally, assume that G is undirected. Replace every edge e = {u, v} of G by the
directed arcs−→uv and−→

vu and denote the obtained digraph byG ′. Since directed st-paths
in G ′ directly correspond to undirected st-paths in G and V (G ′) = V (G), it follows
that the Node st-Path Games played on G and G ′ are identical (including that the
payoffs are also equal in each case). Since the theorem was already proved to hold on
G ′, observing that node sets covering st-paths in G and G ′ are also identical yields
the theorem on G too. �

Obviously, the node splitting technique applied in the above proof could also be
used to handle the version of the st-Path Game where both edges and nodes of a graph
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have given cost and damage values and the Attacker is allowed to choose either an
edge or a node (different from s and t), however, the details of this are omitted here.

Recall that for any positive valued weight function p : V (G) → R
+, the weighted

node-connectivity between s and t with respect to p is the minimum value κp(s, t) of
p(Z), where Z ranges across all node sets covering all st-paths (both in the directed
and the undirected case). The following is implied directly by Theorem 5:

Corollary 4 If c(v) = 0 for all v ∈ V0 then the game value of (both the Directed and
the Undirected) Node st-Path Game is 1

κp(s,t)
, where p(v) = 1

d(v)
for every v ∈ V0.

Analogously to what was remarked after Corollary 3, one can modify the rules of
the Node st-Path Game (by letting the Attacker choose s and t first) so as to capture
and generalize the notion of general weighted node-connectivity of a graph, we omit
the details.

4 Conclusions

In this paper we defined and analyzed different versions of a two-player, zero-sum
game played on a graph by two virtual players, the Defender and the Attacker. In all
versions of the game the Attacker’s goal was to hit a path chosen by the Defender
between two given nodes. We determined the game value of all versions of the game
and showed that this, as well as optimum mixed strategies for both players, can be
computed in strongly polynomial time. This also implied that in the special case
where the cost of attack for the Attacker is zero, the game value always coincides with
the reciprocal of weighted connectivity understood in the sense corresponding to the
specific version of the game. This observation led us to the conclusion that the games
discussed in the paper are capable of capturing the notion of weighted connectivity of
a graph and their game values can be considered as a sensible generalization of (the
reciprocal of) weighted connectivity.
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