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Abstract
We consider Markowitz’s portfolio optimization problem that heavily suffers from
uncertainties of input parameters. And based on set order relations, uncertain portfolio
optimization problem at various extreme cases is modelled as robust multiobjec-
tive formulations. At first, borrowing set order relations, three concepts of set less
ordered efficiency are defined for multiobjective portfolio optimization problems with
uncertainties. Subsequently, following from Ben-Tal and Nemirovski (Math Oper Res
23(4):769–805, 1998; Oper Res Lett 25:1–13, 1999), several multiobjective robust
counterparts are introduced, and tackled by multiobjective particle swarm optimiza-
tion approach. As such, the properties of the obtained (robust) efficient solutions are
further characterized. Finally, the empirical researches from the real stock market
show that (robust) efficient solutions based on set order relations are highly advisable
for the investors.

Keywords Portfolio optimization · Robust counterpart · Set order relations · Robust
efficient · Multiobjective particle swarm optimization

1 Introduction

It is well known that Markowitz’s mean–variance portfolio optimization problem (see
Markowitz 1952, 1959) is strongly sensitive to the perturbations from input param-
eters (i.e., the expected return and the covariance of returns), which causes that the
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optimization results are seriously unreliable. To this end, there are variousways toman-
age these uncertain parameters. For example, sensitivity analysis treats uncertainties of
the parameters after an optimal solution is obtained. It belongs to a post-optimization
method (see Saltelli et al. (2000)). Moreover, stochastic optimization assumes that
uncertainties of the parameter whose probability distribution is known are of a stochas-
tic nature (see Birge and Louveaux 2011). Conversely, robust optimization, which is
employed in the present paper, requires the uncertain parameters lying in some uncer-
tain set without any distribution assumptions. It transforms the uncertain optimization
problems to the deterministic ones by robust counterpart (see Ben-Tal and Nemirovski
1998, 1999).

Although robust counterpart is conveniently achieved at the worst case of all the
realizations over the uncertain set, it is worth mentioning that the resulting optimiza-
tion solutions are very conservative without consideration of the different extreme
cases. Therefore, besides the worst case, this paper still investigates the other cases
where the corresponding robust counterparts handle with uncertainties in the portfo-
lio optimization problem, to provide the related portfolio strategies with the different
statuses of the stock market, which is research focus of this paper. At same time, set
order relations have been extensively studied to treat uncertain parameters in (robust)
multiobjective optimization problems at different extreme cases (see Kuroiwa 1998,
1999; Schöttle and Werner 2006, 2009; Ehrgott et al. 2014; Chen and Zhou 2018).
Even so, there are still lots of theoretical and practical issues to be further investi-
gated, for instance, at various extreme cases robust counterparts of uncertain portfolio
optimization problem and their computational cost, the properties of robust efficient
solutions and portfolio performance in real stock market. These issues constitute the
main contents of this study.

Thus, borrowing the idea of robust counterpart and the concepts of set order rela-
tions, for uncertain portfolio optimization problem this paper build the corresponding
robust counterpart to the various extreme cases over uncertain set. Meanwhile, consid-
ering the computational cost of various robust counterparts (especially, with complex
constraints), they will be maintained their multiobjective characteristic and solved by
multiobjective optimization approach. Roughly speaking, main contributions of this
paper are as follows:

• Lower robust counterpart is for the first time introduced for uncertain multiobjective
portfolio optimization problems via the idea of robust counterpart developed by
Ben-Tal and Nemirovski (1998, 1999) and the concepts of set ordered relations.

• Multiple relationships between robust efficient frontiers and nominal efficient fron-
tier are roundly studied, and new knowledge obtained: upper robust efficient frontier
lies on the right side of lower robust efficient frontier; and nominal efficient frontier
lies between them.

• Through the investigation for robust efficiency loss and some inherent parameters in
the optimization problem, some new discoveries are achieved at: robust efficiency
loss is negatively related to the number of assets in a portfolio. Moreover, it is
positively linked to the radius and negatively to the scaling factor of the ellipsoid
uncertain set.
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• Portfolio performance of various efficient solutions is also for the first time demon-
strated in real stock market, and some new findings provided for the investors: at the
bear market, the investment strategies of alternative robust efficient solutions can
produce the fewest the return loss of portfolio with the lowest risk. And, investment
strategies of lower robust efficient solutions generate the highest returns compared
to the other efficient solutions at the bull market. Also, at the steady market nominal
efficient solutions provide the relatively superior performance. But, the portfolio
performance of upper robust efficient solutions is very disappointed at any market.

In addition, despite studying portfolio optimization problems, our methodology
based on set order relations can also be applied to any uncertain multiobjective opti-
mization problem. Naturally, it is also helpful to other optimization problems in the
economics field.

The remainder of this paper is organized as follows. Section 2 introduces necessary
concepts and basic theories of (deterministic and uncertain) multiobjective optimiza-
tion (Sect. 2.1) and robust optimization (Sect. 2.2). A robust multiobjective portfolio
optimization based on set order relations is described in Sect. 3 where four kinds
of concepts of set order relations are presented in detail. In light of set order rela-
tions, the approaches to finding robust efficient solutions for uncertain multiobjective
portfolio optimization problems are introduced in Sect. 4; and multiobjective particle
swarm optimization solver is introduced for computing (robust) efficient solutions.
Sect. 5 illustrates some basic properties of (robust) efficient solutions and portfolio
performance in the real stock market. Finally, we present conclusions in Sect. 6.

2 Preliminaries

2.1 Multiobjective optimization

Firstly,without a loss of generality, assume that amultiobjective optimization iswritten
as

min f (x) � ( f1(x), . . . , fq (x))

s.t. x ∈ X (2.1)

where f : R
n → R

q is the vector-valued function composed of q objective com-
ponents. The function is simultaneously minimized over a set of feasible solutions
x (composed of a set of vectors). X ⊆ R

n is the feasible region. The class of mul-
tiobjective optimization is referred to as a deterministic multiobjective optimization
(DMO)without uncertain parameters. It is always used as an idealmodel for real-world
optimization.

Remark 2.1 Actually, Markowitz’s mean–variance portfolio is a multiobjective opti-
mization problem, which has two objective components. Suppose that a portfolio
of n risky assets is considered; the portfolio weighted vector x ∈ R

n
+ is subject to∑n

i�1 xi � 1. Naturally, the mean–variance portfolio optimization problem can be
written by
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min f (x) � ( f1(x), f2(x))

s.t.
n∑

i�1

xi � 1

mi ≤ xi ≤ Mi , i � 1, . . . , n (2.2)

In (2.2), f1(x) � xT �̂x is one objective component measuring the risk of portfolio;
f2(x) � −μ̂T x is the other objective component measuring the return of portfolio.
And the parameters of μ̂ and Σ̂ are assumed to be accurately computed by μ̂i � E[Ri ]
and Σ̂i j � E[(Ri − μ̂i )(R j − μ̂ j )]; here, Ri is the return on asset i, i � 1, . . . , n.
Mi (mi ) which denotes the maximum (minimum) proportion invested on Ai ; here,
the constraint is called budget constraint (90% for maximum proportion and 10% for
minimum proportion in the following sections).The resulting portfolio optimization
problem is referred to as the nominal mean–variance (NMV) portfolio optimization
problem. The efficient solutions obtained by NMV portfolio optimization problem are
called nominal efficient solutions,whose efficient set is denoted byXnmv . Additionally,
the constraints in NMV portfolio optimization problem are consistent with those of
the other portfolio optimization problems mentioned in the next sections.

However, uncertainty can emerge anywhere in the real world (e.g., the preceding
expected returns μ̂ possibly varying in a set of scenarios called an uncertainty set
(U ⊆ R

p).As such, a multiobjective optimization problem with uncertain parameters
is referred to as an uncertain multiobjective optimization (UMO) problem. UMO is
written as

P(U) :� (P(ζ ), ζ ∈ U) (UMO)

defined as a family of parameterized problems

P(ζ )min f (x, ζ ) � ( f1(x, ζ ), . . . , fq (x, ζ ))

s.t.x ∈ X

where f : X × U → R
q and X ⊆ R

n .

Remark 2.2 In the context of Markowitz’s mean–variance portfolio, when the param-
eters of the expected return and the covariance matrix are considered to be uncertain
rather than accurate, they are denoted by ζ � (μ,Σ) than by (μ̂, Σ̂).Further, assume
the covariance matrix Σ ∈ S

n
+ and expected return μ ∈ R

n . Then, the objective
function of (2.2) is replaced by min f (x) � ( f1(x, ζ ), f2(x, ζ )). The resulting multi-
objective portfolio optimization problem is referred to as the uncertainmean–variance
(UMV) portfolio optimization problem. In addition, we note that the geometry of the
uncertainty set U is crucial to optimize UMV portfolio optimization problem. In the
existing literature, there are some of uncertainty sets which are employed in the uncer-
tain optimization problem. However, the ellipsoidal uncertainty set (see Ben-Tal et al.
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2009; Schöttle and Werner 2006, 2009) is highlighted to have a good nature. So, in
the present paper, we will employ and introduce it as follows:

Uδ(μ̂, Σ̂) :�
{
(μ,Σ) ∈ R

n × S
n
+ : ||μ − μ̂||+c||Σ − Σ̂ ||≤ δ

}
(2.3)

where (μ̂, Σ̂) is the centre of an ellipsoid set (i.e., nominal values), and δ is its radius.

Multiobjective (portfolio) optimization problems have been described. Subse-
quently, the concepts of their efficient solutions will be presented.

Due to an absence of total ordering onR
q , the solution vectors of the multiobjective

optimization function f (x) must be defined based on partial ordering relations. In the
present paper, ordering relations, i.e.,�,≤and< , are applied (see Ehrgott 2005). Their
meanings are described as follows: x, y ∈ R

q

x�y :⇔ yi ∈ [xi , ∞) for all i � 1, . . . , q.
x ≤ y :⇔ yi ∈ [xi ,∞) for all i � 1, . . . , q, and x 	� y.
x < y :⇔ yi ∈ (xi ,∞) for all i � 1, . . . , q.

The notation [././.] is used to shorten the text. The conesR
q
�,Rq

≤ andR
q
< are defined

as R
q
[�/≤/ <]

:� {x ∈ R
q , x[�/ ≤ / <]0}. Similarly,Rq

[�/�/>]
:� {x ∈ R

q , x[�/ �
/ >]0}.

The goal of multiobjective optimization problems is to obtain all efficient solutions
in the feasible region X . In the following, we define efficient solutions obtained by
partial ordering relations.

Definition 2.3 (Efficient solutions) For a feasible solution x ∈ X , when x is called
efficient, then there is no x ′ ∈ X \{x} such that f (x ′) ≤ f (x).

Analogously, replacing≤with � or< , strictly efficient or weakly efficient can be
defined. Then, x is [strictly/./weakly] efficient

⇔ f (x) ⊆ f (x ′) − R
q
[�/�/>]

or f (x) + R
q
[�/�/>]

⊇ f (x ′) (2.4)

This relationship grasps the meaning of robustly efficient as it is used in the fol-
lowing section.

2.2 Robust optimization

Robust optimization, ideal approach for disposing uncertainties in multiobjective
optimization problems, have recently attracted more interests from researchers and
practitioners. We refer the readers to Ben-Tal et al. (2009) and Bertsimas et al. (2011)
for specific information on it. In particular, Ben-Tal has conducted extensive researches
in robust optimization and its application, where the robust counterpart has been intro-
duced. Robust counterpart attempts to transform uncertain optimization problem into
deterministic one based on the worst case of all the realizations (i.e., scenarios) over an
entire uncertainty set. As such, the resulting robust optimization problem can ensure
that the solutions obtained are still efficient.
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For the UMOproblem, uncertainty of the parameters is eliminated at the worst-case
scenario. Then, the resulting optimization problem is dealt with by the deterministic
multiobjective approaches. Borrowing from the ideology of (P*) (see Ben-Tal and
Nemirovski 1998, 1999) and of (RPu) (see Fliege and Werner 2014), the robust coun-
terpart of UMO problem can be given by:

min
x∈χ

max
ζ∈U

f (x, ζ ) � min
x∈χ

(max
ζ∈U

f1(x, ζ ), . . . , fq (x, ζ )). (RMO)

The goal of RMO problem is to discover all solutions that can remain efficient even
at theworst-case scenario. That is, the obtained solution x satisfies f (x) ⊆ f (x ′)−R

q
�

for any other solution x ′. According to Ehrgott, Ide and Schöbel (2014), such solutions
in RMOproblem are also referred to asminmax robust efficiency. Similarly, the strictly
and weakly efficient solutions are referred to as minmax robust strictly efficiency and
weakly efficiency, respectively.

Remark 2.4 For the UMV portfolio optimization problem, its robust counterpart at the
worst case is given by

min
x∈χ

max
ζ∈Uδ(μ̂,Σ̂)

f (x, ζ ) � min
x∈χ

max
(μ,Σ)∈Uδ(μ̂,Σ̂)

(
xTΣx

−μT x

)

� min
x∈χ

⎛

⎝
xT Σ̂x +

δ

c
||x ||2

−μ̂T x + δ||x ||

⎞

⎠ (RMVminmax)

where the ellipsoid uncertainty set Uδ(μ̂, Σ̂) is same with ellipsoid uncertainty set
used by Ben-Tal et al. (2009).

3 Set order relations for robust multiobjective portfolio optimization

Set order relations, as originate from set-valued optimization, investigate the relation-
ship of optimization solutions and their efficiency via comparing multiple objective
function values taken as a set of vector. Their researches and applications have been
increasingly emerged in multiobjective optimization filed, especially with uncertain
parameters (see Ehrgott et al. 2014; Kuroiwa 1998, 1999; Ide et al. 2014; Ide and
Köbis 2014; Khan et al. 2014).

Set order relations include four kinds of relations corresponding different extreme
cases over parameter set (here, it is the ellipsoid uncertainty set), that is, upper set
less ordered relation at the worst case, lower set less ordered relation at the best case,
alternative set less ordered relation at the intersection case and set less ordered rela-
tion at the union case, respectively. At each extreme case the optimization solutions
of multiobjective optimization problem can be obtained. Actually, the optimization
solutions of RMVminmax are achieved at the worst case of set order relations. How-
ever, at long time ago Keynes confirmed that for the stock market containing multiple
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extreme cases, long-period prediction only considering one extreme case is not accu-
rate. Contrarily, it should be divided into multiple successive sub-periods prediction
corresponding different extreme cases (see Keynes 1936). His proposal can be just
accomplished through set order relations.

To this end, firstly, the basic theory of set order relations is introduced as follows.

3.1 Upper set less ordered relation and upper set less ordered efficiency

Definition 3.1 (Upper set less ordered relation) For two arbitrary sets X ,Y ⊂ R
q ,

the upper set less ordered relation �u
s w.r.t R

q
[�/�/>]

should satisfy

X �u
sY ⇔ X ⊆ Y − R

q
[�/≥/>]

(⇔ ∀x ∈ X∃y ∈ Y : x[�/ ≤ / <]y) (3.1)

It is clear that upper set less ordered relation only focuses on the worst case of all
possible scenarios of UMO problem.

Definition 3.2 (Upper set less ordered efficiency) If a feasible solution x ∈ X is called
upper set less ordered [strictly/./weakly] efficient for an UMO problem, then there is
not x ′ ∈ X \{x} such that fU (x ′)�u

s fU (x) w.r.t R
q
[�/�/>]

. So, it holds that

�x ′ ∈ X \{x} : fU (x ′) ⊆ fU (x) − R
q
[�/≥/>]

(3.2)

Obviously, upper set less ordered efficiency of a feasible solution is equivalent
to its minmax robust efficiency described in the Sect. 2.2, i.e., fU (x ′)�u

s fU (x) w.r.t
R
q
[�/�/>]

. In addition, for the convenient description, upper set less ordered effi-

ciency and minmax robust efficiency are all written as upper robust efficiency; and
their corresponding efficient solutions are also written as upper robust efficient solu-
tions. Simultaneously, upper robust [strictly/./weakly] efficient solutions are denoted
by urse, ure and urwe, respectively; similarly, their corresponding solutions sets are
denoted by Xurse, Xure and Xurwe, respectively.

Lemma 3.3 For an UMV portfolio optimization problem, the following relationships
hold

Xurwe ⊆ Xure ⊆ Xurse.

Remark 3.4 In fact, for an UMV portfolio optimization problem, it is not allowed that
the portfolio weighted vector is complete zero, i.e., none of assets are invested. As
such, the relationship satisfies Xurwe � Xure. Additionally, robust strictly efficient
solutions also reveal that the investment strategies of the investors are risk averse.

3.2 Lower set less ordered relation and lower set less ordered efficiency

The descriptions of lower set less ordered relation and its efficiency are introduced as
follows, see Kuroiwa (1998), Ide and Köbis (2014).
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Definition 3.5 (Lower set less ordered relation) For two arbitrary sets X ,Y ⊂ R
q ,

lower set less ordered relation �l
s w.r.t. R

q
[�/�/>]

should satisfy

X �l
sY ⇔ X + R

q
[�/≥/>]

⊇ Y(⇔ ∀y ∈ Y∃x ∈ X : x[�/ ≤ / <]y) (3.3)

From the definition of lower set less ordered relation, it is easily observed that lower
set less ordered relation is just the opposite of upper set less ordered relation. That
is, the former focus on the best case of all the possible realizations in uncertainty set
rather than the worst case.

Definition 3.6 (Lower set less ordered efficiency) If a feasible solution x ∈ X is called
lower set less ordered [strictly/./weakly] efficient for an UMO problem, then there is
not x ′ ∈ X \{x} such that fU (x ′)�l

s fU (x) w.r.t. R
q
[�/�/>]

. So, it holds that

�x ′ ∈ X \{x} : fU (x ′) + R
q
[�/≥/>]

⊇ fU (x) (3.4)

Contrary to upper set less ordered efficiency, lower set less ordered efficiency is
identical with minmin robust efficiency rather than minmax robust efficiency. In the
sameway, for the convenient description, lower set less ordered efficiency andminmin
robust efficiency are all written as lower robust efficiency; and their corresponding
efficient solutions are also written as lower robust efficient solutions. At same time,
lower robust [strictly/./weakly] efficient solutions are denoted by lrse, lre and lrwe,
respectively; analogously, their linked solutions sets are also denoted by Xlrwe, Xlre

and Xlrse, respectively.

Lemma 3.7 For an UMO problem, the following relationships hold

Xlrwe ⊆ Xlre ⊆ Xlrse.

Remark 3.8 For an UMV portfolio optimization problem, the following relationship
also satisfies:

Xlrwe � Xlre. And, lower robust strictly efficient solutions reveal that the invest-
ment strategies of the investors are risk affine.

3.3 Alternative set less ordered relation and alternative set less ordered efficiency

The third concept in the set ordered relation family is alternative set less ordered
relation and its corresponding efficiency. It is composed of a combination of upper set
less ordered relation and lower set less ordered relation, see Ide and Köbis (2014), Ide
et al. (2014). It is described as follows:

Definition 3.9 (Alternative set less ordered relation) For twoarbitrary setsX ,Y ⊂ R
q ,

X dominates Y w.r.t. alternative set less ordered relations (denoted as �a
s ) and w.r.t.

R
q
[�/�/>]

, which should satisfy

⇔ (∀x ∈ X∃y ∈ Y : x[�/ ≤ / <]y)or (∀y ∈ Y∃x ∈ X : x[�/ ≤ / <]y) (3.5)
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In terms of the meanings of alternative set less ordered relations, it is obvious that
alternative set less ordered relation focuses on the worst case and the best case of all
the possible realizations in uncertainty set. And alternative set less ordered efficiency
is given as follows.

Definition 3.10 (Alternative set less ordered efficiency) If a feasible solution x ∈ X
is called alternative set less ordered [strictly/./weakly] efficient for an UMO problem,
then there is not x ′ ∈ X \{x} such that fU (x ′)�a

s fU (x). So, it holds

�x ′ ∈ X \{x}: fU (x ′) + R
q
[�/≥/>]

⊇ fU (x)or fU (x ′) ⊆ fU (x) − R
q
[�/≥/>]

(3.6)

It is clear that a feasible solution is alternative set less ordered efficiency, which
is upper set less ordered efficiency as well as lower set less ordered efficiency. Thus,
alternative set less ordered efficiency is equivalent to minmax robust efficiency and
minmin robust efficiency. For the convenient description, alternative set less ordered
efficiency is written as alternative robust efficiency; and its related efficient solutions
are also written as alternative robust efficient solutions. Meanwhile, alternative robust
[strictly/./weakly] efficient solutions are denoted by arse, are and arwe, respectively;
equally, their corresponding solutions sets are also denoted by Xarse,Xare and Xarwe,
respectively.

Lemma 3.11 For an UMO problem, the following relationships satisfy

Xarwe ⊆ Xare ⊆ Xarse.

Remark 3.12 For an UMV portfolio optimization problem, the following relationship
holds:Xarwe � Xare And alternative robust efficient solutions suggest that the invest-
ment strategies of the investors are based on the worst case and the best case. So, Ide
and Köbis (2014) suggest that alternative robust efficient solutions are good choices
for the investors.

Lemma 3.13 Given an UMV portfolio optimization problem, the following statements
hold:

• If short selling is limited, then Xurse � Xure and Xlrse � Xlre.
• If Xurse ∩ Xlrse � ∅, then Xarwe � Xare � Xarse � ∅.
• If |Xarwe|� 1, then |Xarse|� ∅.
where |·| expresses the number of the set.

3.4 Set less ordered relation

Set less ordered relation is another simple combination of upper set less ordered
relation and lower set less ordered relation (see Young 1931; Nishnianidze 1984;
Eichfelder and Jahn 2012; Ide and Köbis 2014).
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Fig. 1 The relationships among set order relation

Definition 3.14 (Set less ordered relation) For two arbitrary sets X ,Y ⊂ R
q , X

dominates Y w.r.t. set less ordered relations (denoted as �s) and w.r.t.Rq
[�/�/>]

,

which should be satisfied by

⇔ (∀x ∈ X∃y ∈ Y: x[�/ ≤ / <]y) and (∀y ∈ Y∃x ∈ X : x[�/ ≤ / <]y) (3.7)

Set less ordered efficiency can be given as follows:

Definition 3.15 (Set less ordered efficiency) If a feasible solution x ∈ X is called
set less ordered [strictly/./weakly] efficient for an UMO problem, then there is not
x ′ ∈ X \{x} such that fU (x ′)�s fU (x) w.r.t. R

q
[�/�/>]

.So, it holds that

�x ′ ∈ X \{x}: fU (x ′) + R
q
[�/≥/>]

⊇ fU (x) and fU (x ′) ⊆ fU (x) − R
q
[�/≥/>]

(3.8)

It is evident that a feasible solution which is said to be set less ordered efficiency
may be upper set less ordered efficiency or lower set less ordered efficiency.

Remark 3.16 For an UMV portfolio optimization problem, it is trivial to seek for the
efficient solutions which are set less ordered efficiency. Thus, we do not consider it in
the following sections.

From Definitions 3.1–3.14, the relationships among set order relation can be
depicted in Fig. 1.

Upper set less ordered relation and lower set less ordered relation concentrate on
two quite differently extreme cases in the uncertain set. They can provide robust
efficient solutions. Moreover, alternative set less ordered relation is interested in the
intersection of them. It can supply better choices for the investors.

4 Computing robustly efficient solutions for uncertain multiobjective
portfolio optimization

In the above descriptions several kinds of robust efficient solutions are analyzed based
on set order relation. Then, how to obtain these robust efficient solutions will be given
in the followings.
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4.1 Robust multiobjective portfolio formulations

In order to obtain upper/lower/alternative robust efficient solutions, robust multiob-
jective formulations are proposed based on Ben-Tal and Nemirovski (1998, 1999).

(a) Computing upper robust efficient solutions

According to Definitions 3.1 and 3.2, it is evident that upper robust efficiency is
equivalent to minmax robust efficiency (see Fliege and Werner 2014; Ehrgott et al.
2014). This relationship tells the fact of computing upper robust efficient solutions for
UMV portfolio optimization problems via RMVminmax. So, upper robust counterpart
can be given as

min
x∈X

max
ζ�(μ,Σ)

f (x, ζ ) � min
x∈X

max
(μ,Σ)∈Uδ(μ̂,Σ̂)

(
xTΣx

−μT x

)

� min
x∈X

⎛

⎝
xT Σ̂x +

δ

c
||x ||2

−μ̂T x + δ||x ||

⎞

⎠ (RMV-upper)

RMV-upper produces the efficient solutions which are upper robust efficient solu-
tions.

(b) Computing lower robustly efficient solutions

According to Definitions 3.5 and 3.6, it is easily fund that lower robust efficiency
is contrary to upper robust efficiency. For this reason, in borrowing the idea of robust
counterpart for UMO problem (see Ehrgott et al. (2014)), lower robust efficient
solutions are achieved by constructing lower robust counterpart for UMO which is
analytically given by

min
x∈X

min
ζ�(μ,Σ)

f (x, ζ ) � min
x∈X

min
(μ,Σ)∈Uδ(μ̂,Σ̂)

(
xTΣx

−μT x

)

� min
x∈X

⎛

⎝
xT Σ̂x − δ

c
||x ||2

−μ̂T x − δ||x ||

⎞

⎠ (RMV-lower)

Unlike toRMV-upper,RMV-lower employs tominimize the functionwith uncertain
parameter ζ taking the value at the best case (i.e., the best scenario) and the optimization
variable x fixed while reducing uncertainty in the optimization problem. And the
efficient solutions obtained by RMV-lower are lower robust efficient solutions.

(c) Computing alternative robustly efficient solutions

In light of Definitions 3.9 and 3.10, alternative robust efficient solutions are asso-
ciated with upper robust efficient solutions and lower robust efficient solutions. That
is, alternative robust efficient solutions are gained by

Xarse � Xurse ∩ Xlrse (RMV-alternative)
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(d) Computing nominally efficient solutions

For the sake of comparing upper/lower/alternative robust efficient solutions to nom-
inal efficient solutions, here, NMV portfolio optimization problem is re-written as

min
x∈X

(
xT Σ̂x

−μ̂T x

)

(NMV)

4.2 Multiobjective particle swarm optimization solver

In Sect. 4.1, we give the corresponding (robust) multiobjective formulation for obtain-
ing upper/lower/alternative/nominal (robust) efficient solutions. In terms of solving
these complex formulations, there are many means of finding robustly efficient
solutions to uncertain multiobjective portfolio optimization problems. In operations
research and management engineering fields in particular, various scalarization meth-
ods are extensively developed and applied to identify efficient solutions (e.g., weighted
sum scalarization and ε-constraint scalarization for the identification of robustly effi-
cient solutions (see Schöttle and Werner 2009; Ehrgott et al. 2014) and max-ordering
scalarization for lower robustly efficient solutions (see Ide and Köbis 2014; Köbis
2014). These scalarization methods compute the set of upper/lower robustly efficient
solutions dependent on the special set� or ε (see Ehrgott et al. 2014); additionally, the
computational cost is also dependent on the problem structure of the single-objective
optimization. To this end, we wish to introduce a popular approach: multiobjec-
tive particle swarm optimization (MOPSO) for multiobjective optimization problems
(see Coello et al. 2002, 2004). MOPSO involves the use of a stochastic and parallel
search algorithm. In disposing of sophisticated multiobjective optimization problems
with high dimension variables, complex constraints and multiple objective functions,
it exhibits remarkably fast convergence and rapid parallel processing and is easily
applied. MOPSO methods have been compared to other solvers (see Coello et al.
2002; Mishra et al. 2014, etc.). MOPSO has been widely used as a prevalent solver
of complex optimization problems (see Wang and Liang 2008; Rabbani et al. 2010;
Halassi 2016, etc.).

We now introduce the main steps of MOPSO for uncertain multiobjective portfolio
optimization problems as follows:

Method: MOPSO for NMV, RMV-UPPER, RMV-LOWER and RMV-
ALTERNAL

Input: A set of parameters from a robust multiobjective portfolio formulation:
∑̂

, μ̂, δ, c; from robustly efficient solution sets: XNMV � XURMV �
XLRMV � XARMV � ∅ and from the set of parameters of MOPSO: the
size of the populationMax, maximum iteration numbersMaxIter, the inertia
weight ω, and learning factors c1 and c2.

Step 1: Initialization

(a) Initialize the population (initialize the stochastic position x(i) of each
particle representing portfolio vectors of the multiobjective portfolio
optimization problem).
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(b) Initialize the speed v(i) of each particle (=0).

Step 2: Evaluate the fitness of each particle (objective functions are (NMV), (RMV-
UPPER), and (RMV-LOWER))

Step 3: Store the optimal position of each particle representing nondominated solu-
tions of the repository gbest

Step 4: Build hypercubes of search spaces explored and locate particles while using
them as a coordinate system in which each particle’s coordinates are defined
based on its objective functions

Step 5: Initialize the historical optimal memory pbest of each particle to travel
through the entire search space (initially pbest(i)�x(i))

Step 6: WHILE MaxIter has not been exceeded DO

(a) Update the speed of each particle according to the following expression:

v(i) � ω · v(i) + Rand1 · (pbest(i) − x(i)) + Rand2 · (gbest(h) − x(i))

(where Rand1 is a random number in the range [0, 1] and Rand2).
(b) Update the position of each particle according to the following expres-

sion:

x(i) � x(i) + v(i)

(c) Prevent particles in the search space fromextending beyond their bound-
aries to prevent new solutions from violating the constraints.

(d) Evaluate the fitness value of each particle according to its objective
functions.

(e) Update global optimal particles in the gbest alongside the geographical
representation of these particles in the hypercubes.

(f) IF the current position of the particle is better than its historical optimal
position pbest(i), THEN pbest(i)�x(i).

(g) Proceed to Step 6.

END WHILE
XNMV=gbest (obtained from (NMV)),XURMV=gbest (obtained from (RMV-
UPPER)), XLRMV=gbest (obtained from (RMV-LOWER)), and XARMV

(obtained from (RMV-ALTERNAL)).
Output: XNMV , XURMV , XLRMV and XARMV .

5 Illustrations of robust multiobjective portfolio efficient solutions

We present two examples to demonstrate the influence of set order relations on a
multiobjective portfolio optimization problem. Firstly, a simple example is used to
identify the relationships between robust efficiency loss based on set order relation
and three fixed parameters of the optimization problem; then, a practical example
from the real stock market is used to illustrate the performance of the mean–variance
portfolio optimization problem based on set order relation.
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Fig. 2 Efficient frontier when the number of assets is n � 5

5.1 A simple example

At first, assume there are n � 5 assets to be invested; their nominal parameters (i.e.,
expected returns and volatilities) are shown in the following:

μ̂ � (0.050, 0.055, 0.060, 0.065, 0.070)T ,

σ̂ � (0.100, 0.125, 0.150, 0.175, 0.200)T .

The correlation coefficients of pairwise returns are given by ρ̂ � 0.5; and the
feasible region of portfolio weighted vectors is denoted as X � {x ∈ R

n
+|xT 1 � 1}.

Further, for uncertain parameter (μ,Σ), we use the preceding ellipsoid uncertain set
whose parameter values are set by δ � 0.0075 and c � 2 (see Fliege and Werner
2014).

The results of NMV, RMV-upper, RMV-lower and RMV-alternative are illustrated
in Fig. 2. Furthermore, we set the number of assets to 3, 10 and 20 as is shown in Figs. 3,
4 and 5, respectively. From Figs. 2, 3, 4, and 5, it is evident that upper/lower/alternative
robust efficient frontiers are closer to the nominal efficient frontier with an increasing
of the number of assets. Simultaneously, it also illustrates that increasing the number of
assets in the portfolio can improve risks and revenues of RMV-upper and RMV-lower.
That is, with the number of assets in the portfolio increases, upper/lower/alternative
robust efficiency loss decreases. Such explicitly implies that robust efficiency loss
is negatively related to the number of assets in the portfolio. Here, there are two
assumptions which need be pointed out: all of the correlation coefficients of pairwise
returns are fixed (i.e., ρ̂ � 0.5); and all expected returns are positive. Whether or not
the above results remain unchanged when these assumptions changed requires further
investigation.
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Fig. 3 Efficient frontier when the number of assets is n � 3
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Fig. 4 Efficient frontier when the number of assets is n � 10

Next, the influences of two parameters (δ, c) in the ellipsoid uncertain set are inves-
tigated on the efficient frontier and robust efficiency loss. We take (δ, c) � (0.0075, 2)
as the reference value (see Fliege and Werner 2014), and keep the number of assets
n � 5 unchanged. Then, the case of δ � 0.075 and the value c unchanged is illustrated
in Fig. 6.

Oppositely, the case of c � 20 and δ unchanged is depicted in Fig. 7. Alternatively,
when δ and c are simultaneously decreased (i.e., δ � 0.00075 and c � 0.2) or
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Fig. 5 Efficient frontier when the number of assets is n � 20
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Fig. 6 δ � 0.075 and c � 2

simultaneously enlarged (i.e., δ � 0.075 and c � 20), the changes drastically occur
(see Figs. 8 and 9, respectively).

Comparisons of Figs. 2, 6, and 9 show that the radius of ellipsoid uncertainty
set heavily affects upper robust efficient frontier. That is, with the increase of the
radius, upper robust efficient frontier will be farther from the nominal efficient frontier
(i.e., upper robust efficiency loss becomes larger); meanwhile, the length of upper
robust efficient frontier gets shorter (i.e., the number of upper robust efficient solutions
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Fig. 7 δ � 0.0075 and c � 20
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Fig. 8 δ � 0.00075 and c � 0.2

becomes rarer). Such implies that upper robust efficiency loss is positively related to
the radius of ellipsoid uncertainty set. Furthermore, lower/alternative robust efficient
frontier is sensitive to the scaling factor of ellipsoid uncertainty set. In other words,
lower/alternative robust efficient frontier is closer to the nominal efficient frontier with
the increase of the scaling factor. Such suggests that lower/alternative efficiency loss
is negatively linked with the scaling factor. Additionally, the number of alternative
robust efficient solutions decreases while the radius increases.
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Fig. 9 δ � 0.075 and c � 20

5.2 A practical example based on real market data

In this section, we will investigate the performance of upper/lower/alternative robust
efficient solutions via the data from the real stock market; and the performance of
MOPSO is also compared to the state-of-art solvers, namely NSGA-II (see Deb et al.
2000) and SPEA2 (see Zitzler et al. 2001).

We randomly select the daily close prices of 10 stocks from theChinese stockmarket
denoted as S1…S10. These data cover January 1, 2006 to December 31, 2010; and the
entire period is also divided into three sub-periods: a bull market from January 1, 2006
to October 31, 2007, a bear market from November 1, 2007 to October 31, 2008, and
a steady market from November 1, 2008 to December 31, 2010 (descriptive statistics
are shown Table 3 of the Appendix). For a bull market, we use 315 observations from
January 1, 2006 to April 30, 2007 for our in-sample analysis and 121 observations
fromMay 1, 2007 to October 31, 2007 for our out-of-sample analysis. Likewise, for a
bear market, we use 160 observations fromNovember 1, 2007 to June 30, 2008 for our
in-sample analysis and 83 observations from July 1, 2008 to October 31, 2008 for our
out-of-sample analysis. For a steady market, we use 306 observations from November
1, 2008 to January 31, 2010 for our in-sample analysis and 221 observations from
February 1, 2010 to December 31, 2010 for our out-of-sample analysis.

Each sub-period in-sample efficient frontier of RMV-upper/RMV-lower/RMV-
alternative and NMV is shown in Figs. 10, 11, 12, respectively. It is evident that upper
robust efficient frontier varies considerably at each sub-period. Especially, the number
of lower robust efficient solutions is extremely rare, which is contrary to the results
obtained in Sect. 5.1. The reason is that in the real stock market the correlation coeffi-
cients of pairwise returns are not fixed; however, they are invariable and non-negative
(i.e., ρ̂ � 0.5) in Sect. 5.1. Such further suggests that lower robust efficient solutions

123



Journal of Combinatorial Optimization (2019) 38:21–49 39

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-3

-10

-8

-6

-4

-2

0

2

4
x 10

-3

violation(risk)

N
eg

at
iv

e 
ex

pe
ct

ed
 re

tu
rn

s

NMV
RMV_upper
RMV_lower
RMV_alternative

Fig. 10 Robust efficient frontier for a bull market

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
-3

-6

-4

-2

0

2

4

6
x 10

-3

violation(risk)

N
eg

at
iv

e 
ex

pe
ct

ed
 re

tu
rn

s

NMV
RMV_upper
RMV_lower
RMV_Alternative

Fig. 11 Robust efficient frontier for a bear market

are sensitive to the correlation coefficients of pairwise returns. On the aspect of robust
efficiency loss, lower robust efficiency loss is larger than upper robust efficiency loss.
Additionally, from Lemmas 3.3, 3.7, 3.11 and 3.13, upper/lower/alternative robust
weak efficient solutions are trivial in the real stock.
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Fig. 12 Robust efficient frontier for a steady market

Now, we still use the data from the real stock market to test the computing perfor-
mance; at same time, NMV, RMV-upper and RMV-lower are chosen as test functions.
For each of them, their running parameters are completely same in population size,
number of iterations and repository that are 100,300 and 50, respectively; about the
implications of these running parameters, the interesting readers can refer to the related
literature.

The figures from Figs. 13, 14, and 15 show that SPEA2, MOPSO and NSGA-II
produce efficient frontiers by solvingNMV,RMV-upper andRMV-lower, respectively.
And the average running time of the three algorithms are seen in Table 1. Furthermore,
to satisfy more practical needs, cardinality constraints are imposed on the above test
functions with the original constraints unchanged. Cardinality constraints contain the
limitations of the number of stock invested in portfolio (here, 9 for the maximum
number and 2 for the minimum number). The resulting functions become quadratic
mixed-integer optimization problems (denoted by NMV-qmi, RMV-upper-qmi and
RMV-lower-qmi, respectively). The results obtained by three algorithms via solving
these complex functions are indicated in Table 1 and Figs. 16, 17, and 18.

It is obvious that MOPSO occupies competitive advantages in the average running
time and the quality of efficient solutions compared to the other algorithms. Also,
the number of efficient solutions obtained by NMV-qmi, RMV-upper-qmi and RMV-
lower-qmi is less than the one by NMV, RMV-upper and RMV-lower, respectively.
But, in the shape of efficient frontiers the whole difference is not greater.

Next, in order to investigate the portfolio performance of the out-of-example anal-
ysis, we arbitrarily select one or more solutions from nominal/upper/lower/alternative
(robust) efficient solutions set obtained by NMV-qmi, RMV-upper-qmi, RMV-lower-
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Fig. 13 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for NMV
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Fig. 14 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for RMV-upper
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qmi and RMV-alternative-qmi (composed of the intersection of RMV-upper-qmi and
RMV-lower-qmi). This procedure need successively test each efficient solution in
their corresponding solution set, i.e.,Xnmv ,Xurse,Xlrse andXarse. Then, for each con-
structed portfolio by the selected efficient solution, out-of-sample returns are computed
at each sub-period; portfolio performance of the out-of-sample is given in Table 2.
There is not an efficient solution that is repeatedly selected at the three sub-periods.
This result does not fully coincidewith the conclusions of Ide andKöbis (2014) and Ide
et al. (2014). Because of the sacrifice of robust efficiency loss, lower robust efficient
solutions construct the investment strategy that can provide the returns of portfolio as
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Fig. 15 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for RMV-lower
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Table 1 The average running time (in s) for SPEA 2, MOPSO and NSGA-II

Test function SPEA2 MOPSO NSGA-II

NMV 0.040908 0.030051 0.012828

RMV-upper 0.00018 0.00002 0.00011

RMV-lower 2.265 1.397 5.688

NMV-qmi 0.22812 0.031589 0.189501

RMV-upper-qmi 0.000023 0.00006 0.00019

RMV-lower-qmi 2.422 1.5189 6.407

high as 0.09% at the bull market. However, at the same market the investment strategy
of upper robust efficient solutions produce the negative returns of portfolio owing
to their too conservative. At the steady market, the investment strategy of nominal
efficient solutions seem to be very well, its loss of portfolio returns being the fewest
(− 0.04%) but the highest risk (6.71%). as well, at the bear market the portfolio returns
generated by lower robust efficient solutions is same with those by alternative robust
efficient solutions; but the risk of the former is 1.69% higher than that of the latter.
Such conclusion is just as Ide and Köbis (2014) suggested.

We now describe the tendency curves of cumulative returns for these efficient
solutions at each sub-period (see Figs. 19, 20 and 21). From these curves the above
observations can be also confirmed. For example, at the steadymarket and at the earlier
stage of the bear market, investment strategies of alternative robust efficient solutions
perform the best. But, at this time lower robust efficient solutions fail to be popular
by the investors. Inversely, at the bull market they are very attractive in that they can
produce better outcomes than the other solutions at the tendency of the stock market
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Fig. 16 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for NMV-qmi
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Fig. 17 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for
RMV-upper-qmi
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being optimistic. Meanwhile, at the steady market all robust efficient solutions are
inferior to nominal efficient solutions.

The above results are originated from our definitions for efficient solution based on
set order relations. In the other words, set order relations define the efficient solutions
which are more suitable for the different market situations (i.e., bull market, steady
market, or bear market). Thus, according to the tendency of stockmarket, the investors
can select the suitable efficient solutions and construct portfolio strategy to enhance
the returns of portfolio and reduce the risk.
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Fig. 18 Efficient frontiers
produced by SPEA2, MOPSO
and NSGA-II for
RMV-lower-qmi
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Table 2 Portfolio performance of the out-of-sample period for the investment strategies from various dif-
ferent efficient solutions

Sub-periods Bull market Steady market Bear market

Nominal efficient solutions

Returns (%) 0.08 −0.04 −0.22

SD (%) 2.39 6.71 2.24

Cumulative returns 1.0859 0.8533 0.8270

Upper robust efficient solutions

Returns (%) −0.05 −0.15 −0.29

SD (%) 4.55 1.02 2.27

Cumulative returns 0.9990 0.8310 0.8269

Lower robust efficient solutions

Returns (%) 0.09 −0.08 −0.21

SD (%) 2.45 1.06 3.91

Cumulative returns 1.0958 0.8200 0.8242

Alterative robust efficient solutions

Returns (%) 0.07 −0.08 −0.21

SD (%) 2.02 1.10 2.22

Cumulative returns 1.0640 0.8162 0.8269

SD standard deviation

6 Conclusions

To deal with uncertainties of input parameters in Markowitz’s portfolio optimization
problem, for the first time we have roundly studied robust counterparts of several
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Fig. 19 Cumulative returns for the bull market. NMV represents the cumulative returns fromNMV portfolio
optimization problem with budget and cardinality constraints; similarly, RMV-upper represents the cumu-
lative returns from RMV-upper portfolio optimization problem with budget and cardinality constraints;
RMV-lower represents the cumulative returns from RMV-lower portfolio optimization problem with bud-
get and cardinality constraints; RMV-alternative represents the cumulative returns from RMV-alternative
portfolio optimization problem with budget and cardinality constraints; hereinafter

extreme cases via the concept of set order relations and the idea of robust counterpart
introduced by Ben-Tal and Nemirovski (1998, 1999). Simultaneously, considering
the computational cost of robust counterparts with complex constraints, we employ
multiobjective optimization approach (i.e., MOPSO) to obtain (robust) efficient solu-
tions. Their portfolio performance and basic properties in real stock market are further
investigated. And some important results are observed as follows.

At the aspect of the properties of (robust) efficient solutions and the inherent param-
eters,we construct a numerical experiment in gist of Fliege andWerner (2014) butmore
complex. The aim is to roughly discovery the dynamic relationships between (robust)
efficient solutions and the inherent parameters through the numerical experiments
rather than through the mathematic derivations. Our experimental results illustrate
that the size of assets in a portfolio and the parameters (i.e., the radius and scaling fac-
tor) in ellipsoid uncertainty set significantly influence on robust efficient frontier and
robust efficiency loss. For example, the increase of the radius will lead to upper robust
efficient frontier gradually becoming shorter as well as the increase of robust efficiency
loss. Conversely, robust efficiency loss will reduce due to increase the scaling factor
and/or the size of assets.

At the other aspect of portfolio performance of (robust) efficient solutions, a
compromising of the inherent parameters is achieved at according to the preceding
numerical experiment. Finally, the practical example tells such fact that the invest-
ment strategies of upper/lower/alternative/nominal (robust) efficient solutions have
their own advantages in the real stock market. Generally speaking, at the bull market
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Fig. 20 Cumulative returns for a steady market
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Fig. 21 Cumulative returns for a bear market

lower efficient solutions can bring about more the returns of portfolio, compared to the
other efficient solutions. Simultaneously, the investment strategies of alternative robust
efficient solutions are desirable with the lowest risk at the bear market. However, at
the steady market nominal efficient solutions’ investment strategies behave very well.
Surprisely, portfolio performance of upper robust efficient solutions is exceptionally
poor at any market.
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These significant outcomes further explain that in the real stock market each of
(robust) efficient solutions can be recommended to construct the advisable portfolio
according to the status of stockmarket (i.e., bullmarket, bearmarket, or steadymarket).
Evidently, the introduction of set order relations to uncertain mean–variance portfolio
optimization problem is highly meaningful. Additionally, it is also pointed out that
MOPSO is a desirable solver for the sophisticated portfolio optimization problems.
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Appendix

See Table 3.

Table 3 Descriptive statistics of stock returns

Sub-periods Stock no. Mean (%) SD (%) Min Max

Bull market S1 0.023 2.63 −0.1055 0.0954

S2 0.020 3.31 −0.2101 0.0959

S3 0.029 4.23 −0.4251 0.0958

S4 0.039 4.58 −0.1059 0.4039

S5 0.033 3.92 −0.3245 0.0956

S6 0.024 3.59 −0.2186 0.0960

S7 0.038 4.01 −0.1056 0.0957

S8 0.031 4.62 −0.3229 0.0967

S9 0.032 4.54 −0.3101 0.0957

S10 0.015 3.86 −0.1061 0.0960

Bear market S1 −0.038 4.87 −0.1041 0.0953

S2 −0.026 3.36 −0.1054 0.0956

S3 −0.034 3.89 −0.1054 0.0956

S4 0.027 4.44 −0.4365 0.0957

S5 −0.04 5.01 −0.106 0.0962
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Table 3 continued

Sub-periods Stock no. Mean (%) SD (%) Min Max

S6 −0.034 4.35 −0.118 0.0958

S7 −0.034 4.38 −0.1053 0.0956

S8 −0.037 4.54 −0.1063 0.0960

S9 −0.046 4.4 −0.1064 0.0958

S10 −0.032 4.89 −0.1061 0.0955

Steady market S1 0.04 2.2489 −0.1021 0.0664

S2 −0.05 1.8792 −0.0763 0.0763

S3 0.2 2.6606 −0.0924 0.0954

S4 −0.22 3.0976 −0.2424 0.0956

S5 0.016 3.0815 −0.1052 0.0958

S6 0.013 2.9240 −0.1019 0.096

S7 0.07 4.5726 −0.7237 0.0955

S8 0.011 3.0358 −0.1052 0.0963

S9 0.04 3.5219 −0.3915 0.0959

S10 0.018 3.2823 −0.105 0.0959
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