
Journal of Combinatorial Optimization (2019) 37:1283–1311
https://doi.org/10.1007/s10878-018-0353-z

Positive-instance driven dynamic programming for
treewidth

Hisao Tamaki1

Published online: 16 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Consider a dynamic programming scheme for a decision problem in which all sub-
problems involved are also decision problems. An implementation of such a scheme
is positive-instance driven (PID), if it generates positive subproblem instances, but
not negative ones, building each on smaller positive instances. We take the dynamic
programming scheme due to Bouchitté and Todinca for treewidth computation, which
is based onminimal separators and potential maximal cliques, and design a variant (for
the decision version of the problem) with a natural PID implementation. The result-
ing algorithm performs extremely well: it solves a number of standard benchmark
instances for which the optimal solutions have not previously been known. Incorpo-
rating a new heuristic algorithm for detecting safe separators, it also solves all of the
100 public instances posed by the exact treewidth track in PACE 2017, a competition
on algorithm implementation. We describe the algorithm, prove its correctness, and
give a running time bound in terms of the number of positive subproblem instances.
We perform an experimental analysis which supports the practical importance of such
a bound.

Keywords Treewidth · Tree decomposition · Dynamic programming ·
Positive-instance driven

1 Introduction

Supposewe design a dynamic programming algorithm for some decision problem, for-
mulating subproblems, which are decision problems as well, and recurrences among

A preliminary and abridged version of this paper was presented at the 25th European Symposium on
Algorithms.

B Hisao Tamaki
tamaki@cs.meiji.ac.jp

1 Meiji University, 1-1-1 Higashi-Mata, Tama, Kawasaki 214-8571, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-0353-z&domain=pdf
http://orcid.org/0000-0001-7566-8505

1284 Journal of Combinatorial Optimization (2019) 37:1283–1311

those subproblems. A standard approach is to list all subproblem instances and scan
the list from “small” ones to “large” , deciding the answer, positive or negative, to
each instance by means of these recurrences. When the number of positive subprob-
lem instances are expected to be much smaller than the total number of subproblem
instances, a natural alternative is to generate positive instances only, using recurrences
to combine positive instances to generate a “larger” positive instance. We call such a
mode of dynamic programming execution positive-instance driven or PID for short.
One goal of this paper is to demonstrate that PID is not simply a low-level implemen-
tation strategy but can be a paradigm of algorithm design for some problems.

The decision problem we consider is that of deciding, given graph G and positive
integer k, if the treewidth of G is at most k. This graph parameter was introduced
by Robertson and Seymour (1986) and has had a tremendous impact on graph the-
ory and on the design of graph algorithms (see, for example, a survey Bodlaender
and Koster 2008). The treewidth problem is NP-complete (Arnborg et al. 1987) but
fixed-parameter tractable: it has an f (k)nO(1) time algorithm for some fixed function
f (k) as implied by the graph minor theorem of Robertson and Seymour (2004), and
an explicit O(f (k)n) time algorithm was given by Bodlaender (1996). A classical
dynamic programming algorithm due to Arnborg et al. (1987) (ACP algorithm) runs
in nk+O(1) time. Bouchitté and Todinca (2002) developed amore refined dynamic pro-
gramming algorithm (BT algorithm) based on the notions of minimal separators and
potential maximal cliques, which lead to algorithms running in O(1.7549n) time or
in O(n5

(�(2n+k+8)/3�
k+2

)
) time (Fomin et al. 2008; Fomin and Villanger 2012). Another

important approach to treewidth computation is based on the perfect elimination order
(PEO) of minimal chordal completions of the given graph. PEO-based dynamic pro-
gramming algorithms run in O∗(2n) time with exponential space and in O∗(4n) time
with polynomial space (Bodlaender et al. 2012), where O∗(f (n)) means O(nc f (n))

for some constant c.
There has been a considerable amount of effort on implementing treewidth

algorithms to be used in practice and, prior to this work, the most successful imple-
mentations for exact treewidth computation are all based on PEO. The authors of
Bodlaender et al. (2012) implemented the O∗(2n) time dynamic programming algo-
rithm and experimented on its performance, showing that it works well for small
instances. For larger instances, PEO-based branch-and-bound algorithms are known
to work well in practice (Gogate and Dechter 2004). Recent proposals for reducing
treewidth computation to SAT solving are also based on PEO (Samer and Veith 2009;
Berg and Järvisalo 2014). From the PID perspective, this situation is somewhat sur-
prising, since it can be shown that each positive subproblem instance in the PEO-based
dynamic programming scheme corresponds to a combination of an indefinite number
of positive subproblem instances in the ACP algorithm, and hence the number of posi-
tive subproblem instances can be exponentially larger than that in the ACP algorithm.
Indeed, a PID variant of the ACP algorithm was implemented by the present author
and has won the first place in the exact treewidth track of PACE 2016 (Dell et al. 2017),
a competition on algorithm implementations, outperforming other submissions based
on PEO. Given this success, a natural next step is to design a PID variant of the BT
algorithm, which is tackled in this paper.

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1285

The resulting algorithm performs extremely well, as reported in Sect. 8. It is tested
on DIMACS graph-coloring instances (Johnson 1996), which have been used in the
literature on treewidth computation as standard benchmark instances (Gogate and
Dechter 2004; Bodlaender and Koster 2006; Musliu 2008; Samer and Veith 2009;
Bodlaender et al. 2012; Berg and Järvisalo 2014). Our implementation of the algorithm
solves all the instances that have been previously solved (that is, with matching upper
and lower bounds known)within 10 seconds per instance on a typical desktop computer
and solves 13 out of the 42 previously unsolved instances. For nearly half of the
instances which it leaves unsolved, it significantly reduces the gap between the lower
and upper bounds. It is interesting to note that this is done by improving the lower
bound. Since the number of positive subproblem instances are much smaller when
k < tw(G) thanwhen k = tw(G), the PIDapproach is particularly good at establishing
strong lower bounds.

We also adopt the notion of safe separators due to Bodlaender and Koster (2006) in
our preprocessing and design a new heuristic algorithm for detecting safe separators.
With this preprocessing, our implementation also solves all of the 100 public instances
posed by PACE 2017 (2017), the successor of PACE 2016. It should be noted that these
test instances of PACE 2017 are much harder than those of PACE 2016: the winning
implementation of PACE2016mentioned above,which solved199of the 200 instances
therein, solves only 62 of these 100 instances of PACE 2017 in the given time of 30
minutes per instance.

Adapting the BT algorithm to work in PID mode has turned out non-trivial. Each
subproblem instance in the BT algorithm for given graph G and positive integer k
takes the form of a connected set C of G such that NG(C), the open neighborhood
of C in G, is a minimal separator of G with cardinality at most k. For each such C ,
we ask if C is feasible, in the sense that there is a tree decomposition of the subgraph
of G induced by C ∪ NG(C) of width at most k that has a bag containing NG(C)

(see Sect. 2 for the definition of a tree decomposition of a graph). The difficulty of
making the BT algorithm PID comes from the fact that the recurrence for deciding if
C is feasible may involve an indefinite number of connected setsC ′ such thatC ′ ⊂ C .
Thus, even if the number of positive instances is small, there is a possibility that the
running time is exponential in that number. We approach this issue by introducing an
auxiliary structure we call O-blocks (see Sect. 3) and formulate a recurrences that are
binary: a combination of a feasible connected set and a feasible O-block may yield
either a larger feasible connected set or a larger feasible O-block. Due to this binary
recurrence, we obtain an upper bound on the running time of our algorithm which
is sensitive to the number of subproblem instances (Observation 1 in Sect. 5). To
support the significance of such a bound, we perform an experimental analysis which
shows the existence of huge gaps between the actual number of combinatorial objects
corresponding to subproblems and the known theoretical upper bounds.

The rest of this paper is organized as follows. In Sect. 2, we introduce notation,
define basic concepts and review facts in the literature. In Sect. 3, we precisely define
the subproblems in our dynamic programming algorithm and formulate recurrences.
We describe our algorithm and prove its correctness in Sect. 4 and then analyze its
running time in Sect. 5. In Sect. 6, we describe our experimental analysis. In Sect. 7,

123

1286 Journal of Combinatorial Optimization (2019) 37:1283–1311

we describe some implementation details. Finally, in Sect. 8, we give details of the
performance results sketched above.

2 Preliminaries

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let
G be a graph. We denote by V (G) the vertex set of G and by E(G) the edge set of
G. For each v ∈ V (G), NG(v) denotes the set of neighbors of v in G: NG(v) =
{u ∈ V (G) | {u, v} ∈ E(G). For U ⊆ V (G), the open neighborhood of U in
G, denoted by NG(U), is the set of vertices adjacent to some vertex in U but not
belonging to U itself: NG(U) = (

⋃
v∈U NG(v))\U . The closed neighborhood of U

in G, denoted by NG [U], is defined by NG [U] = U ∪ NG(U). We also write NG [v]
for NG [{v}] = NG(v) ∪ {v}. We denote by G[U] the subgraph of G induced by U :
V (G[U]) = U and E(G[U]) = {{u, v} ∈ E(G) | u, v ∈ U }. In the above notation,
as well as in the notation further introduced below, we will often drop the subscript G
when the graph is clear from the context.

We say that vertex setC ⊆ V (G) is connected in G if, for every u, v ∈ C , there is a
path inG[C] between u and v. It is a connected component ofG if it is connected and is
inclusion-wise maximal subject to this condition. A vertex set C in G is a component
associated with S ⊆ G, if C is a connected component of G[V (G)\S]. For each
S ⊆ V (G), we denote by CG(S) the set of all components associated with S. A vertex
set S ⊆ V (G) is a separator ofG if |CG(S)| > CG(∅)|, that is, if its removal increases
the number of connected components of G. A component C associated with separator
S ofG is a full component if NG(C) = S. A separator S is aminimal separator if there
are at least two full components associated with S. This term is justified by this fact:
if S is a minimal separator and a, b vertices belonging to two distinct full components
associated with S, then for every proper subset S′ of S, a and b belong to the same
component associated with S′; S is a minimal set of vertices that separates a from b.
A block is a pair (S,C), where S is a separator and C is a component associated with
S; it is a full block if C is a full component, that is, S = N (C).

Graph H is chordal if every induced cycle of H has length exactly three. H is a
minimal chordal completion of G if it is chordal, V (H) = V (G), E(G) ⊆ E(H), and
E(H) is minimal subject to these conditions. A vertex set Ω ⊆ V (G) is a potential
maximal clique of G, if Ω is a clique in some minimal chordal completion of G.

A tree-decomposition of G is a pair (T ,X) where T is a tree and X is a family
{Xi }i∈V (T) of vertex sets of G such that the following three conditions are satisfied.
We call members of V (T) nodes of T and each Xi the bag at node i .

1.
⋃

i∈V (T) Xi = V (G).
2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T) such that u, v ∈ Xi .
3. The set of nodes Iv = {i ∈ V (T) | v ∈ Xi } of V (T) induces a connected subtree

of T .

The width of this tree-decomposition is maxi∈V (T) |Xi | − 1. The treewidth of G,
denoted by tw(G) is the minimum width of all tree-decompositions of G. We may
assume that the bags Xi and X j are distinct from each other for i �= j and, under this

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1287

assumption, we will often regard a tree-decomposition as a tree T in which each node
is a bag.

We call a tree-decomposition T of G canonical if each bag of T is a potential
maximal clique ofG and, for every pair X , Y of adjacent bags in T , X∩Y is a minimal
separator of G. The following fact is well-known. It easily follows, for example, from
Proposition 2.4 in Bouchitté and Todinca (2001).

Lemma 1 Let G be an arbitrary graph. There is a tree-decomposition T of G of width
tw(G) that is canonical.

The following local characterization of a potential maximal clique is crucial. We
say that a vertex set S ⊆ V (G) is cliquish in G if, for every pair of distinct vertices
u and v in S, either u and v are adjacent to each other or there is some C ∈ C (S)

such that u, v ∈ N (C). In other words, S is cliquish if completing N (C) for every
C ∈ C (S) into a clique makes S a clique.

Lemma 2 (Theorem 3.15 in Bouchitté and Todinca 2001) A separator S of G is a
potential maximal clique of G if and only if (1) S has no full-component associated
with it and (2) S is cliquish.

It is also shown in Bouchitté and Todinca (2001) that if Ω is a potential maximal
clique of G and S is a minimal separator contained in Ω , then there is a unique
component CS associated with S that contains Ω\S. We need an explicit way of
forming CS from Ω and S.

Let K ⊆ V (G) be an arbitrary vertex set and S an arbitrary proper subset of K .
We say that a component C ∈ C (K) is confined to S if N (C) ⊆ S; otherwise it is
unconfined to S. Let unconf(S, K) denote the set of components associatedwith K that
are unconfined to S. Define the crib of S with respect to K , denoted by crib(S, K),
to be (K\S) ∪ ⋃

C∈unconf(S,K) C : it is the union of K\S and all those components
associated with K that have neighborhoods intersecting K\S.

The following lemma relies only on the second property of potential maximal
cliques, namely that they are cliquish, andwill be applied not only to potentialmaximal
cliques but also to separators with full components, which are trivially cliquish.

Lemma 3 Let K ⊆ V (G) be a cliquish vertex set. Let S be an arbitrary proper subset
of K . Then, crib(S, K) is a full component associated with S.

Proof Let C = crib(S, K). We first show that G[C] is connected. Suppose K\S has
two distinct vertices u and v. Since K is cliquish, either u and v are adjacent to each
other or there is some component C ′ ∈ C (K) such that u, v ∈ N (C ′). In the latter
case, as C ′ is unconfined to S, we have C ′ ⊆ C . Therefore, u and v belong to the same
connected component of G[C]. As this applies to every pair of vertices in K \ S, K\S
is contained in a single connected component of G[C]. Moreover, each component
C ′ ∈ C (K) contained in C is unconfined to S, by the definition of crib(S, K), and
hence has a neighbor in K\S. Therefore, we conclude that G[C] is connected. Each
vertex v not in S ∪ C belongs to some component in C (K) that is confined to S and
hence does not have a neighbor in C . Therefore, C is a component associated with S.

123

1288 Journal of Combinatorial Optimization (2019) 37:1283–1311

To see that C is a full component, let u ∈ S and v ∈ K \ S be arbitrary. Since K is
cliquish, either u and v are adjacent to each other or there is some C ′ ∈ C (K) such
that u, v ∈ N (C ′). As such C ′ is unconfined to S in the latter case, we conclude that
u ∈ N (C) in either case. Since this holds for arbitrary u ∈ S, we conclude that C is a
full component associated with S. �
Remark 1 As crib(S, K) contains K\S, it is clear that it is the only component asso-
ciated with S that intersects K . Therefore, the above mentioned assertion on potential
maximal cliques is a corollary to this Lemma.

3 Recurrences on orientedminimal separators

In this section, we fix graph G and positive integer k that are given in the problem
instance: we are to decide if the treewidth of G is at most k. We assume that G is
connected.

For connected setC ⊆ V (G), we denote byG〈C〉 the graphobtained fromG[N [C]]
by completing N (C) into a clique: V (G〈C〉) = N [C] and E(G〈C〉) = E(G[N [C]])∪
{{u, v} | u, v ∈ N (C), u �= v}. We say C is feasible if tw(G〈C〉) ≤ k. Equivalently,
C is feasible if G[N [C]] has a tree-decomposition of width k or smaller that has a bag
containing N (C).

Let us first review the BT algorithm (Bouchitté and Todinca 2001) adapting it to
our decision problem. We first list all minimum separators of cardinality k or smaller
and all potential maximal cliques of cardinality k+1 or smaller. Then, for each pair of
a potential maximal cliqueΩ and a minimal separator S such that S ⊂ Ω , place a link
from S toΩ . To understand the difficulty of formulating a PID variant of the algorithm,
it is important to note that the pair (Ω, S) to be linked is easy to find from the side of
Ω , but not the other way round. Then, we scan the full blocks (N (C),C) of minimal
separators in the increasing order of |C | to decide if C is feasible, using the following
recurrence: C is feasible if and only if there is some potential maximal clique Ω such
that N (C) ⊂ Ω , C = crib(N (C),Ω), and every component D ∈ unconf(N (C),Ω)

is feasible. Finally, we have tw(G) ≤ k if and only if there is a potential maximal
clique Ω with |Ω| ≤ k + 1 such that every component associated with Ω is feasible.

To facilitate the PID construction, we orient minimal separators as follows. We
assume a total order < on V (G). For each vertex set U ⊆ V (G), the minimum
element of U , denoted by min(U), is the smallest element of U under <. For vertex
sets U and W , we say U precedes W and write U ≺ W if min(U) < min(W).

We say that a connected set C is inbound if there is some full block associated
with N (C) that precedes C ; otherwise, it is outbound. Observe that if C is inbound
then N (C) is a minimal separator, since N (C) has another full component associated
with it and, contrapositively, if N (C) is not a minimal separator then C is necessarily
outbound. We say a full block (N (C),C) is inbound (outbound) if C is inbound
(outbound, respectively).

Lemma 4 Let K be a cliquish vertex set and let A1, A2 be two components associated
with K . Suppose that A1 and A2 are outbound. Then, either N (A1) ⊆ N (A2) or
N (A2) ⊆ N (A1).

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1289

Proof Let K , A1, and A2 be as above and suppose neither of N (A1) and N (A2) is a
subset of the other. For i = 1, 2, let Ci = crib(N (Ai), K). Since N (A2)\N (A1) is
non-empty and contained in K\N (A1), A2 is contained inC1.We have A1 ≺ C1 as A1
is outbound and hence A1 ≺ A2. A contradiction, since similarly we have A2 ≺ A1.

�
Let K be a cliquish vertex set. Based on the above lemma, we define the outlet

of K , denoted by outlet(K), as follows. If no non-full component associated with
K is outbound, then we let outlet(K) = ∅. Otherwise, outlet(K) = N (A), where
A is a non-full component associated with K that is outbound, chosen so that N (A)

is maximal. We define support(K) = unconf(outlet(K), K), the set of components
associated with K that are not confined to outlet(K). By Lemma 4, every member of
support(K) is inbound.

We call a full block (N (C),C) an I-block if C is inbound and |N (C)| ≤ k. We call
it an O-block if C is outbound and |N (C)| ≤ k.

We say that an I-block (N (C),C) is feasible ifC is feasible.We say that an O-block
(N (A), A) is feasible if N (A) = ⋃

C∈C N (C) for some set C of feasible inbound
components. Note that this definition of feasibility of an O-block is somewhat weak
in the sense that we do not require every inbound component associated with N (A)

to be feasible.
We say that a potential maximal clique Ω is feasible if |Ω| ≤ k + 1 and every

C ∈ support(Ω) is feasible.
In order to formulate mutual recurrences among feasible I-blocks, O-blocks, and

potential maximal cliques, we need the following auxiliary notion of buildable poten-
tial maximal cliques.

Let Ω be a potential maximal clique with |Ω| ≤ k + 1. For each C ∈ support(Ω),
block (N (C),C) is an I-block, since C is inbound as observed above and we have
|N (C)| ≤ k by our assumption that |Ω| ≤ k + 1. We say that Ω is buildable if
|Ω| ≤ k + 1 and either

1. Ω = N [v] for some v ∈ V (G),
2. there is some subset C of support(Ω) such that Ω = ⋃

D∈C N (D) and every
member of C is feasible, or

3. Ω = N (A) ∪ (N (v) ∩ A) for some feasible O-block (N (A), A) and a vertex
v ∈ N (A).

It will turn out that every feasible potential maximal clique is buildable (Lemma 9).

Lemma 5 We have tw(G) ≤ k if and only if G has a feasible potential maximal clique
Ω with outlet(Ω) = ∅.
Proof Suppose first thatG has a feasible potentialmaximal cliqueΩ with outlet(Ω) =
∅. Note that support(Ω) = C (Ω), as every C ∈ C (Ω) is unconfined to an empty
set. For each component C ∈ support(Ω), let TC be the tree-decomposition of G〈C〉
of width k or smaller, which exists since C is feasible by the definition of a feasible
potential maximal clique. Let XC be a bag of TC such that N (C) ⊆ XC . Combine
these tree-decompositions into a tree T by adding bag Ω and letting each XC in TC
be adjacent to Ω . That T satisfies the first two conditions for tree-decomposition is

123

1290 Journal of Combinatorial Optimization (2019) 37:1283–1311

trivial. The third condition is also satisfied, since, if a vertex v appears in N [C] for two
or more members C in support(Ω), then v appears in XC for each such C and in Ω .
Therefore, T is a tree-decomposition ofG of width k or smaller and hence tw(G) ≤ k.

For the converse, suppose the treewidth of G is k or smaller. Let T be a canonical
tree-decomposition of G of width k or smaller: each bag of T is a potential maximal
clique and the intersection of each pair of adjacent bags of T is a minimal separator.
Orient each edge of T as follows. Let X and Y be adjacent bags in T and let S = X∩Y .
LetVX be the unionof bags in themaximal subtree ofT containing X but not containing
Y ; define VY similarly. Let C be the outbound full component associated with the
minimal separator S. Then, C is contained in exactly one of VX and VY . If C is
contained in VX then we orient the edge between X and Y from Y to X ; otherwise
from X to Y . Since T is a tree, the resulting directed tree has a sink X0. Then, each
component C associated with X0 is inbound and hence outlet(X0) = ∅. We show that
each such C is moreover feasible. Indeed, the required tree-decomposition of G〈C〉
may be obtained from T by taking intersection of every bag with N [C]: the resulting
tree is a tree-decomposition of G[N (C)] and contains the bag X0 ∩ N [C] ⊇ N (C).
The width of the tree-decomposition is not greater than that of T and hence is k or
smaller. Therefore, I-block (N (C),C) for each component C associated with X0 is
feasible and hence the potential maximal clique X0 is feasible. �
Lemma 6 Let C be a connected set of G such that N (C) is a minimal separator. Let
Ω be a potential maximal clique of G〈C〉. Then, Ω is a potential maximal clique of
G.

Proof For each component D associated with N (C), let HD be a minimal chordal
completion of G〈C〉. In particular, choose HC so that Ω is a clique in HC . Let H be
the union of these graphs: V (H) = V (G) and E(H) = ⋃

D∈C (N (C)) E(HD). It is
clear that H is chordal. Let H ′ be a minimal chordal completion of G contained in H .
It is well-known that every minimal separator is a clique in every chordal completion
and hence N (C) is a clique in H ′. Therefore, the minimality of HD for each D implies
that H ′ = H . As Ω is a clique in HC , it is a clique in H and hence is a potential
maximal clique of G. �

The following is our orientedversionof the recurrence in theBTalgorithmdescribed
in the beginning of this section.

Lemma 7 An I-block (N (C),C) is feasible if andonly if there is some feasible potential
maximal clique Ω with outlet(Ω) = N (C) and

⋃
D∈support(Ω) D = C.

Proof Suppose first that there is a feasible potential maximal cliqueΩ as in the lemma.
For each component D ∈ support(Ω), let TD be a tree-decomposition of G〈D〉 of
width k or smaller and XD be a bag in TD containing N (D). Combine these tree-
decompositions TD , D ∈ support(Ω), into a tree T by adding bag Ω and let it be
adjacent to XD for each D ∈ support(Ω). We confirm that T is a tree-decomposition
of G[N [C]]. Every vertex v ∈ N [C] appears in some bag of T since C is the union
of D for all D ∈ support(Ω) and the bag Ω contains N (C). Every edge of G[N [C]]
appears in some bag of T for the same reason. The third condition for T being a tree
decomposition is also satisfied, since, if a vertex v appears in N [D] for two or more

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1291

members D in support(Ω), then v appears in XD for each such D and inΩ . Therefore,
T is a tree decomposition of G[N [C]] of width k or smaller and hence the bag Ω in
T contains N (C), T attests the feasibility of the I-block (N (C),C).

For the converse, suppose that I-block (N (C),C) is feasible. Let T be a canonical
tree-decomposition ofG〈C〉 of width k or smaller. Orient the edges of T as in the proof
of Lemma 5: orient the edge from X to Y if and only if Y intersects the outbound full
component associated with X ∩ Y . We need to stress here that the notion of outbound
components used in this orientation is with respect to the entire graph G and not with
respect to G〈C〉, the graph of which T is a tree-decomposition. As N (C) is a clique
in G〈C〉, T contains a bag that contains N (C). In the subtree of T induced by those
bags containing N (C), let X0 be a sink with respect to the above orientation. As T is
canonical, X0 is a potential maximal clique of G〈C〉 and hence of G by Lemma 6. We
show below that X0 is feasible.

Let A be the outbound full component associated with N (C). As N (C) ⊆ X0
and A ∩ N [C] = ∅, A is a component associated with X0. We claim that N (C) =
outlet(X0). Suppose otherwise that there is some outbound component A′ associated
with X0 such that N (C) is a proper subset of N (A′). Then, as A′ is not confined to
N (C), C = crib(N (C), X0) contains A′. Therefore, there is some bag X adjacent to
X0 in T such that X ∩ A′ �= ∅. Since N (C) is a minimal separator that separates A
from A′, X must contain N (C). But, since A′ is an outbound component associated
with X0, the edge between X0 and X is oriented from X0 to X . This contradicts the
choice of X0 and we conclude that N (C) = outlet(X0).

It remains to verify that each D ∈ support(X0) is feasible. This is true since the tree
of bags obtained from T by intersecting each bag with N [D] is a tree-decomposition
of G〈D〉 required for the feasibility of D. �
Lemma 8 Let K be a cliquish vertex set, C a non-empty subset of support(K), and
S = ⋃

C∈C N (C). If S is a proper subset of K then crib(S, K) is outbound.

Proof Let K , C and S be as in the lemma. Since K is cliquish, crib(S, K) is a full
component associated with S that contains K\S, by Lemma 3. To show that it is out-
bound, it suffices to show that no other full component associated with S is outbound.
Let A be an arbitrary full component associated with S that is distinct from crib(S, K).
As A does not intersect K , it is a component associated with K . Let C be an arbitrary
member of C . Then, C is confined to S by the definition of S. On the other hand C
is not confined to outlet(K) since C ∈ support(K). Therefore, S is not a subset of
outlet(K). A cannot be outbound, since it would imply that S = N (A) ⊆ outlet(K).
Therefore, A is inbound and, since this holds for every full component associated with
S other than crib(S, K), crib(S, K) is outbound. �

The following lemma is crucial for our PID result: the algorithm described in the
next section generates all buildable potentialmaximal cliques andweneed to guarantee
all feasible maximal cliques to be among them.

Lemma 9 Let Ω be a feasible potential maximal clique. Then, Ω is buildable.

Proof Let S = ⋃
C∈support(Ω) N (C).

123

1292 Journal of Combinatorial Optimization (2019) 37:1283–1311

Suppose first that S ∪ outlet(Ω) �= Ω and let v be an arbitrary member of Ω\(S ∪
outlet(Ω)). Since Ω is cliquish and v is not in N (C) for any component C associated
with Ω , v is adjacent to every other vertex in Ω . Therefore, Ω ⊆ N [v]. Let C be an
arbitrary component associated with Ω . If C is confined to outlet(Ω) then v /∈ N (C)

since v /∈ outlet(Ω). Otherwise, C ∈ support(Ω) and hence v /∈ N (C) as v /∈ S.
Therefore, N (v)\Ω is empty and hence we have Ω = N [v]. Thus, Ω is buildable,
the first case of buildability.

Suppose next that S ∪ outlet(Ω) = Ω . We have two cases to consider: S = Ω and
S �= Ω .

Consider the case where S = Ω . Let C0 be an arbitrary minimal subset of
support(Ω) such that

⋃
C∈C0

N (C) = Ω . Since Ω does not have a full component
associated with it, C0 has at least two members. Let C0 be an arbitrary member of C0
and let C1 = C0 \ {C0}. From the minimality of C0, S1 = ⋃

C∈C1
N (C) is a proper

subset of Ω . By Lemmas 3 and 8, A1 = crib(S1,Ω) is a full component associated
with S1 and is outbound. Therefore, (S1, A1) is an O-block and is feasible since every
member of C1 ⊆ support(Ω) is feasible as potential maximal clique Ω is feasible.
Thus, the second case in the definition of feasible potential maximal cliques applies.

Finally, suppose that S �= Ω . Let A = crib(S,Ω). Then, A is a full component
associatedwith S and is outbound, byLemmas 3 and 8. Since S = ⋃

C∈support(Ω) N (C)

and Ω is feasible, the O-block (S, A) is feasible. Let x be an arbitrary vertex in Ω\S.
Since we are assuming that S ∪ outlet(Ω) = Ω we have x ∈ outlet(Ω) \ S. Let v be
an arbitrary vertex in Ω \outlet(Ω). Observe that there is no component C associated
with Ω such that N (C) contains both x and v: x /∈ N (C) for every C ∈ support(Ω)

and v /∈ N (C) for every C that is confined to outlet(Ω). Since Ω is cliquish, it
follows that x and v are adjacent to each other. Therefore, we have Ω\S ⊆ N (v).
Moreover, A contains Ω\S by Lemma 3. Finally, A\Ω is disjoint from N (v), since
every component D associatedwithΩ such that v ∈ N (D) is not confined to outlet(Ω)

and hence contained in C . Therefore, we have Ω = S ∪ (N (v) ∩ A), and the third
case in the definition of buildable potential maximal cliques applies. �

4 Algorithm

Given graph G and positive integer k, our algorithm generates all I-blocks, O-blocks,
and potential maximal cliques that are feasible. In the algorithm description below,
the following variables, with suffixes, are used: I for listing feasible I-blocks, O for
feasible O-blocks, P for buildable potential maximal cliques, and S for feasible
potential maximal cliques. We note that each member of I and O is actually the
component part of an I- or O-block.

Algorithm PID-BT
Input Graph G and positive integer k
Output “YES” if tw(G) ≤ k; “NO” otherwise
Procedure

1. Let I0 = ∅ and O0 = ∅.
2. Initialize P0 and S0 to ∅.

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1293

3. Set j = 0.
4. For each v ∈ V (G), if N [v] is a potential maximal clique with |N [v]| ≤ k + 1

then add N [v] toP0 and if, moreover, support(N [v]) = ∅ then do the following.

(a) Add N [v] toS0.
(b) If outlet(N [v]) �= ∅ then let C = crib(outlet(N [v]), N [v]) and, provided that

C �= Ch for 1 ≤ h ≤ j , increment j and let C j = C .

5. Set i = 0.
6. Repeat the following and stop repetition when j is not incremented during the

iteration step.

(a) While i < j , do the following.
i. Increment i and let Ii be Ii−1 ∪ {Ci }.
ii. Initialize Oi to Oi−1,Pi toPi−1, and Si toSi−1.
iii. For each B ∈ Oi−1 such that Ci ⊆ B and |N (Ci) ∪ N (B)| ≤ k + 1, let

K = N (Ci) ∪ N (B) and do the following.
A. If K is a potential maximal clique, then add K toPi .
B. If |K | ≤ k and there is a full component A associated with K (which

is unique), then add A to Oi .
iv. Let A be the full component associated with N (Ci) and add A to Oi .
v. For each A ∈ Oi\Oi−1 and v ∈ N (A), let K = N (A) ∪ (n(v) ∩ A) and

if |K | ≤ k + 1 and K is a potential maximal clique then add K toPi .
vi. For each K ∈ Pi\Si−1, if support(K) ⊆ Ii then add K to Si and do

the following: if outlet(K) �= ∅ then let C = crib(outlet(K), K) and,
provided that C �= Ch for 1 ≤ h ≤ j , increment j and let C j = C .

7. If there is some K ∈ S j such that outlet(K) = ∅, then answer “YES”; otherwise,
answer “NO”.

Theorem 1 Algorithm PID-BT, given G and k, answers “YES” if and only if tw(G) ≤
k.

Proof We show that SJ computed by the algorithm, where J denotes the final value
of j , is exactly the set of feasible potential maximal cliques for the given G and k.
The theorem then follows by Lemma 5.

In the following proof, Oi ,Pi , andSi for each i stand for the final values of these
program variables.

We first show by induction on i that the following conditions are satisfied.

1. For every 1 ≤ h ≤ i , (N (C j),C j) is a feasible I-block.
2. Ii = {Ch | 1 ≤ h ≤ i}.
3. For every A ∈ Oi , (N (A), A) is a feasible O-block.
4. Every K ∈ Pi is a buildable potential maximal clique.
5. Every K ∈ Si is a feasible potential maximal clique.

Consider the base case i = 0. Condition 1 vacantly holds. Conditions 2 and 3
also hold sinceI0 = O0 = ∅. Condition 4 holds: N [v] is confirmed to be a potential
maximal clique before it is added toP0 and is buildable by the definition of buildability

123

1294 Journal of Combinatorial Optimization (2019) 37:1283–1311

(case 1).Condition 5 holds since support(N [v]) = ∅ implies that the potentialmaximal
clique N [v] is feasible.

Suppose i > 0 and that the above conditions are satisfied for smaller values of i .

1. WhenCi is defined, there is some i ′ < i and K ∈ Si ′ such that outlet(K) �= ∅ and
Ci = crib(outlet(K), K). By the induction hypothesis, K is a feasible potential
maximal clique and hence, by Lemma 7, (N (Ci),Ci) is a feasible I-block.

2. AsIi−1 = {Ch | 1 ≤ h ≤ i − 1} andIi = Ii−1 ∪ {Ci },Ii = {Ch | 1 ≤ h ≤ i}
holds.

3. Let A ∈ Oi\Oi−1. Then there is some B ∈ Oi−1 such that A is outbound, |N (A)| ≤
k, and N (A) = N (Ci) ∪ N (B). From the first two conditions, (N (A), A) is an
O-block. By the induction hypothesis, (N (B), B) is a feasible O-block and hence
N (B) = ⋃

D∈C N (D) for some set C of feasible inbound components. As Ci

is feasible by 1 above and N (A) = ⋃
D∈C∪{Ci } N (D), O-block (N (A), A) is

feasible.
4. Let K ∈ Pi\Pi−1. Then, K is added to Pi either at step 6-(a)-iii-A or at step

6-(a)-v. Consider the first case, Then, K = N (B) ∪ N (Ci) where (N (B), B) is
a feasible O-block and hence N (B) = ⋃

D∈C N (D) for some set C of feasible
inbound components. AsCi is feasible, K satisfies all the conditions in the second
case of the definition of buildable potential maximal cliques. Consider next the
second case, K is obtained at step 6-(a)-v. Then, K = N (A) ∪ (n(v) ∩ A), where
(N (A), A) is a feasible O-block, and the third case in the definition of buildable
potential maximal cliques applies.

5. Let K ∈ Si\Si−1. Then, K ∈ Pi and is a buildable potential maximal clique by
4 above. The confirmed condition support(K) ⊆ Ii ensures that K is feasible,
since every member of Ii is feasible by 1 and 2 above.

We conclude that every member of SJ is a feasible potential maximal clique.
In showing the converse, the following observation is crucial. Let (N (A), A) be a

feasible O-block such that N (A) = ⋃
C∈C N (C) for some set C of feasible compo-

nents and suppose C ⊆ Ii . Then, A ∈ Oi . The proof is a straightforward induction
on i .

The proof of the converse consists in showing the following by induction on m.

1. For each feasible I-block (N (C),C), with |C | = m, there is some i such that
C = Ci .

2. For each feasible O-block (N (A), A)with |A| = |V (G)|−m, there is some i such
that A ∈ Oi .

3. For each buildable potential maximal clique Ω such that |⋃C∈support(Ω) C | = m,
there is some i such that Ω ∈ Pi .

4. For each feasible potential maximal clique Ω such that |⋃C∈support(Ω) C | = m,
there is some i such that Ω ∈ Si .

The base case m = 0 is vacantly true. Suppose m > 0 and the statements hold for
smaller values of m.

1. Let (N (C),C) be a feasible I-block with |C | = m. Then, by Lemma 7, there
is some feasible potential maximal clique Ω such that N (C) = outlet(Ω) and
C = crib(N (C),Ω). We have |⋃C∈support(Ω) C | < m, since this union is a subset

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1295

ofC\(Ω\N (C)). Therefore, by the induction hypothesis, there is some i such that
Ω ∈ Si . Therefore, C is constructed as C j either at step 4-(b) or at step 6-(a)-vi.

2. Let (N (A), A) be a feasible O-block with |A| = |V (G)| − m. Let C be a set of
feasible components such that N (A) = ⋃

C∈C N (C) and let C be an arbitrary
member of C . As C , A, and N (C) are pairwise disjoint, we have |C | < m.
Therefore, there is some iC such that CiC = C . Set i = max{iC | C ∈ C }. Then,
C ⊆ Ii and hence A ∈ Oi , by the observation above.

3. LetΩ be a buildable potential maximal clique with |⋃C∈support(Ω) C | = m. In the
first case of the definition of buildability,Ω is added toP0 at step 4. In the second
case, we have Ω = ⋃

C∈C N (C) for some C ⊆ support(Ω) such that every
member of C is feasible. Choose C to be minimal subject to these conditions.
Let C be an arbitrary member of C . As |C | ≤ m, by the induction hypothesis
and 1 above, there is some iC such that C ⊆ IiC . Choose C ∈ C so that iC is
the largest and let the chosen be D. Let C ′ = C \{D} and let S = ⋃

C∈C ′ N (C).
By the minimality of C , S is a proper subset of Ω . Therefore, crib(S,Ω) is a full
component associatedwith S and there is an outbound full component A associated
with S. As all members of C ′ is feasible and |S| ≤ k, (S, A) is a feasible O-block.
By the choice of D, we haveC ′ ⊆ IiD−1 and hence A ∈ OiD−1 by the observation
above. At step 6-(a)-iii-A in the iteration for i = iD , Ω is put into PiD .

4. Let Ω be a feasible potential maximal clique with |⋃C∈support(Ω) C | = m. Then,
by 3 above, there is some i1 such thatΩ ∈ Pi1 . Furthermore, as everymemberC of
support(Ω) is feasible and |C | ≤ m, there is some i2 such that support(Ω) ⊆ Ii2 ,
by 1 above. At step 7 in the iteration for i = max{i1, i2}, Ω is put intoSi .

We conclude that every feasible potential maximal clique is in SJ . This completes
the proof.

�

5 Running time analysis

The running time of our algorithm is stated in terms of the the number of positive
subproblem instances. Given G and k > 0, let I k

G denote the set of feasible I-blocks
and Ok

G the set of feasible O-blocks.

Observation 1 Given G and k > 0, algorithm PID-BT runs in O∗(|I k
G | · |Ok

G |) time.
Proof The number of iteration in step 6, where i is incremented each time, is |I k

G |. In
each iteration step, every computation step may be charged to each element of Oi−1
and the total number of steps charged to a single element of Oi−1 is nO(1). Since
|Oi−1| ≤ |Ok

G |, we have the claimed time bound. �
The bound in this observation is incomparable to the previous bounds on non-

PID versions of the BT algorithm, which run in O∗(|ΠG |) time when ΠG , the set of
potential maximal cliques inG, is given. In Fomin and Villanger (2012), in addition to
a combinatorial bound of |ΠG | = O(1.7549n), it was shown thatΠG can be computed
in O∗(ΠG) time.

123

1296 Journal of Combinatorial Optimization (2019) 37:1283–1311

It should be emphasized, however, that it is not knownwhether the decision problem
version of the treewidth problemwith given k can be solved in O∗(|Πk+1

G |) time,where
Πk

G is the set of potential maximal cliques of cardinality at most k inG. The bottleneck
here is the time to list all members of Πk+1

G . Although a nontrivial upper bound on
|Πk+1

G | in terms of n and k, together with a running time bound based on it, is given
in Fomin and Villanger (2012), a huge gap between the actual value |Πk+1

G | and the
upper bound is observed in practice, as shown in the next section. This is the gap that
makes the bound in Obseravation 1 interesting.

6 Experimental analysis

To study the strength of the running time bound of Observation 1 from a practical
view point, we have performed some experiments, in which we count the number of
combinatorial objects involved in the treewidth computation. We first compare the
actual number of relevant potential maximal cliques (that is, of cardinality at most
k + 1 where k is the treewidth) with the theoretical upper bounds on that number:
the naive bound of

(n
k+1

)
and an asymptotically stronger bound of n(

(�(2n+k+7)/3�
k+2

) +
(�(2n+k+4)/2�

k+1

)
) given in Fomin andVillanger (2012). Table 1 shows the results on some

random instances, where the number of vertices n is 20, 30, 40, or 50, the number of
edges m is 2n, 3n, 4n or 5n, and the graph for each pair (n,m) is chosen uniformly
at random from the set of all graphs with n vertices and m edges. Huge gaps between
the actual number and the upper bounds are apparent.

Since the running time bound in Observation 1 involves the quantity |Ok
G | which is

not theoretically upper-bounded by a function of |Πk+1
G |, the gaps observed in Table 1

alone may not be sufficient to support the importance of this running time bound. To
address this issue, we have counted more combinatorial objects involved in our PID
computation on the same graph instances: in addition to relevant potential maximal
cliques counted above, all potential maximal cliques, relevant minimal separators, all
minimal separators, feasible I-blocks, feasible O-blocks and feasible potential max-
imal cliques. Here, the input k to the decision problem is set to the treewidth of the
graph.

Table 2 shows the result. We see that the number of feasible O-blocks is smaller
than the number of relevant potential maximal cliques, as far as these instances are
concerned. This, together withwhat we have observed in Table 1, provides an evidence
that the running time bound of Observation 1 is more relevant from a practical point
of view than the running time bounds of known theoretical algorithms.

We also see that the number of all potential maximal cliques grows much faster
than the number of relevant potential maximal cliques. This shows the advantage of
our algorithm which avoids generating all potential maximal cliques.

To summarize, our PID algorithm has advantages over the standard BT algorithms
because the running time upper bounds of those algorithms are either in terms of a
combinatorial upper bound on the number of relevant potential maximal cliques or in
terms of the actual number of all potential maximal cliques: our experiments reveal
huge gaps between the actual number of relevant potential maximal cliques and both

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1297

Ta
bl
e
1

T
he

nu
m
be
rs
of

re
le
va
nt

po
te
nt
ia
lm

ax
im

al
cl
iq
ue
s
an
d
th
ei
r
up

pe
r
bo

un
ds

n
=

|V
|

|E
|

k
=

tw
PM

C
s
(≤

k
+

1)
(

n
k+

1)
n(

(�(
2n

+k
+7

)/
3�

k+
2

) +
(�(

n+
k+

4)
/
2�

k+
1

))

20
40

6
11

5
77

,5
20

1,
00

3,
86

0

20
60

8
96

16
7,
96

0
2,
07

6,
36

0

20
80

11
12

1
12

5,
97

0
1,
92

1,
68

0

20
10

0
11

37
12

5,
97

0
1,
92

1,
68

0

30
60

7
55

9
5,
85

2,
92

5
67

,3
93

,9
50

30
90

11
68

2
86

,4
93

,2
25

35
2,
58

0,
34

0

30
12

0
14

11
37

15
5,
11

7,
52

0
43

0,
36

1,
97

0

30
15

0
16

76
8

11
9,
75

9,
85

0
42

6,
14

0,
55

0

40
80

8
53

41
27

3,
43

8,
88

0
2,
70

5,
47

1,
60

0

40
12

0
14

10
,3
72

40
,2
25

,3
45

,0
56

91
,2
60

,8
07

,6
00

40
16

0
18

17
,3
60

13
1,
28

2,
40

8,
40

0
13

5,
56

2 ,
54

7,
40

0

40
20

0
20

68
20

13
1,
28

2,
40

8,
40

0
15

7,
01

2,
86

7,
20

0

50
10

0
10

60
29

37
,3
53

,7
38

,8
00

20
1,
99

1,
09

5,
80

0

50
15

0
16

48
,0
68

9,
84

7,
37

9,
39

1,
15

0
10

,3
32

,5
10

,4
12

,5
00

50
20

0
20

36
,3
88

67
,3
27

,4
46

,0
62

,8
00

53
,2
46

,2
62

,8
26

,5
00

50
25

0
24

47
,7
29

12
6,
41

0,
60

6,
43

7,
75

2
52

,2
30

,7
60

,0
68

,0
00

123

1298 Journal of Combinatorial Optimization (2019) 37:1283–1311

of these quantities. Note that, if there is an efficient method of generating relevant
potential maximal cliques, a non-PID version of the BT algorithm might outperform
our PID version.

7 Implementation

In this section, we sketch two important ingredients of our implementation. Although
both are crucial in obtaining the result reported in Sect. 8, our work on this part is
preliminary and improvements are the subject of future research.

7.1 Data structures

The crucial elementary operation in our algorithm is the following. We have a setO of
feasible O-blocks obtained so far and, given a new feasible I-block (N (C),C), need
to find all members (N (A), A) ofO such that C ⊆ A and |N (C)∪N (A)| ≤ k+1. As
the experimental analysis in the previous section shows, there is only a few such A on
average for the tested instances even thoughO is usually huge. To support an efficient
query processing, we introduce an abstract data structure we call a block sieve.

Let G be a graph and k a positive integer. A block sieve for graph G and width k is
a data structure storing vertex sets of V (G) which supports the following operations.

store(U) : store vertex set U in in the block sieve.
supersets(U) : return the list of entriesW stored in the block sieve such thatU ⊆ W

and |N (U) ∪ N (W)| ≤ k + 1.

Data structures for superset query have been studied (Savnik 2013). The second condi-
tion above on the retrieved sets, however, appears to make this data structure new. For
eachU ⊆ V (G), we define themargin ofU to be k+1−|N (U)|. Our implementation
of block sieves described below exploits an upper bound on the margins of vertex sets
stored in the sieve.

We first describe how such block sieves with upper bounds on margins are used in
our algorithm. LetO be the current set of O-blocks. We use t block sievesB1, …,Bt ,
each Bi having a predetermined upper bound mi on the margins of the sets stored.
We have 0 < m1 < m2 < . . . < mt = k. We set m0 = 0 for notational ease below.
In our implementation, we choose roughly t = log2 k and mi = 2i for 0 < i < t . For
each (N (A), A) in O , A is stored inBi such that the margin k + 1− |N (A)| is mi or
smaller but larger than mi−1. When we are given an I-block (N (C),C) and are to list
relevant blocks in O , we query all of the t blocks with the operations supersets(C).
These queries as a whole return the list of all vertex sets A such that (N (A), A) ∈ O ,
C ⊆ A, and |(N (A) ∪ N (C))| ≤ k + 1.

We implement a block sieve by a trie T . The upper bound m on margin is not
used in the construction of the sieve; it is used in the query time. In the following, we
assume V (G) = {1, . . . , n} and, by an interval [i, j], 1 ≤ i ≤ j ≤ n, we mean the set
{v : i ≤ v ≤ j} of vertices. Each non-leaf node p of T is labelled with a non-empty
interval [sp, f p], such that sr = 0 for the root r , sp = fq + 1 if p is a child of q, and
f p = n if p is a parent of a leaf. Each edge (p, q) which connects node p and a child

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1299

Ta
bl
e
2

T
he

nu
m
be
rs
of

pr
in
ci
pa
lo

bj
ec
ts
in

tr
ee
w
id
th

co
m
pu

ta
tio

n

|V
|

|E
|

tw
M
in
im

al
se
pa
ra
to
rs

PM
C
s

Fe
as
ib
le
ob
je
ct
s

A
ll

≤
tw

A
ll

≤
tw

+
1

I-
bl
oc
ks

O
-b
lo
ck
s

PM
C
s

20
40

6
98

51
37

6
11

5
19

26
37

20
60

8
19

1
48

79
6

96
46

10
8

93

20
80

11
18

5
12

2
69

8
37

6
12

1
15

8
37

0

20
10

0
11

10
7

25
35

4
37

24
32

36

30
60

7
53

5
18

5
31

22
55

9
11

4
17

0
33

4

30
90

11
29

83
24

7
20

,1
54

68
2

22
8

70
8

61
8

30
12

0
14

27
13

37
6

16
,7
36

11
37

35
2

80
4

10
55

30
15

0
16

19
13

28
1

10
,5
35

76
8

24
0

49
8

64
7

40
80

8
14

,8
42

10
70

17
8,
66

1
53

41
84

0
29

65
41

54

40
12

0
14

16
4,
77

3
23

56
1,
74

0,
64

4
10

,3
72

20
80

86
37

85
77

40
16

0
18

13
4,
48

5
39

52
1,
25

1,
65

6
17

,3
60

32
89

10
,0
23

13
,6
46

40
20

0
20

52
,1
82

17
90

42
3,
69

1
68

20
15

02
47

49
53

47

50
10

0
10

96
,4
99

13
61

1,
12

3,
62

1
60

29
77

9
21

71
29

14

50
15

0
16

1,
79

2,
71

3
91

52
>
2,
00

0,
00

0
48

,0
68

80
99

36
,8
81

39
,8
03

50
20

0
20

2,
13

0,
81

1
78

78
>
2,
00

0,
00

0
36

,3
88

69
56

28
,2
47

29
,8
42

50
25

0
24

1,
45

2,
44

9
10

,5
71

>
2,
00

0,
00

0
47

,7
29

89
49

30
,8
34

37
,1
15

123

1300 Journal of Combinatorial Optimization (2019) 37:1283–1311

q of p, is labelled with a subset S(p,q) of the interval [sp, f p]. Thus, for each node p,
the union of the labels of the edges along the path from the root to p is a subset of
the interval [1, sp − 1], or [1, n] when p is a leaf, which we denote by Sp. The choice
of interval [sp, f p] for each node p is heuristic. It is chosen so that the number of
descendants of p is not too large or too small. In our implementation, the interval size
is adaptively chosen from 8, 16, 32, and 64.

Each leaf q of trieT represents a single set stored at this leaf, namely Sq as defined
above. We denote by S(T) the set of all sets stored in T . Then, for each node p of
T , the set of sets stored under p is {U | U ∩ [1, p] = Sp}.

We now describe how a query is processed against this data structure. Suppose
query U is given. The goal is to visit all leaves q such that U ⊆ Sq and |N (U) ∪
N (Sq)| ≤ k + 1. This is done by a depth-first traversal of the trie T . When we
visit node p, we have the invariant that U ∩ [1, f p] ⊆ Sp, since otherwise no leaf
in the subtree rooted at p stores a superset of U . Therefore, we descend from p
to a child p′ of p only if this invariant is maintained. Moreover, we keep track of
the quantity i(p,U) = |N (U) ∩ Sp| in order to make further pruning of search
possible. For each leaf q below p such that U ⊆ Sq , we have i(q,U) ≥ i(p,U).
Combining this with equality |N (U)\N (Sq)| = |N (U) ∩ Sq | = i(q,U), we have
|N (U)∪N (Sq)| ≥ |N (Sq)|+i(p,U). Sincewe know an upper boundm on themargin
k+1−|N (Sq)| of Sq , or lower bound k+1−m on |N (Sq)|, we may prune the search
under node p if i(p,U) > m, since this inequality implies |N (U) ∪ N (Sq)| > k + 1
for every leaf q under p. When we reach a leaf q, we test if |N (U) ∪ N (Sq)| ≤ k + 1
indeed holds.

7.2 Safe separators

The notion of safe separators for treewidth was introduced by Bodlaender and Koster
(2006): a separator S of G is safe if completing S into a clique does not change
the treewidth of G. If we find a safe separator S then the problem of deciding tree
width of G reduces to that of deciding the treewidth of G〈C〉 for each component
C associated with S. Preprocessing G into such independent subproblems is highly
desirable whenever possible.

The above authors observed that a powerful sufficient condition for safeness can be
formulated based on graph minors. A labelled minor of G is a graph obtained from G
by zero or more applications of the following operations. (1) Edge contraction: choose
an edge {u, v}, replace u and v by a single new vertex and let all neighbors of u and
v be adjacent to this new vertex; name the new vertex as either u or v. (2) Vertex
deletion: delete a vertex together with all incident edges. (3) Edge deletion.

Lemma 10 (Bodlaender and Koster 2006) A separator S of G is safe if, for every
component C associated with S, G[V (G)\C] contains clique S as a labelled minor.

Call a separator minor-safe if it satisfies the sufficient condition for safeness stated
in this lemma. Bodlaender and Koster (2006) showed that if S is a minimal separator
and is an almost clique (deleting some single vertex makes it a clique) then S is minor-
safe and moreover that the set of all almost clique minimal separators can be found in
O(n2m) time, where n is the number of vertices and m is the number of edges.

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1301

We aim at capturing as many minor-safe separators as possible, at the expense
of theoretical running time bounds on the algorithm for finding them. Thus, in our
approach, both the algorithm for generating candidate separators and the algorithm
for deciding minor-safeness are heuristic. For candidate generation, we use greedy
heuristic for treewidth such as min-fill and min-degree: the separators in the resulting
tree-decomposition are all candidates for safe separators.

When we apply our heuristic decision algorithm for minor-safeness to candidate
separator S, one of the following occurs.

1. The algorithm answers “YES”. In this case, a required labelled clique minor has
been found for every component associated S and hence S is minor-safe.

2. The algorithm answers “DON’T KNOW”. In this case, the algorithm has failed to
find a labelled clique minor for at least one component, and hence it is not known
if S is minor-safe or not.

3. The algorithm aborts, after reaching the prescribed number of execution steps.

Our heuristic decision algorithm works in two phases. Let S be a separator, C a
component associated with S, and R = V (G)\ (S∪C). In the first phase, we contract
edges in R and obtain a graph B on vertex set S ∪ R′, where each vertex of R′ is a
contraction of some vertex set of R and B has no edge between vertices in R′. For each
pair u, v of distinct vertices in S, let N (u, v) denote the common neighbors of u and
v in graph B. The contractions are performed with the goal of making |N (u, v) ∩ R′|
large for each missing edge {u, v} in S. In the second phase, for each missing edge
{u, v}, we choose a common neighbor w ∈ N (u, v) ∩ R′ and contract either {u, w}
or {v,w}. The choice of the next missing edge to be processed and the choice of
the common neighbor are done as follows. Suppose the contractions in the second
phase are done for some missing edges in S. For each missing edge {u, v} not yet
“processed”, let N ′(u, v) be the set of common neighbors of u and v that are not yet
contracted with any vertex in S. We choose {u, v} with the smallest |N ′(u, v) ∩ R′|
to be processed next. Tie-breaking when necessary and the choice of the common
neighbor w in N ′(u, v)∩ R′ to be contracted with u or v is done in such a way that the
minimum of |(N ′(x, y) ∩ R′)\{w}| is maximized over all remaining missing edges
{x, y} in S.

The performance of these heuristics strongly depends on the instances. For PACE
2017 public instances, they work quite well. Table 3 shows the preprocessing result
on the last 10 of those instances. See Sect. 8 for the description of those instances
and the computational environment for the experiment. For each instance, the number
of safe separators found and the maximum subproblem size in terms of the number
of vertices, after the graph is decomposed by the safe separators found, are listed.
The results show that these instances, which are deemed the hardest among all the
100 public instances, are quickly decomposed into manageable subproblems by our
preprocessing.

On the other hand, these heuristics turned out useless for most of the DIMACS
graph coloring instances: no safe separators are found for those instances. We suspect
that this is not the limitation of the heuristics but is simply because those instances
lack minor-safe separators. We need, however, further study to get a firm conclusion.

123

1302 Journal of Combinatorial Optimization (2019) 37:1283–1311

Ta
bl
e
3

Sa
fe

se
pa
ra
to
r
pr
ep
ro
ce
ss
in
g
on

PA
C
E
20

17
in
st
an
ce
s

N
am

e
|V

|
|E

|
tw

(G
)

Sa
fe

se
pa
ra
to
rs

fo
un

d
M
ax

su
bp

ro
bl
em

T
im

e
(s
)

ex
18

1
10

9
73

2
18

18
89

0.
07

8

ex
18

3
26

5
47

1
11

17
3

76
0.
03

1

ex
18

5
23

7
79

3
14

14
2

52
0.
04

6

ex
18

7
24

0
45

3
10

13
8

81
0.
03

1

ex
18

9
17

8
45

17
70

6
16

1
0.
06

2

ex
19

1
49

2
16

08
15

18
4

13
2

0.
17

1

ex
19

3
13

91
30

12
10

79
1

11
9

3.
17

ex
19

5
21

6
38

2
10

11
4

84
0.
01

5

ex
19

7
30

3
11

58
15

17
6

56
0.
06

2

ex
19

9
31

0
53

7
9

15
7

13
1

0.
04

6

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1303

Table 4 Results on the DIMACS graph coloring instances

Name |V | |E | tw Time(s) Prev UB Prev LB

Anna 138 493 12 0.078 12 12

David 87 406 13 0.031 13 13

DSJC125.5 125 3891 108 459 108 56

DSJC125.9 125 6961 119 0.062 119 119

DSJC250.9 250 27,897 243 0.44 243 212

DSJC500.9 500 112,437 492 14 492 433

DSJR500.5 500 58,862 246 546 – –

DSJR500.1c 500 121,275 485 2.12 485 485

fpsol2.i.1 496 11,654 66 3.30 66 66

fpsol2.i.2 451 8691 31 5.66 31 31

fpsol2.i.3 425 8688 31 5.68 31 31

games120a 120 638 32 94,738 32 24

homera 561 1628 30 2765 31 26

huck 74 301 10 0.012 10 10

inithx.i.1 864 18,707 56 8.10 56 56

inithx.i.2 645 13,979 31 8.14 31 31

inithx.i.3 621 13,969 31 10 31 31

jean 80 254 9 0.031 9 9

miles250 128 387 9 0.000 9 9

miles500 128 1170 22 0.11 22 22

miles750 128 2113 36 0.23 36 35

miles1000 128 3216 49 0.33 49 49

miles1500 128 5198 77 0.45 77 77

mulsol.i.1 197 3925 50 1.41 50 50

mulsol.i.2 188 3885 32 1.77 32 32

mulsol.i.3 184 3916 32 1.80 32 32

mulsol.i.4 185 3946 32 1.78 32 32

mulsol.i.5 186 3973 31 1.80 31 31

myciel2 5 5 2 0.000 2 2

myciel3 11 20 5 0.000 5 5

myciel4 23 71 10 0.015 10 10

myciel5 47 236 19 0.33 19 19

myciel6 95 755 35 419 35 29

queen5_5 25 160 18 0.000 18 18

queen6_6 36 290 25 0.031 25 25

queen7_7 49 476 35 0.19 35 35

queen8_8 64 728 45 4.16 45 25

queen9_9 81 1056 58 274 58 35

queen8_12 96 1368 65 649 – 39

queen10_10 100 1470 72 20,934 72 39

123

1304 Journal of Combinatorial Optimization (2019) 37:1283–1311

Table 4 continued

Name |V | |E | tw Time(s) Prev UB Prev LB

zeroin.i.1 211 4100 50 1.09 50 50

zeroin.i.2 211 3541 32 1.64 32 32

zeroin.i.3 206 3540 32 1.55 32 31

Previous upper bounds from Gogate and Dechter (2004) and Musliu (2008); previous lower bounds from
Gogate and Dechter (2004) and Bodlaender et al. (2006).
a24GB heap space is used for these instances

8 Performance results

We have tested our implementation on two sets of instances. The first set comes from
the DIMACS graph coloring challenge (Johnson 1996) and has served as a standard
benchmark suite for treewidth in the literature (Gogate and Dechter 2004; Bodlaender
and Koster 2006; Musliu 2008; Samer and Veith 2009; Bodlaender et al. 2012; Berg
and Järvisalo 2014). The other is the set of public instances posed by the exact treewidth
track (PACE 2017).

The computing environment for the experiment is as follows. CPU: Intel Core i7-
7700K, 4.20GHz; RAM: 32GB; Operating system:Windows 10, 64bit; Programming
language: Java 1.8; JVM: jre1.8.0_121. The maximum heap space size is 6GB by
default and is 24GB where it is stated so. The implementation is single threaded,
except that multiple threads may be invoked for garbage collection by JVM. The time
measured is the CPU time, which includes the garbage collection time.

To determine the treewidth of a given instance we use our decision procedure with
k being incremented one by one, starting from the obvious lower bound, namely
the minimum degree of the graph. Binary search is not used because the cost of
overshooting the exact treewidth can be huge.We do not feel the need of using stronger
lower bounds either, since the cost of executing the decision procedure for k below
such lower bounds is usually quite small.

Table 4 shows the results onDIMACSgraph coloring instances. Each row shows the
name of the instance, the number of vertices, the number of edges, the exact treewidth
computed by our algorithm,CPU time in seconds, and the previously best known upper
and lower bounds on the treewidth. Rows in bold face show the newly solved instances.
For all but three of them, the previous best upper bound has turned out optimal: only
the lower bound was weaker. In this experiment, however, no knowledge of previous
bounds are used and our algorithm independently determines the exact treewidth.

The results on “queen” instances illustrate how far our algorithm has extended the
practical limit of exact treewidth computation. Queen7_7with 49 vertices is the largest
instance previously solved, while queen10_10 with 100 vertices is now solved. Also
note that all previously solved instances are fairly easy for our algorithm: all of them
are solved within 10 seconds per instance and many of them within a second.

Table 5 shows the lower bounds obtained by our algorithm on unsolved DIMACS
graph coloring instances. Lower bound entries in bold face are improvements over the
previously known lower bounds.Computation timeof the previously best lower bounds

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1305

Ta
bl
e
5

N
ew

lo
w
er

bo
un

ds
on

th
e
tr
ee
w
id
th

of
un

so
lv
ed

D
IM

A
C
S
gr
ap
h
co
lo
ri
ng

in
st
an
ce
s

N
am

e
|V

|
|E

|
L
ow

er
bo

un
ds

co
m
pu

te
d

Pr
ev
io
us

bo
un

ds

1
se
c

1
m
in

30
m
in

L
ow

er
U
pp
er

D
SJ
C
12

5.
1

12
5

73
6

25
30

36
20

60

D
SJ
C
25

0.
1

25
0

32
18

45
57

66
43

16
7

D
SJ
C
25

0.
5

25
0

15
,6
68

18
0

19
7

21
1

11
4

22
9

D
SJ
C
50

0.
1

50
0

12
,4
58

–
94

11
5

87
40

9

D
SJ
C
50

0.
5

50
0

62
,6
24

–
36

0
38

8
23

1
47

9

D
SJ
C
10

00
.1

10
00

49
,6
29

–
17

2
18

9
18

3
89

6

D
SJ
C
10

00
.5

10
00

24
9,
82

6
–

72
4

74
2

46
9

97
7

D
SJ
C
10

00
.9

10
00

44
9,
44

9
–

98
3

98
7

87
2

99
1

le
45

0_
5a

45
0

57
14

29
50

59
79

24
3

le
45

0_
5b

45
0

57
34

–
49

57
–

24
6

le
45

0_
5c

45
0

98
03

–
84

10
0

10
6

26
5

le
45

0_
5d

45
0

97
57

–
94

99
–

26
5

le
45

0_
15

a
45

0
81

68
24

40
49

a
94

26
2

le
45

0_
15

b
45

0
81

69
23

32
47

a
–

25
8

le
45

0_
15

c
45

0
16

,6
80

–
11

4
13

2
13

9
35

0

le
45

0_
15

d
45

0
16

,7
50

–
11

2
13

1
–

35
3

le
45

0_
25

a
45

0
82

60
11

23
25

a
96

21
6

le
45

0_
25

b
45

0
82

63
16

26
30

a
–

21
9

le
45

0_
25

c
45

0
17

,3
43

43
89

10
9

14
4

32
0

le
45

0_
25

d
45

0
17

,4
25

–
93

11
2

–
32

7

m
yc
ie
l7

19
1

23
60

22
31

35
52

66

123

1306 Journal of Combinatorial Optimization (2019) 37:1283–1311

Ta
bl
e
5

co
nt
in
ue
d

N
am

e
|V

|
|E

|
L
ow

er
bo

un
ds

co
m
pu

te
d

Pr
ev
io
us

bo
un

ds

1
se
c

1
m
in

30
m
in

L
ow

er
U
pp
er

qu
ee
n1

1_
11

12
1

19
80

61
70

77
40

87

qu
ee
n1

2_
12

14
4

25
96

71
76

84
55

10
3

qu
ee
n1

3_
13

16
9

33
28

70
82

91
51

12
1

qu
ee
n1

4_
14

19
6

41
86

74
87

98
55

14
0

qu
ee
n1

5_
15

22
5

51
80

78
93

10
4

73
16

2

qu
ee
n1

6_
16

25
6

63
20

83
99

11
0

79
18

6

sc
ho

ol
1

38
5

19
,0
95

73
11

2
12

5
14

9
17

8

sc
ho

ol
1_

ns
h

35
2

14
,6
12

78
10

5
11

8
13

2
15

2

Pr
ev
io
us

up
pe
r
bo

un
ds

fr
om

M
us
liu

(2
00

8)
;p

re
vi
ou

s
lo
w
er

bo
un

ds
fr
om

B
od

la
en
de
r
et
al
.(
20

06
).

a O
ut

of
m
em

or
y
be
fo
re

tim
e
ou

t

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1307

Ta
bl
e
6

R
es
ul
ts
on

th
e
PA

C
E
20

17
pu

bl
ic
in
st
an
ce
s

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

ex
00

1
26

2
64

8
10

1.
48

ex
10

1
10

38
29

,1
03

4
54

0
12

ex
00

3
92

21
13

44
8.
92

ex
10

3
23

7
41

9
10

3.
01

ex
00

5
37

7
59

7
7

14
ex
10

5
10

38
29

,1
03

7
54

0
12

ex
00

7
13

7
45

1
12

0.
04

6
ex
10

7
16

6
39

6
12

1.
44

ex
00

9
46

6
66

2
7

13
ex
10

9
12

12
17

94
7

43

ex
01

1
46

5
10

04
9

0.
50

ex
11

1
39

5
66

8
9

4.
33

ex
01

3
56

28
0

29
15

ex
11

3
93

48
8

14
0.
04

6

ex
01

5
17

7
66

9
15

0.
04

6
ex
11

5
96

3
41

9,
87

7
90

8
18

ex
01

7
33

0
57

1
9

1.
11

ex
11

7
77

18
1

13
18

ex
01

9
29

1
75

2
11

40
ex
11

9
84

47
9

23
16

ex
02

1
31

8
57

2
9

2.
80

ex
12

1
20

4
11

64
34

76

ex
02

3
69

0
13

55
8

0.
91

ex
12

3
12

2
63

5
35

14

ex
02

5
92

47
2

20
1.
61

ex
12

5
32

0
88

62
70

8.
19

ex
02

7
27

4
71

5
11

51
ex
12

7
22

8
52

7
10

0.
20

ex
02

9
23

8
41

1
9

1.
33

ex
12

9
73

7
28

26
14

0.
97

ex
03

1
21

9
38

2
8

12
ex
13

1
29

2
13

86
18

0.
17

ex
03

3
36

3
54

1
7

50
ex
13

3
52

2
12

96
11

3.
94

ex
03

5
24

7
80

4
14

3.
60

ex
13

5
28

22
12

9,
47

4
87

49

ex
03

7
27

2
61

5
10

3.
43

ex
13

7
19

6
10

98
19

0.
34

ex
03

9
56

28
0

32
58

ex
13

9
33

4
56

8
9

8.
34

ex
04

1
20

5
34

1
9

0.
63

ex
14

1
22

6
11

68
34

11
7

ex
04

3
27

9
51

3
9

3.
34

ex
14

3
13

0
66

0
35

52

ex
04

5
60

0
86

5
7

7.
80

ex
14

5
48

96
12

18

123

1308 Journal of Combinatorial Optimization (2019) 37:1283–1311

Ta
bl
e
6

co
nt
in
ue
d

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

ex
04

7
18

54
21

,1
18

21
14

0
ex
14

7
10

1
60

6
16

0.
09

3

ex
04

9
11

7
33

2
13

0.
07

8
ex
14

9
69

8
26

04
12

0.
75

ex
05

1
13

6
25

4
10

0.
62

ex
15

1
27

9
73

3
12

21
0

ex
05

3
21

8
38

3
9

1.
98

ex
15

3
77

2
11

65
4

47
57

ex
05

5
19

7
81

3
18

0.
07

8
ex
15

5
75

8
11

58
0

47
10

3

ex
05

7
28

1
90

75
11

7
0.
09

3
ex
15

7
26

0
46

7
9

6.
42

ex
05

9
29

8
78

0
10

0.
47

ex
15

9
58

2
27

72
18

2.
37

ex
06

1
15

8
10

58
22

9.
59

ex
16

1
10

46
39

06
12

2.
84

ex
06

3
10

3
58

2
34

4.
76

ex
16

3
24

4
44

5
10

4.
69

ex
06

5
50

17
5

25
79

ex
16

5
22

2
74

2
14

0.
23

ex
06

7
23

5
42

4
10

2.
70

ex
16

7
50

9
96

9
10

7.
96

ex
06

9
23

5
44

1
9

1.
43

ex
16

9
37

06
42

,2
36

22
53

0

ex
07

1
25

3
43

4
9

2.
42

ex
17

1
64

7
21

75
14

0.
77

ex
07

3
71

2
10

85
7

15
ex
17

3
53

6
10

11
10

5.
05

ex
07

5
11

1
36

0
8

0.
28

ex
17

5
22

7
10

00
17

11
3

ex
07

7
23

7
42

3
10

2.
70

ex
17

7
22

7
75

9
14

0.
23

ex
07

9
31

4
49

43
42

1.
64

ex
17

9
18

7
34

6
10

14

ex
08

1
18

8
63

8
6

0.
55

ex
18

1
10

9
73

2
18

0.
20

ex
08

3
21

3
38

0
10

3.
05

ex
18

3
26

5
47

1
11

8.
61

ex
08

5
22

9
37

0
8

11
ex
18

5
23

7
79

3
14

0.
33

ex
08

7
38

0
57

90
47

46
ex
18

7
24

0
45

3
10

2.
80

ex
08

9
31

8
57

6
9

11
ex
18

9
17

8
45

17
70

3.
59

123

Journal of Combinatorial Optimization (2019) 37:1283–1311 1309

Ta
bl
e
6

co
nt
in
ue
d

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

N
am

e
|V

|
|E

|
tw

T
im

e
(s
)

ex
09

1
19

3
33

6
9

31
ex
19

1
49

2
16

08
15

21

ex
09

3
45

4
66

4
7

27
ex
19

3
13

91
30

12
10

3.
80

ex
09

5
22

0
55

5
11

0.
59

ex
19

5
21

6
38

2
10

6.
11

ex
09

7
28

6
40

79
48

2.
01

ex
19

7
30

3
11

58
15

0.
36

ex
09

9
61

6
92

3
7

88
ex
19

9
31

0
53

7
9

23

123

1310 Journal of Combinatorial Optimization (2019) 37:1283–1311

ranges from a few minutes to a week (Bodlaender et al. 2006). Detailed comparison
of lower bound methods, which requires the normalization of machine speeds, is not
intended here. Rather, the table is meant to show the potential of our algorithm as a
lower bound procedure.

For many of the instances the improvements are significant. It can also be seen from
this table that our algorithm performs rather poorly on relatively sparse graphs with a
large number of vertices.

Table 6 shows the results on PACE 2017 instances. The prefix “ex” in the instance
names means that they are for the exact treewidth track. Odd numbers mean that they
are public instances disclosed prior to the competition for testing and experimenting.
Even numbered instances, not in the list, are secret and to be used in evaluating
submissions. The time allowed to be spent for each instance is 30 minutes. As can
be seen from the table, our algorithm solves all of the public instances with a large
margin in time.

Acknowledgements The author thanks Hiromu Ohtsuka for his help in implementing the block sieve data
structure. He also thanks Yasuaki Kobayashi for helpful discussions and especially for drawing the author’s
attention to the notion of safe separators. This work would have been non-existent if not motivated by the
timely challenges of PACE 2016 and 2017. The author is deeply indebted to their organizers, especially
Holger Dell, for their dedication and excellent work. Funding was provided by JSPS KAKENHI (Grant
No. JP26330021).

References

Arnborg S, Corneil DG, Proskurowski A (1987) Complexity of finding embeddings in a k-tree. SIAM J
Algebr Discrete Methods 8:277–284

Berg J, Järvisalo M (2014) SAT-based approaches to treewidth computation: an evaluation. In: Proceedings
of the IEEE 26th international conference on tools with artificial intelligence, pp 328–335

Bodlaender HL (1996) A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J Comput 25(6):1305–1317

Bodlaender HL, Koster AMCA (2006) Safe separators for treewidth. Discrete Math 306(3):337–350
BodlaenderHL,KosterAMCA(2008)Combinatorial optimization on graphs of bounded treewidth. Comput

J 51(3):255–269
Bodlaender HL, Fomin FV, Koster AM, Kratsch D, Thilikos DM (2012) On exact algorithms for treewidth.

ACM Trans Algorithms 9(1):12
Bodlaender HL, Wolle T, Koster AMCA (2006) Contraction and treewidth lower bounds. J Graph Algo-

rithms Appl 10(1):5–49
Bouchitté V, Todinca I (2001) Treewidth and minimum fill-in: grouping the minimal separators. SIAM J

Comput 31(1):212–232
Bouchitté V, Todinca I (2002) Listing all potential maximal cliques of a graph. Theor Comput Sci 276:17–32
Dell H, Husfeldt T, Jansen B M, Kaski P, Komusiewicz C, Rosamond F A (2017) The first parameterized

algorithms and computational experiments challenge. In: LIPIcs-Leibniz international proceedings in
informatics 63,

Fomin FV, Kratsch D, Todinca I, Villanger Y (2008) Exact algorithms for treewidth and minimum fill-in.
SIAM J Comput 38(3):1058–1079

FominF,VillangerY (2012)Treewidth computation and extremal combinatorics. Combinatorica 32(3):289–
308

Github repository: https://github.com/TCS-Meiji/PACE2017-TrackA
Gogate V, Dechter R (2004) A complete anytime algorithm for treewidth. In: Proceedings of the 20th

conference on Uncertainty in artificial intelligence, AUAI Press,

123

https://github.com/TCS-Meiji/PACE2017-TrackA

Journal of Combinatorial Optimization (2019) 37:1283–1311 1311

Johnson DS, Trick MA (eds) (1996) Cliques, coloring, and satisfiability: second DIMACS implementa-
tion challenge, vol 26. Series in discrete mathematics and theoretical computer science. American
Mathematical Society, Providence

Musliu N (2008) An iterative heuristic algorithm for tree decomposition. In: Cotta C, van Hemert J (eds)
Recent Advances in Evolutionary Computation for Combinatorial Optimization. Studies in Compu-
tational Intelligence, vol 153. Springer, Berlin, Heidelberg

PACE (2017). website: https://pacechallenge.wordpress.com/
Robertson N, Seymour PD (1986) Graphminors. II. Algorithmic aspects of tree-width. J Algorithms 7:309–

322
RobertsonN,SeymourPD (2004)Graphminors.XX.Wagner’s conjecture. JCombTheorySerB92(2):325–

357
Samer M, Veith H (2009) Encoding treewidth into SAT. In: Proceedings of international conference on

theory and applications of satisfiability testing, pp 45–50
Savnik I (2013) Index data structure for fast subset and superset queries. In: Proceedings of international

conference on availability, reliability, and security, pp. 134–148,

123

https://pacechallenge.wordpress.com/

	Positive-instance driven dynamic programming for treewidth
	Abstract
	1 Introduction
	2 Preliminaries
	3 Recurrences on oriented minimal separators
	4 Algorithm
	5 Running time analysis
	6 Experimental analysis
	7 Implementation
	7.1 Data structures
	7.2 Safe separators

	8 Performance results
	Acknowledgements
	References

