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Abstract A graph is almost self-centered (ASC) if all but two of its vertices are
central. An almost self-centered graph with radius r is called an r -ASC graph. The r -
ASC index θr (G) of a graph G is the minimum number of vertices needed to be added
to G such that an r -ASC graph is obtained that contains G as an induced subgraph. It
is proved that θr (G) ≤ 2r holds for any graph G and any r ≥ 2 which improves the
earlier known bound θr (G) ≤ 2r +1. It is further proved that θr (G) ≤ 2r −1 holds if
r ≥ 3 and G is of order at least 2. The 3-ASC index of complete graphs is determined.
It is proved that θ3(G) ∈ {3, 4} if G has diameter 2 and for several classes of graphs of
diameter 2 the exact value of the 3-ASC index is obtained. For instance, if a graph G
of diameter 2 does not contain a diametrical triple, then θ3(G) = 4. The 3-ASC index
of paths of order n ≥ 1, cycles of order n ≥ 3, and trees of order n ≥ 10 and diameter
n − 2 are also determined, respectively, and several open problems proposed.
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1 Introduction and preliminaries

Almost self-centered graphs (ASC graphs for short) were introduced in Klavžar et al.
(2011) as the graphs which contain exactly two non-central vertices. If the radius of an
ASC graph G is r , then G is more precisely called an r -ASC graph. The introduction
of these graphs was in particular motivated with network designs in which two (expen-
sive) resources that need to be far away due to interference reasons must be installed.
Numerous additional situations appear in which two specific locations are desired, for
instance in trees (Huang et al. 2000; Wang et al. 2009), block graphs (Cheng et al.
2014), and interval graphs (Hong and Kang 2012). While in the first two of these
papers 2-centers are studied in trees, the results could be used also in the general case.
For a given graph G, one could first select a suitable subtree (spanning or otherwise),
then determine a 2-center, and finally lift the obtained solution to G.

Graphs dual to the almost self-centered graphs were studied in Klavžar et al. (2014)
and named almost-peripheral graphs (AP graphs for short). Very recently, a measure
of non-self-centrality was introduced in Xu et al. (2016), where ASC graphs and
AP graphs, along with a newly defined weakly AP graphs, play a significant role as
extremal graphs in studies of this new measure.

Among other results it was proved in Klavžar et al. (2011) that for any connected
graph G and any r ≥ 2 there exists an r -ASC graph which contains G as an induced
subgraph. Consequently, the r-ASC index θr (G) of G was introduced as the minimum
number of vertices needed to add to G in order to obtain an r -ASC graph that contains
G as an induced subgraph. It was proved that for any connected graph G we have
θ2(G) ≤ 2 and that θr (G) ≤ 2r + 1 holds for any r ≥ 3. Moreover, the 2-ASC
index was determined exactly for complete bipartite graphs, paths and cycles. The
study of ASC graphs was continued in Balakrishnan et al. (2012) where ASC graphs
were characterized among chordal graphs and among median graphs, and in Klavžar
et al. (2017) where existing constructions of ASC graphs were revisited and new
constructions of such graphs were developed.

We note in passing that graph eccentricity is frequently applied in chemical graph
theory via the so-called eccentricity-based topological indices. Although these indices
are pure graph theory concepts, they have a substantial use in theoretical chemistry,
cf. Gupta and Singh (2002), Gupta et al. (2000, 2002) and Sharma et al. (1997). The
eccentricity-based topological indices include eccentric distance sum (Gupta et al.
2002; Ilić et al. 2011), Zagreb eccentricity indices (Das et al. 2013), and connective
eccentricity index (Xu et al. 2016; Yu and Feng 2013; Yu et al. 2014). See also Das and
Nadjafi-Arani (2017), Su et al. (2015), Morgan et al. (2011), Tomescu (2008, 2010)
and Wu et al. (2013) for some recent results on the general distance-based topological
indices and a recent survey (Xu et al. 2014) on extremal results on general distance-
based topological indices. Moreover, the applications of eccentricity to networks and
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location theory can be seen in Krnc and Škrekovski (2015) and Puerto et al. (2008),
respectively.

This paper is organized as follows. In the rest of this section definitions and notations
needed are given. In the following section we first prove that if G is a graph of order
n ≥ 1 and r ≥ 2, then θr (G) ≤ 2r , thus improving the so-far best known bound
θr (G) ≤ 2r + 1. In the main result of the section we further strengthen the bound by
proving that θr (G) ≤ 2r − 1 holds if r ≥ 3 and G has at least two vertices. In the
rest of the paper we then consider the 3-ASC index. The obtained results and (new)
techniques involved indicate that to determine the 3-ASC index of a graph is generally
amuchmore complex task than to determine its 2-ASC index. In Sect. 3, we determine
the 3-ASC index of complete graphs and investigate the index on graphs of diameter
2. [See Palacios (2015) for some recent results on the Kirchhoff index of graphs with
diameter 2.] We prove that if G is such a graph, then either θ3(G) = 3 or θ3(G) = 4.
For several classes of graphs of diameter 2 the exact value is determined. In Sect. 4
we turn our attention to graphs with large diameter and determine the 3-ASC index
of paths, cycles, and trees of order n and diameter n − 2. We conclude the paper with
several open problems.

Weonly consider finite, undirected, simple graphs throughout this paper. The degree
degG(v) of a vertex v of a graph G is the cardinality of the neighborhood NG(v) of v.
The closed neighborhood NG [v] of v is NG(v) ∪ {v}. The maximum and minimum
degree ofG are denoted by�(G) and δ(G), respectively. A vertex of degree 1 is called
a pendant vertex, the edge incident with a pendant vertex is called a pendant edge.

The distance dG(u, v) between vertices u and v is the length (that is, the number of
edges) of a shortest (u, v)-path. The eccentricity eccG(u) of a vertex u is themaximum
distance from u to other vertices in G. The diameter diam(G) of G is the maximum
eccentricity among its vertices and the radius rad(G) is the minimum eccentricity of
its vertices. A vertex v is an eccentric vertex of a vertex u if dG(u, v) = eccG(u).
The eccentric set EccG(u) of u is the set of all its eccentric vertices. A vertex u of
G is called a central vertex if eccG(u) = rad(G) and is called a diametrical vertex
if eccG(u) = diam(G). The center C(G) of G consists of all its central vertices,
while the periphery P(G) of G contains all its diametrical vertices. A graph G is
self-centered (SC graph for short) if C(G) = V (G); we refer to the survey on SC
graphs (Buckley 1989) and to their recent application in Maddaloni and Zamfirescu
(2016). If rad(G) = r , then we also say that G is an r -SC graph. Vertices u and v for
which dG(u, v) = diam(G) holds will be referred to as a diametrical pair. Similarly,
a triple of vertices that are pairwise at distance diam(G) is called a diametrical triple.
When no ambiguity occurs, the subscript G will be omitted in the notations from the
last two paragraphs.

IfG is a graph, then G denotes the complement of G. The disjoint union of (vertex-
disjoint) graphs G1 and G2 will be denoted with G1 ∪ G2, while the join of G1 and
G2 will be denoted by G1 ⊕ G2. Recall that G1 ⊕ G2 is obtained from G1 ∪ G2 by
adding an edge between any vertex of G1 and any vertex of G2. If X ⊆ V (G), then
G[X ] denotes the subgraph of G induced by X . Finally, throughout this paper we use
Pn , Cn , and Kn to denote the path graph, the cycle graph, and the complete graph on
n vertices, respectively. In addition, for any two non-adjacent vertices x, y ∈ V (G),
we mean that an edge xy is added into G by joining x with y in G.
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Fig. 1 Graph ̂Gr
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2 Improving upper bounds on the r-ASC index

It was proved in Klavžar et al. (2011, Corollary 4.1) that θr (G) ≤ 2r + 1 holds for
any graph G. In this section we first sharpen this result as follows. Interestingly, the
below construction which gives a better upper bound is simpler than the construction
from Klavžar et al. (2011).

Theorem 2.1 If G is a graph of order n ≥ 1 and r ≥ 2, then θr (G) ≤ 2r .

Proof Let ̂Gr be the graph obtained from G as follows. Add three new vertices w,
x1, y1, and add an edge between each of them and any vertex of G, so that in this
way 3n edges are added. Further, add vertices x2, . . . , xr−1, y2, . . . , yr−1, and w′.
Finally, add edges x1x2, . . . , xr−2xr−1, y1y2, . . . , yr−2yr−1, xr−1w

′, and yr−1w
′. The

construction is illustrated in Fig. 1.
It is straightforward to verify that d

̂Gr
(w,w′) = r+1 and ecc

̂Gr
(w) = ecc

̂Gr
(w′) =

r +1. If a ∈ V (G), then the sequence of vertices a, x1, . . . , xr−1, w
′, yr−1, . . . , y1, a

induces an isometric cycle of length 2r . Using this fact if follows by a simple inspection
that for any vertex x ∈ V (̂Gr ), x 	= w,w′, we have ecc

̂Gr
(x) = r . We conclude that

̂Gr is an r -ASC graph and consequently θr (G) ≤ 2r . 
�
Next we characterize the graphs G with θr (G) = 2r for any r ≥ 3. Before doing

it, we need the following result.

Lemma 2.2 Let G be a connected graph of order n ≥ 2 and r ≥ 3. Then θr (G) ≤
2r − 1.

Proof The graph C ′
2r , which is obtained from C2r by attaching a pendant vertex to it,

is an r -ASC graph. It follows that θr (K2) ≤ 2r − 1. In the rest of the proof we may
hence assume that n ≥ 3. It suffices to construct a graph H of order at most n+2r −1
as an r -ASC embedding graph of G.

Nowweconstruct a graphH withvertex setV (G)∪{x1, . . . , xr−1, y1, . . . , yr−1, w}.
Set V0 = {x1, . . . , xr−1, y1, . . . , yr−1, w}. We choose two arbitrary vertices x and y
with xy ∈ E(G). In H , the adjacency relation of V0 is x1 − x2 − · · · − xr−1 − yr−1 −
· · ·−y1−w and x, y are joinedwith x1 and y1, respectively. Let N2(x) and N2(y) be the
set of vertices in G at distance 2 from x and y, respectively. For any vertex v ∈ N (x),
we join v with y1 in H . And we join v with x1 in H for any vertex v ∈ N (y)\N (x).
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Fig. 2 Construction from the proof of Lemma 2.2

Set V ∗(G) = V (G)\ (N (x) ∪ N (y)) and note that x, y /∈ V ∗(G). Next we consider
the positions of all vertices (if any) from V ∗(G) in H . For any vertex v ∈ V ∗(G), if
v ∈ N2(y), v is joined with y1 in H ; if v ∈ N2(x)\N2(y), then vy2 ∈ E(H); while if
z ∈ V ∗(G)\ (N2(x) ∪ N2(y)), then zy1, zy3 ∈ E(H) for r ≥ 4 or zy1, zx2 ∈ E(H)

for r = 3.
This construction is illustrated in Fig. 2, where a thick edge from a vertex to a thick

set indicates that the vertex is adjacent to every vertex in the set. The dashed thick line
from x1 indicates that x1 is adjacent to every vertex in N (y)\N (x), while the dashed
line from y2 says that y2 is adjacent to every vertex in N2(x)\N2(y). The figure is
drawn for the cases when r ≥ 4. If r = 3 then one only needs to replace the edge zy3
(that is, from a typical vertex z from V ∗(G)\ (N2(x) ∪ N2(y)) to y3 ) with the edge
zx2. Note that if r = 3 then the vertices y3 and x3 do not exist, so that we can imagine
that in the case r = 3 the vertex y3 is identified with x2 (and x3 with y2) and then the
edge zy3 is just the edge zx2.

Clearly, w is pendant in H with wy1 ∈ E(H). Moreover, dH (w, xr−2) = r + 1.
We have eccH (v) = r for any vertex v ∈ V0 ∪ {x, y} with v /∈ {xr−2, w} from
the fact that the set V0 ∪ {x, y} induces an isometric subgraph C ′

2r of H . Similarly
we have eccH (u) = r for any vertex u ∈ V (G)\{x, y}. In particular, for the case
r = 3, we have EccH (u) = {x} if u ∈ V ∗(G); EccH (u) = {x2} if u ∈ N (x) ∪ N2(y);
EccH (u) = {w, x1} if u ∈ N2(x) and EccH (u) = {w} if u ∈ N (y). Therefore H is
an r -ASC embedding graph of G, finishing the proof of this lemma. 
�

We are now ready for the main result of this section which further sharpens The-
orem 2.1 by proving that θr (G) ≤ 2r − 1 holds if r ≥ 3 and G has at least two
vertices.
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Fig. 3 Case 1 from the proof of Theorem 2.3
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Fig. 4 Case 2 from the proof of Theorem 2.3

Theorem 2.3 If G is a graph of order n and r ≥ 3, then θr (G) = 2r if and only if
G ∼= K1.

Proof Note that C ′
2r is an r -ASC graph. If G ∼= K1, considering the fact that any

r -ASC has order n ≥ 2r + 1 (Klavžar et al. 2011), the result θr (G) = 2r holds
immediately. Conversely, if G is a graph of order n ≥ 2, in view of Theorem 2.1, we
only need to prove that θr (G) ≤ 2r − 1. Equivalently, it suffices to construct a graph
H of order at most n + 2r − 1 as an r -ASC embedding graph of G. Denote by h the
number of isolated vertices in G and set V0 = {x1, . . . , xr−1, y1, . . . , yr−1, w}. Based
on the value of h, we distinguish the following three cases.
Case 1 h ≥ 2.

In this case we may assume that x0, y0 are two isolated vertices in G. In H , the
adjacency relation of V0∪{x0, y0} is x0−x1−· · ·−xr−1−y0−yr−1−· · ·−y1−x0 with
x0w being a pendant edge, that is, V0 ∪ {x0, y0} induces a graph C ′

2r in H . Moreover,
any other vertex v than x0, y0 is joined with x1 and y1 in H . The construction is shown
in Fig. 3, where the thick edges from x1 and y1 indicate that x1 and x2 are adjacent to
all the vertices in V (G)\{x0, y0}.

It can be easily checked that dH (w, y0) = r + 1 and any other vertex in H has
eccentricity r . This ensures that H is an r -ASC embedding graph of G.
Case 2 h = 1.

In this case let v be an isolated vertex in G. Let the adjacency relation of V0\{w}
and v in H be x1 − · · · − xr−1 − v − yr−1 − · · · − y1. Any vertex of G different from
v is joined with x1 and y1 in H . Choosing an arbitrary but fixed vertex u ∈ V (G)\{v},
we join w with u. This defines H . See Fig. 4 where this construction is shown; again
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thick edges from x1 and y1 indicate that x1 and y1 are adjacent to all the vertices in
V (G)\{v}.

Note that dH (w, v) = r + 1 with w being pendant and any other vertex than w, v

has eccentricity r in H . Thus H is an r -ASC embedding graph of G as desired.
Case 3 h = 0.

In this case, if G is a connected graph, then we are done by Lemma 2.2. If not,
by choosing any component of G, we run the same operation on each component
of the graph G as that in the proof of Lemma 2.2 and join any vertex v from other
component(s) with y1, y3 for r ≥ 4 or with y1, x2 for r = 3. In this way we obtain an
r -ASC embedding graph of G, completing the proof of the theorem. 
�

3 3-ASC index of graphs with diameter at most 2

In this section we first determine the 3-ASC index of graphs of diameter 1. Clearly,
a graph of order n > 1 has diameter 1 if and only if G ∼= Kn . Next we prove the 3-
ASC index of graphs with diameter 1. For consistency we include K1 in the following
theorem.

Theorem 3.1 θ3(K1) = 6 and if n ≥ 2, then θ3(Kn) = 5.

Proof θ3(K1) = 6 by Theorem 2.3. In the rest of the proof we assume that n ≥ 2.
We first show that θ3(Kn) ≥ 5. Assume that G is a graph obtained from Kn by

adding at most three vertices. Then diam(G) ≤ 4. Moreover, the equality holds if and
only if either G ∼= G ′ is formed by joining a pendant vertex of a path P3 to some
but not all vertices of Kn , or G ∼= G ′′ is obtained by joining a vertex of a path P2 to
some but not all vertices of Kn and joining another new vertex to some other different
vertices with degree n − 1 in it. In both cases there is at least one vertex x in G with
eccG(x) = 2. Thus G is not a 3-ASC graph which in turn implies that θ3(Kn) ≥ 4.

Suppose next that θ3(Kn) = 4 and let G be a 3-ASC graph obtained by adding
vertices V0 = {x, y, z, w} to Kn . If G[V0] � P4, then G contains G ′ or G ′′ as
an induced graph, where G ′ and G ′′ are the graphs defined in the above paragraph.
Otherwise, diam(G) < 4, a clear contradiction. Since diam(G) = 4, there exists at
least one vertex v in G with eccG(v) = 2, but this contradicts the fact that G is a
3-ASC graph.

HenceG[V0] ∼= P4 must hold. Let the adjacency relation of V0 inG bew−z−y−x
and assume without loss of generality thatw has a neighbor in Kn . Then x is a pendant
vertex of G because otherwise any vertex of G would have eccentricity at most 3. If
at least one of the vertices y and z, say y, is adjacent to one or more vertices of Kn ,
then eccG(y) = 2, which is a contradiction to the fact that G is a 3-ASC graph.
Therefore, degG(z) = degG(y) = 2. Now, if w is adjacent to all the vertices of Kn ,
then eccG(z) = 2, otherwise eccG(x) = 5. Hence in both cases G is not a 3-ASC
graph. We conclude that θ3(Kn) ≥ 5.

It remains to prove that θ3(Kn) ≤ 5 for n ≥ 2. For this sake consider the graph
Gn which is schematically shown in Fig. 5. In the graph Gn , the vertices u and v are
adjacent to all the vertices of the Kn−1 leading to two subgraphs isomorphic to Kn .
The two white vertices of Gn have eccentricity 4 while all the black vertices have
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Fig. 5 Graph Gn , n ≥ 1
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Fig. 6 Graph H for G = K2,3
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eccentricity 3 (hereafter the white vertices denote the diametrical vertices and black
vertices denote central ones). Hence Gn is a 3-ASC graph that contains Kn . 
�

The graph G2 from the proof of Theorem 3.1 is of order seven which makes it
a smallest 3-ASC graph. Now we turn to graphs of diameter 2 and first bound their
3-ASC index as follows.

Lemma 3.2 If G is a graph of diameter 2, then 3 ≤ θ3(G) ≤ 4.

Proof To prove the upper bound we need to construct a graph H of order |V (G)| + 4
as a 3-ASC embedding graph of G. Set V (H) = V (G) ∪ {w, x, y, z} and let the
adjacency relation between the new vertices be w − z − y − x . Let v be a vertex in G
with eccG(v) = 2 and u an eccentric vertex of v in G, that is, dG(v, u) = 2. Join the
vertex u in G with x and join all vertices from V (G)\{u, v} with w. This defines H
(see Fig. 6 for an example of H when G = K2,3).

Note that degH (y) = degH (z) = degH (x) = 2 and that the neighborhood of v

remains unchanged in H . Then we arrive at dH (v, y) = 4 from the structure of H .
Moreover, any vertex v′ from NG(u) has eccentricity 3 in H with EccH (v′) = {y}.
Similarly, EccH (v′) = {x, y} for any vertex v′ ∈ EccG(u)\{v}, since both x and
y have a largest distance 3 to v′ in H . It follows that eccH (v′) = 3 for any vertex
v′ ∈ EccG(u)\{v}. In addition, we have dH (w, x) = 3 = dH (z, u), which implies
that eccH (u) = eccH (z) = 3 = eccH (w) = eccH (x). Thus H is a 3-ASC embedding
graph of G as desired.

Next we deal with the lower bound on θ3(G). Note that any graph obtained by
adding one more vertex to G has diameter at most 3. Thus we have θ3(G) ≥ 2.

123



1396 J Comb Optim (2018) 36:1388–1410

Fig. 7 Graph H ′
5

Assume that G ′ is an embedding 3-ASC graph of G by adding two more vertices
x and y. Then G ′ has diameter 4. Hence the adjacency relation of x, y in G ′ is either
y − x − z with y being pendant, degG ′(x) ≥ 2 and z ∈ V (G) with eccG(z) = 2,
or x − u and y − v where dG(u, v) = 2 with eccG(u) = eccG(v) = 2. Considering
that G has diameter 2, in the latter case, there is at least one vertex w as a common
neighbor of vertices u and v in G. Then we deduce that eccG ′(z) = 2 in the former
case or eccG ′(w) = 2 in the latter case, either of which contradicts the fact that G ′ is
a 3-ASC graph. So θ3(G) ≥ 3, finishing the proof of this lemma. 
�

It is interesting to note that if G = P3, then the graph H constructed in the proof
of Lemma 3.2 is the graph of order 7 mentioned before the lemma. Since the order of
a smallest 3-ASC graph is 7, it follows that θ3(P3) = 4. There is a unique 2-SC graph
C4 of order 4 with diameter 2. By Lemma 3.2, θ3(C4) ≤ 4 and one can prove that
actually θ3(C4) = 4 holds. Consider next C5. By Lemma 3.2, θ3(C5) ≤ 4. But, to our
surprise, 4 is not the minimum number of vertices needed to be added for obtaining a
3-ASC embedding of C5. Denote by C ′

n the graph which consists of the cycle Cn and
an additional vertex adjacent to exactly two consecutive vertices in Cn . As observed
in Klavžar et al. (2011), the graph C ′

2r+1 is an r -ASC graph. Let H ′
5 (shown in Fig. 7)

be the graph obtained from C ′
5 by respectively attaching a pendant vertex to the two

non-adjacent vertices of degree 2 in C ′
5. Since H

′
5 is a 3-ASC graph, we conclude that

θ3(C5) = 3. This example can be generalized as follows.

Theorem 3.3 LetG bea2-SCgraph. If G contains a diametrical pair u, v and vertices
u′, v′ such that u′ ∈ NG(u)\NG(v), v′ ∈ NG(v)\NG(u) and NG(u) ∩ NG(v) ⊆
EccG(u′) ∩ EccG(v′), then θ3(G) = 3.

Proof By Lemma 3.2 it suffices to construct a 3-ASC embedding graph of G. Let
H be the graph obtained from G by adding three new vertices x, y, z and edges xu,
yv, zu′, and zv′. The vertices x and y are pendant in H and hence dH (x, y) = 4.
Consequently, eccH (u) = eccH (v) = 3 with EccH (u) = {y} and EccH (v) = {x}.
Since NG(u) ∩ NG(v) ⊆ EccG(u′) ∩ EccG(v′), any vertex w ∈ NG(u) ∩ NG(v)

is at distance 2 from both u′ and v′ in G. Thus any vertex w ∈ NG(u) ∩ NG(v) is
an eccentric vertex of z in H with dH (w, z) = 3. Then eccH (z) = 3 holds. This in
turn implies that eccH (w) = 3 for any vertex w ∈ NG(u) ∩ NG(v). Moreover, all
the vertices in NG(u)\NG(v), including u′, have eccentricity 3 in H with y as their
common eccentric vertex. By symmetry, all the vertices in NG(v)\NG(u), including
v′, have eccentricity 3 in H . Finally, each vertex (if any) in EccG(u) ∩ EccG(v) has
eccentricity 3 in H with x and y as its eccentric vertices. We conclude that H is a
3-ASC embedding graph of G. 
�
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By Lemma 3.2, the 3-ASC index of a graph G of diameter 2 is either 3 or 4. In
the rest of this section we make a partial corresponding classification, where we will
always assume that the graph G considered is of order n and of diameter 2. We first
prove:

Theorem 3.4 If G does not contain a diametrical triple and does not satisfy the
assumption of Theorem 3.3, then θ3(G) = 4.

Proof By Lemma 3.2 it suffices to prove that θ3(G) 	= 3. Suppose on the contrary
that G∗ is a 3-ASC embedding graph of the graph G with V (G∗) = V (G) ∪ {x, y, z}
and set V0 = {x, y, z}.

Assume first that G has a vertex v of degree n − 1. Note that then there exists a
vertex u with eccG(u) = 2 adjacent to v in G. We now distinguish two cases.
Case 1 eccG∗(v) = 4.

In this case the adjacency relation of V0 is x − y − z with one vertex, say z,
being pendant. Considering that G∗ has diameter 4, we infer that any vertex u with
eccG(u) = 2 must be adjacent to x inG∗. But then eccG∗(x) = 2, which is impossible
because of the 3-ASC property of G∗.
Case 2 eccG∗(v) = 3.

In this case, clearly, we have EccG∗(v) ⊆ V0. Since eccG∗(v) = eccG(v) + 2, we
have |EccG∗(v)| ≤ 2. If |EccG∗(v)| = 2, we may assume that EccG∗(v) = {y, z}.
Then x ∈ NG∗(y) ∩ NG∗(z) and there exists a vertex w with wx ∈ E(G∗). But
now we get eccG∗(w) = 2, which is a contradiction. When |EccG∗(v)| = 1, we
may assume that EccG∗(v) = {z} and v − w − y − z is a (v, z)-path of length 3.
Note that eccG∗(w) = 3. Now we consider the position of x in G∗. If xv ∈ E(G∗),
then eccG∗(w) = 2, a contradiction again. If dG∗(x, v) = 2, we assume that w′ ∈
NG∗(x)∩ NG∗(v). Ifww′ ∈ E(G), we get the same result eccG∗(w) = 2. We observe
that x is not adjacent to any vertex from NG∗(w). If not, we have eccG∗(w) = 2 which
is impossible. In particular, xy /∈ E(G∗). Now we only need to deal with the subcase
when dG(w,w′) = 2. Letw′′ be a common neighbor ofw andw′ inG. If xz ∈ E(G∗),
then xw′vwyzx is an induced cycle C6. Considering that G contains no diametrical
triple, then G∗ is a 3-SC graph. This contradicts the 3-ASC property of G∗. Therefore
xz /∈ E(G∗). Combining dG∗(v, z) = 3 with degG(v) = n − 1, we find that z is
pendant in G∗. Obviously, eccG∗(z) = eccG∗(y) + 1. It follows that eccG∗(z) = 4
from the 3-ASC property ofG∗. Then 2 ≤ dG∗(y, x) ≤ 3. If dG∗(y, x) = 3, then there
must be a (y, x)-path, say y − y1 − x1 − x , of length 3 where y1, x1 ∈ V (G)\{v}.
This deduces eccG∗(y1) = 2, a contradiction again. While if dG∗(y, x) = 2, there
must be a neighbor v′ of v such that v′ is a common neighbor of x and y in G∗. Then
eccG∗(v′) = 2. Both these possibilities are impossible from the 3-ASC property of
G∗.

We have thus proved that no vertex of G can be of degree n−1, that is, G must be a
2-SC graph. Suppose first that the adjacency relation of V0 in G∗ is x − y− z. We will
show that x or z must be a pendant vertex of G∗. Otherwise, each vertex from V0 has
degree at least 2 in G∗. Let x ′ and z′ from G be neighbors of x and z, respectively, in
G∗. If degG∗(y) > 2, then any vertex of G∗ has eccentricity at most 3, a contradiction
since G∗ is a 3-ASC graph. Hence degG∗(y) = 2. Clearly eccG∗(x) = eccG∗(z) = 3,
therefore there must exist u ∈ V (G) such that dG∗(y, u) = 4. Now dG∗(y, x ′) =
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dG∗(y, z′) = 2 and we have dG∗(u, x ′) = dG∗(u, z′) = 2. If dG∗(x ′, z′) = 2, then
we have a contradiction with x ′, z′ and u being a diametrical triple of G. Hence
dG∗(x ′, z′) = 1 or x ′ = z′. In both cases, we have that eccG∗(x ′) = eccG∗(z′) = 2,
again a contradiction with G∗ being a 3-ASC graph. Therefore both x and z cannot
have a neighbor in G and suppose that z is a pendant vertex of G∗ and that x ′ is a
neighbor of x in G. Every vertex u ∈ EccG(x ′) must be adjacent to x or to y, since
otherwise we have dG∗(z, u) = 5 as a contradiction. But now we have eccG∗(x) = 2
a contradiction again with G∗ being a 3-ASC graph.

Suppose now that G∗[V0] = P2 ∪ K1. Without loss of generality we may assume
that P2 = xy. If one of x and y, say y, is a pendant vertex, then eccG∗(y) = 4 and
let x ′ ∈ V (G) be a neighbor of x in G on the diametrical path of length 4 that starts
in y. Observe that eccG∗(x ′) = 2, a contradiction with G∗ being a 3-ASC graph. So,
we may assume that x and y are not pendant and that x ′ and y′ from G are neighbors
of x and y, respectively, in G∗. Every vertex from G is at distance at most 3 to each
vertex of V0 and this implies that z is one endvertex of a path of length 4 and either x
or y, say x , is the other. But now eccG∗(y′) = 2, the same contradiction again.

Finally, let V0 be an independent set in G∗. Then V0 contains two diametrical
vertices, say x and y, that is, dG∗(x, y) = 4. Let x − x ′ − w − y′ − y be a diametrical
path inG∗. Clearly,w ∈ NG(x ′)∩NG(y′).We now claim that eccG∗(w) = 2. To prove
it, it suffices to show that dG∗(w, z) = 2. Otherwise, we have dG∗(w, z) = 3. Since x ′
and y′ do not lie in any diametrical triple, then there are two vertices x0, y0 ∈ V (G)

with x0 ∈ NG(x ′)\NG(y′), y0 ∈ NG(y′)\NG(x ′) andw ∈ EccG(x0)∩EccG(y0)with
zx0, zy0 ∈ E(G∗). But now G just satisfies the assumption of Theorem 3.3, which is
impossible. Therefore we get the contradiction eccG∗(w) = 2 to the 3-ASC property
of G. This completes the proof of the theorem. 
�

By Theorem 3.4 it remains to consider those graphs G of diameter 2 that contain
diametrical triples. We next give two sufficient conditions that guarantee that θ3(G) =
3.

Theorem 3.5 If a graph G contains vertices u and v of a diametrical triple of G such
that δ (G[EccG(u) ∩ EccG(v)]) = 0, then θ3(G) = 3.

Proof By Lemma 3.2 we only need to prove that θ3(G) ≤ 3.
Since u and v belong to a diametrical triple, there exists a vertex w ∈ EccG(u) ∩

EccG(v),w 	= u, v. By the theorem’s assumption wemay assume thatw is an isolated
vertex inG[EccG(u)∩EccG(v)]. Nowwe construct a graph H as follows. Let V (H) =
V (G)∪{x, y, z} and E(G)∪{ux, vz, xy, yz} ⊆ E(H). In addition, we join x to all (if
any) vertices fromEccG(u)∩EccG(v) different fromw. This construction is presented
in Fig. 8.

Since w is an isolated vertex in G[EccG(u) ∩ EccG(v)], we have dG(w,w′) = 2
for any vertex w′ ∈ (EccG(u) ∩ EccG(v)) \{w}. Clearly, dG(w, u) = 2 = dG(w, v).
So dH (w, y) = 4. Any vertex from NG(u) ∩ NG(v) has eccentricity 3 since y is its
unique eccentric vertex with distance 3 to it in H . In addition, eccH (u) = 3 from the
fact that EccH (u) = {z} with dH (u, z) = 3. Similarly, we also have eccH (v) = 3.
For any vertex w′ ∈ (EccG(u) ∩ EccG(v))\{w}, considering that w′x ∈ E(H), we
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Fig. 8 Construction from the proof of Theorem 3.5
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Fig. 9 Construction from the proof of Theorem 3.6

conclude that eccH (w′) = 3 since z is the only one vertex with the largest distance
3 to w′ in H . For any vertex v′ ∈ NG(u)\NG(v), we have EccH (v′) = {y, z} with
dH (v′, y) = 3 = dH (v′, z)being largest. Then it follows that eccH (v′) = 3.Moreover,
eccH (v′) = 3 with EccH (v′) = {y, x} for any vertex v′ ∈ NG(v)\NG(u) by an
analogous reasoning. We conclude that H is a 3-ASC embedding graph of G. 
�
Theorem 3.6 If a graph G contains vertices u and v of a diametrical triple of G such
that G[EccG(u) ∩ EccG(v)] contains P3 as an induced subgraph, then θ3(G) = 3.

Proof Applying Lemma 3.2 again we only need to prove that θ3(G) ≤ 3.
Letw1w2w3 be an induced path inG[EccG(u)∩EccG(v)]. We construct a graph H

obtained from G by adding vertices x, y, z and edges xy, yz, ux, vz, w3x . Moreover,
we join all vertices (if any) from (EccG(u) ∩ EccG(v)) \NG[w1] with the vertex x in
H . See Fig. 9 for an illustration of the construction.
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Thus the neighborhood of any vertex from NG [w1] or not in (EccG(u) ∩ EccG(v))∪
{u, v} remains unchanged in H . From the construction of H we first infer that
dH (w1, y) = 4 since w1w2w3xy is a shortest path between them. Any vertex from
EccG(u) ∩ EccG(v), except w2 and w1, has eccentricity 3 in H because z is its
unique eccentric vertex and is at distance 3. Also we have eccH (w2) = 3 from the
fact that EccH (w2) = {y, z} with dH (w2, y) = 3 = dH (w2, z). Any vertex from
NG(u) ∩ NG(v) has eccentricity 3 in H because y is its unique eccentric vertex and
is at distance 3. Furthermore, eccH (w) = 3 with EccH (w) = {y, z} for any ver-
tex w ∈ NG(u)\NG(v). By symmetry, we get eccH (w) = 3 for any vertex w ∈
NG(v)\NG(u). Also we claim that eccH (x) = 3 = eccH (z) because w1 ∈ EccH (x)
and w2 ∈ EccH (z), respectively, in H . Obviously we have eccH (u) = 3 = eccH (v)

from EccH (u) = {z} and EccH (v) = {x}, respectively. Therefore H is a 3-ASC
embedding graph of G. 
�

Note that the Petersen graph PG fulfills the assumption of Theorem 3.3, hence
θ3(PG) = 3. But PG does not fulfill the condition of Theorem 3.5. Further,
θ3(K1,3) = 3 holds by Theorem 3.5. However, K1,3 does not fulfill the assump-
tion of Theorem 3.3 or that of Theorem 3.6. Therefore, none of Theorems 3.3, 3.5,
and 3.6 gives a necessary condition for θ3(G) = 3.

In view of Theorems 3.5 and 3.6 one might wonder whether θ3(G) = 3 holds as
soon as G contains a diametrical triple. This is not the case as it can be verified on the
graph K1 ⊕ 3P2. More generally, we have the following result.

Theorem 3.7 If for any non-adjacent vertices u, v the subgraph induced byEccG(u)∩
EccG(v) is a disjoint union of complete graphs on at least two vertices such that
any outer neighbor of each vertex from any of these complete subgraphs belongs to
NG(u)∩NG(v) andG does not satisfy the assumption of Theorem 3.3, then θ3(G) = 4.

Proof By Lemma 3.2 it suffices to prove that θ3(G) > 3. Suppose on the contrary
that θ3(G) = 3 and let H be a 3-ASC graph obtained from G by adding vertices
V0 = {x, y, z} and some edges (while keeping G to be induced in H ). We distinguish
two cases.
Case 1 No vertex from V0 is pendant in H .

We first claim that if H [V0] is complete or disconnected, then we can find some
vertex with eccentricity 2 in H , contradicting the 3-ASC property of H .

Suppose first that H [V0] is complete. Then considering that H has exactly two
diametrical vertices with eccentricity 4, we observe that one vertex, say x , from V0
has eccentricity 4 in H . Let w ∈ V (G) be the other diametrical vertex in H . Then
there is a vertex w′ ∈ V (G) with dH (w′, x) = dH (w′, w) = 2. It follows that
eccH (w′) = 2.

Assume next that H [V0] is disconnected. Then H [V0] ∼= K1
⋃

P2 or consists of
three isolated vertices. In the former case, we can assume that x is isolated in H [V0].
Then 2 ≤ min{dH (x, y), dH (x, z)} ≤ 3 since H is a 3-ASC graph. Without loss of
generality assume that min{dH (x, y), dH (x, z)} = dH (x, y). If dH (x, y) = 2, then
there is a vertex w ∈ V (G) as a common neighbor of x and y in H . Thus we get
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eccH (w) = 2. When dH (x, y) = 3, we assume that xx ′, yy′ ∈ E(H) where x ′, y′ ∈
V (G). Then dG(x ′, y′) = 1 and eccH (y′) = 2. In the latter case,we conclude that there
is a diametrical vertex in V0 of H , say eccH (x) = 4. Then the other diametrical vertex
of H must be also in V0. Otherwise, assume that w ∈ V (G) has eccentricity 4 in H .
Then the distance fromw to any neighbor of x inG is 3, which is impossible becauseG
has diameter 2. Assume that eccH (y) = 4. Let z′ be an arbitrary neighbor of z in H and
x ′, y′ the arbitrary neighbors of x and y, respectively, in H . First we claim that neither
of x and y belongs to EccH (z). If not, without loss of generality let x ∈ EccH (z).
Considering that eccH (z′) = 3, we have dH (z′, x) = 3. Then dH (z, x) = 4, which
is a clear contradiction. Thus we have dH (x, z) = 2 = dH (y, z) from eccH (z) = 3.
Now we conclude that zx ′, zy′ ∈ E(H). It follows that eccH (w) = 2 for any vertex
w ∈ NG(x ′)

⋂

NG(y′). This proves the claim.
So we are left with the situation when H [V0] ∼= P3. Assume that the adjacency

relation of V0 in H is x − y − z. By the case assumption, there exists edges xu, zv ∈
E(H). Note first that u 	= v, for otherwise we would have eccH (u) = 2. The same
conclusion holds if dH (u, v) = 1.

Hence dH (u, v) = 2 must hold. By the theorem’s assumption, EccG(u)∩EccG(v)

induces a disjoint union of complete graphs Knk , nk ≥ 2. Note first that w is not
adjacent to any vertex from V0 for any vertex w ∈ NG(u) ∩ NG(v), for otherwise
eccH (w) = 2 would hold. Recall that G has diameter 2. If there is at least one vertex
in each Knk adjacent to some vertex from V0, then the distance is at most 3 from
any vertex from G[EccG(u) ∩ EccG(v)] to any vertex in V0 of H . Thus any vertex
in H has eccentricity at most 3, a contradiction to the fact that H is a 3-ASC graph.
Hence there must be some complete component Kni , from G[EccG(u) ∩ EccG(v)],
such that none of vertices of Kni is adjacent to any vertex from V0 in H . Let w1, w2
be arbitrary vertices of Kni . Recalling that any vertex from V0 is not adjacent to any
vertex from NG(u)∩NG(v) in H , from the theorem’s condition that any outer neighbor
of any vertex of these complete subgraphs belongs to NG(u) ∩ NG(v), we find that
dH (w1, y) = dH (w2, y) = 4. We conclude that H is not a 3-ASC graph.
Case 2 V0 contains at least one pendant vertex of H .

Denote by h the number of pendant vertices from V0 in H . If h = 1, wemay assume
that degH (z) = 1. Considering that H is 3-ASC graph, we observe that eccH (z) = 4.
Assume that z−z′−w0−w′−w is a diametrical path in H . Then dH (z′, w) = 3,which
implies that at most one vertex from {w′, z} belongs to V (G). Ifw0 ∈ V (G), we claim
that eccH (w0) = 2 as a contradiction. In fact, clearly, eccH (w0) = 2 if {z, w′} ⊆ V0.
When |{z′, w} ∩ V0| = 1, without loss of generality, assume that z′ = y ∈ V0. Now it
suffices to prove that dH (w0, x) = 2. Otherwise, we have dH (w0, x) = 3, that is, there
exists a vertex x ′ ∈ EccG(w0) such that xx ′ ∈ E(H). Note that eccH (x) = 3. Then
dH (x, z) ∈ {2, 3}. If dH (x, z) = 2, then xz′ ∈ E(H), which implies dH (w0, x) =
2, contradicting the fact that dH (w0, x) = 3. Thus dH (x, z) = 3 holds. We get
dH (x ′, z′) = 3, i.e., dH (x ′, z) = 4 as another contradiction. While w0 /∈ V (G),
without loss of generality, we may assume that w0 = x . Next we divide into the
following two subcases. For z′ ∈ V (G), recalling that z′, w cannot belong to V (G)

simultaneously, we have w /∈ V (G), i.e., w = y. In this subcase, we claim that z′
and w′ forms a diametrical pair in G. Let w∗ ∈ NG(w′) ∩ NG(z′). Then the distance
from w∗ to any vertex in V0 is at most 2 in H . Recalling that G has diameter 2. Then
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Fig. 10 Graph G with
θ3(G) = 3
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eccH (w∗) = 2, which is also impossible. If z′ /∈ V (G), then z′ = y. So the adjacency
relation of V0 in H is x − y − z with z being pendant. If degG(w′) = n − 1, then
eccH (x) = 2 clearly. If eccG(w′) = 2, we consider the vertices from EccG(w′).
Now we conclude that w1 is adjacent to x or y in H for any vertex w1 ∈ EccG(w′).
Otherwise, dH (w1, z) > 4, contradicting to the 3-ASC property of H . Therefore, we
get eccH (x) = 2, a clear contradiction comes again.

If h = 2, without loss of generality, we assume that x, y are both pendant in H .
Clearly, eecH (x) = 4 = eecH (y). Let xx ′, yy′ ∈ E(H). Since H is 3-ASC graph,
there is a diametrical path x − x ′ − w − y′ − y with w ∈ V (G) ∪ {z}. Note that
dG(x ′, y′) = 2. Without loss of generality, assume that w ∈ V (G). Since G does
not satisfy the assumption of Theorem 3.3, we have dH (w, z) ≤ 2 (if G satisfies the
condition of Theorem 3.3 and z ∈ N2(x ′) ∩ N2(y′) in H , then dH (w, z) = 3 holds
possibly), which implies that eccH (w) = 2 as an obvious contradiction. If h = 3,
then each of x, y and z has eccentricity 4 in H (if one of them has eccentricity 3, then
its unique neighbor has eccentricity 2, a contradiction), contradicting the definition of
3-ASC graph. 
�

Consider the graph G shown in Fig. 10. It is of diameter 2 and fulfils the first
condition of Theorem 3.7. For the selected vertices u and v we have EccG(u) ∩
EccG(v) = {x, y}. Note that each of these vertices has an outer neighbor that does not
belong to NG(u)∩NG(v). Hence the second condition of the theorem is not fulfilled. In
the figure an embedding of G into a 3-ASC graph is also shown, therefore θ3(G) = 3.
In summary, the technical condition about the outer neighbors from Theorem 3.7
cannot be avoided.

Recall that the well-known cocktail party graph CP(n) is a complete graph on 2n
vertices with a 1-factor removed. By Theorem 3.4, θ3(CP(n)) = 4 but CP(n) does
not fulfill the condition of Theorem 3.7. In addition, from Theorem 3.7 we get that
θ3(K1 ⊕ t P2) = 4 holds for any t ≥ 3, but K1 ⊕ t P2, t ≥ 3, does not fulfill the
condition of Theorem 3.4. Therefore, Theorems 3.4 and 3.7 give sufficient but not
necessary conditions for G having θ3(G) = 4.
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Fig. 11 The graphs H1 and H2

Fig. 12 Embedding of P9 into a
3-ASC graph of order 11
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4 3-ASC index of some graphs with large diameter

In this section we will determine the 3-ASC index of paths of order n ≥ 1, cycles of
order n ≥ 3, and trees of order n ≥ 10 and diameter n − 2.

4.1 Paths

In this subsection we will always assume that V (Pn) = {v1, . . . , vn} and E(Pn) =
{vivi+1 : i = 1, . . . , n− 1}. We will also use the graph C∗

2k , k ≥ 2, which is obtained
from C2k by attaching a pendant vertex to one of its vertices. As observed in Klavžar
et al. (2011), the graph C∗

2r is an r -ASC graph. First we deal with the cases when n is
small.

The cases n = 1 and n = 2 are covered by Theorem 3.1. We have already observed
that a smallest 3-ASC graph is of order 7. Since each of the paths P3, P4, P5, and P6 is
an induced subgraph of C∗

6 , it follows that θ3(P3) = 4, θ3(P4) = 3, θ3(P5) = 2, and
θ3(P6) = 1. For n = 7 and n = 8, consider the graphs H1 and H2 from Fig. 11. By a
straightforward checking we find that both H1 and H2 are 3-ASC graphs. Therefore
θ3(P7) = θ3(P8) = 1.

In the rest we may thus assume that n ≥ 9 and first prove:

Lemma 4.1 If n ≥ 9, then θ3(Pn) ≤ 2.

Proof For n = 9 the assertion follows from the embedding presented in Fig. 12.
For n ≥ 10 we construct a graph Gn schematically shown in Fig. 13, where all the

vertices v10, . . . , vn are adjacent to both x and y.
It is straightforward to check that Gn is a 3-ASC embedding graph of Pn . 
�

Lemma 4.2 If n ≥ 9, then θ3(Pn) ≥ 2.

Proof Since paths Pn are not 3-ASC graphs we have θ3(Pn) > 0 for all n ≥ 9. In
the following we prove that θ3(Pn) > 1 for n ≥ 9. Assume on the contrary that there
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Fig. 13 Graphs Gn

exists a 3-ASC graph G with V (G) = V (Pn) ∪ {x} that contains Pn as an induced
subgraph.

First assume that x is a diametrical vertex in G and let vi be its diametrical pair,
so that dG(x, vi ) = 4. If i = 1, then clearly xv1, xv2, xv3 /∈ E(G) and xv4 ∈ E(G).
Since Pn is an induced subgraph of G, we conclude that dG(v1, v j ) ≥ 4 for j ≥ 5,
which contradicts the fact that G is a 3-ASC graph. Similarly we get a contradiction
if i = 2. By symmetry, i 	= n − 1 and i 	= n. Finally, if 2 < i < n − 2, then x is not
adjacent to any vertex of vi−2, vi−1, vi+1 and vi+2. Thus dG(vi−2, vi+2) = 4, another
contradiction.

It follows that the twodiametrical vertices ofG are on Pn , sayvi andv j ,where i < j .
Then dG(vi , v j ) = 4. Clearly, xvi and xv j cannot belong to E(G) simultaneously.
We distinguish the following two cases.
Case 1 Either xvi ∈ E(G) or xv j ∈ E(G).

We may without loss of generality assume that xvi ∈ E(G). If i > 1, then
dG(vi−1, v j ) ≥ 4, which implies that G has as least three diametrical vertices. Hence
i = 1 must hold. Since xv1 ∈ E(G) and dG(v1, v j ) = 4, neither of v j and v j−1 is
adjacent to x inG. If j < n, then the same conclusion holds also for v j+1. In any case,
dG(v j−4, v j ) = 4. This is only possible if j − 4 = i = 1, that is, if j = 5. As already
argued above, xv4, xv5, xv6 /∈ E(G), for otherwise dG(v1, v5) ≤ 3 would hold. But
then it follows that dG(v9, v5) = 4, so we would again have at least three diametrical
vertices. Case 1 hence cannot happen.
Case 2 Neither of vi and v j is adjacent to x in G.

Suppose first that i ≥ 2 and j ≤ n−1. Then x must be adjacent to each vertex from
V1 = {vk : 1 ≤ k < i} because dG(vk, v j ) ≥ 4 holds if vk x /∈ E(G). Analogously,
x must be adjacent to each vertex from V2 = {vt : j < t ≤ n}. Since dG(vi , v j ) = 4
we clearly have that j − i ≥ 4. If j − i = 4, then xvi+2 /∈ E(G), for otherwise
eccG(x) = 2. Considering that dG(vi+3, vk) ≤ 3 for any vertex vk ∈ V1, we have
xvi+3 ∈ E(G). By symmetry, we get xvi+1 ∈ E(G). Hence eccG(x) = 2 holds
again, a contradiction. If j − i > 4, then from eccG(x) = 3 we find out that there
are three consecutive vertices vs, vs+1, vs+2 where i ≤ s < s + 2 ≤ j such that each
of them has degree 2 in G. But now there must be a vertex vp ∈ V1 ∪ V2 such that
dG(vs+1, vp) = 4.

Let next i = 1 and j < n. Then x must be adjacent to all vertices vt , t > j ,
because otherwise dG(vt , v1) ≥ 4 would hold for such a vertex vt . Assume that
xv2 /∈ E(G). Then j = 5 because otherwise dG(v2, v j ) > 3. But then dG(v1, v6) > 3,
a contradiction. Hence necessary xv2 ∈ E(G). As above we now find consecutive
vertices vs, vs+1, vs+2 such that none of them is adjacent to x in G where 3 ≤ s <
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s + 2 ≤ j , for otherwise eccG(x) = 2. But then dG(vs+1, v1) > 3 for s > 3, or
dG(vs+1, vp) > 3 where p > j for s = 3, another contradiction.

The case when i > 1 and j = n is symmetric to the last case. Hence we are left with
the situation when i = 1 and j = n. If xv2 /∈ E(G), then we have dG(v1, vn−1) > 3.
So xv2 ∈ E(G) and by a parallel argument also xvn−1 ∈ E(G). Now, as above, we
have a triple of vertices vs, vs+1, vs+2 none of which is adjacent to x in G. But then
dG(vs+1, v1) > 3 or dG(vs+1, vn) > 3, a final contradiction. 
�

Combining Lemmas 4.1 and 4.2 with the arguments given before then we have the
following result.

Theorem 4.3 The 3-ASC index of paths is:

θ3(Pn) =
⎧

⎨

⎩

7 − n, 1 ≤ n ≤ 5;
1, 6 ≤ n ≤ 8;
2, n ≥ 9.

4.2 Cycles

Next we determine the 3-ASC index of cycles. The triangle C3 is a complete graph,
so θ3(C3) = 5 by Theorem 3.1. We have already observed that θ3(C4) = 4 and
θ3(C5) = 3. Recall that C∗

6 (the graph obtained by attaching a pendant vertex to one
of the vertices of C6) is a 3-ASC graph, hence θ3(C6) = 1. Recall further that C ′

2r+1
is the graph which consists of a cycle C2r+1 and a vertex adjacent to exactly two
consecutive vertices in C2r+1 and that C ′

2r+1 is an r -ASC graph. Thus C ′
7 is 3-ASC

graph and θ3(C7) = 1 holds accordingly. Let in addition C ′′
8 be the graph obtained by

joining five consecutive vertices of C8 with a new vertex. It can be easily checked that
C ′′
8 is a 3-ASC graph and thus θ3(C8) = 1. The result for all cycles reads as follows.

Theorem 4.4 The 3-ASC index of cycles is:

θ3(Cn) =
⎧

⎨

⎩

8 − n, 3 ≤ n ≤ 5;
1, 6 ≤ n ≤ 8;
2, n ≥ 9.

Proof The result for n ≤ 8 has been established above, hence in the following we will
assume that n ≥ 9. Let V (Cn) = {v1, . . . , vn}, E(Cn) = {vivi+1: i = 1, . . . , n−1}∪
{vnv1}, and for a positive integer k, 1 ≤ k ≤ n, we set |k|n = min{k, n − k}.

We first prove that θ3(Cn) ≤ 2. For n = 9 consider the graph G shown in Fig. 14.
It can be routinely checked that G is a 3-ASC graph (recall that two vertices filled
white are diametrical vertices as mentioned before).

When n ≥ 10, we construct the graph Hn as shown in Fig. 15. In Hn both x and
y are adjacent to any vertex from {vk : 10 ≤ k ≤ n}. The graph Hn is a 3-ASC
embedding graph of Cn , completing the proof of upper bound on θ3(Cn).

To complete the proof we need to show that θ3(Cn) ≥ 2. As Cn , n ≥ 9, is not a
3-ASC graph, we only need to prove that θ3(Cn) > 1. Suppose on the contrary that a
graph G with vertex set V (Cn) ∪ {x} is a 3-ASC embedding graph of Cn .
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Fig. 14 The graph G

Fig. 15 The graph Hn

x
y

v10 vn· · · · · ·

Hn

If eccG(x) = 4, then there exists an induced internal (vi , v j )-path P (that is, a path
whose internal vertices are of degree 2) of length 6 inG such that xvi , xv j ∈ E(G) and
dG(x, vt ) = 4 where vt ∈ V (P) with |t − i |n = |t − j |n = 3. Thus we conclude that
dG(vt , vs) ≥ 4 for vs ∈ V (Cn)\V (P). This is an apparent contradiction to the 3-ASC
property of G. If eccG(x) = 3, then, considering a vertex being at distance 3 from x ,
we infer that there is an induced internal (vi , v j )-path P with | j − i |n = 4 or 5 and
vk ∈ V (P) such that both vi and v j are adjacent to x in G and that neither of vi and v j

is adjacent to vk . Now we consider the eccentricity of vk in G. If eccG(vk) = 3, then
any vertex from V (Cn)\V (P) is adjacent to vi or v j . However, this is impossible when
n ≥ 9. Thenwe get eccG(vk) = 4.Without loss of generality, assume that i < j and vi
has a neighbor vi−1 ∈ V (Cn)\V (P) and v j has a neighbor v j+1 ∈ V (Cn)\V (P). Let
V0 = V (Cn)\

(

V (P) ∪ {vi−1, v j+1}
)

. Since n ≥ 9, we have |V0| ≥ 2 for | j − i |n = 4
or |V0| ≥ 1 for | j − i |n = 5. Therefore any vertex in V0 must have eccentricity at
least 4 in G. Moreover, when | j − i |n = 5, vi−1 or v j+1 has eccentricity 4 in G. This
contradicts the fact that G is a 3-ASC graph and we are done. 
�

4.3 Trees of order n and diameter n− 2

Now we turn to θ3(T ) for trees T of order n and diameter n − 2. Any such tree can be
obtained by attaching a pendant vertex to any non-pendant vertex of the path Pn−1.
Throughout this subsection let V (T ) = {v1, . . . , vn} and E(T ) = {vivi+1 : i =
1, . . . , n − 2} ∪ {vkvn}, where k is a fixed integer from {2, . . . , n − 2}.
Lemma 4.5 If T is a tree of order n ≥ 10 and diameter n − 2, then θ3(T ) ≤ 2.

Proof Based on the value of k introduced above we distinguish two cases.
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Case 1 k = 5.
Let G be the graph obtained from T ∪ P2, where P2 = xy, by adding edges xvi ,

i ∈ {1, 2} ∪ {7, . . . , n − 1} and yv j , j ∈ {1, 4} ∪ {10, . . . , n − 1, n}. Then it is
straightforward to verify that G is a 3-ASC embedding graph of T where v5, v9 are
two diametrical vertices in G.
Case 2 k 	= 5.

In this case we can construct a similar graph H as in Case 1, but now one more
edge xvn is added to H (except that yvn /∈ E(G) for k = 6 otherwise eccG(y) = 2).
It is not difficult to check that H is a 3-ASC embedding graph of T with v5, v9 being
its unique diametrical vertices. 
�
Lemma 4.6 If T is a tree of order n ≥ 10 and diameter n − 2, then θ3(T ) ≥ 2.

Proof Since T is clearly not a 3-ASC graph, it suffices to prove that θ3(T ) > 1.
Suppose on the contrary that there exists a 3-ASC embedding graph G of T with
V (G) = V (T ) ∪ {x}. We distinguish the following two cases.
Case 1 xvn /∈ E(G).

In this case vn is pendant in G with vkvn ∈ E(G). Note that G is a 3-ASC graph.
Then eccG(vn) = 4 and eccG(vk) = 3.

Suppose first that xvk ∈ E(G). Let vi be the vertex with d(vn, vi ) = 4. Clearly,
dT (vk, vi ) ≥ 3 and xvi /∈ E(G). If v j ∈ V (T )\{vn, vi }, then dG(vn, v j ) ≤ 3 and
dG(vi , v j ) ≤ 3 and consequently dG(vk, v j ) ≤ 2. Obviously, any vertex v j ( j 	=
n, i) with dT (v j , vk) ≥ 3 must be adjacent to x in G. If dT (vi , vk) > 3, then we
get eccG(x) = 2, which is impossible because of the 3-ASC property of G. Hence
dT (vk, vi ) = 3 andwithout loss of generalitywemay assume that k < i . First we claim
that xvs ∈ E(G) for any vertex vs with s < k. Otherwise, we have dG(vs, vi ) = 4.
Then eccG(vs) ≥ 4, contradicting to the 3-ASC property of G. Since eccG(x) = 3,
any vertex in the (vi , vk)-path except vk has degree 2 in G. Then any vertex vp with
dT (vp, vk+2) > 3 has the property that dG(vk+2, vp) = 4. Clearly, eccG(vk+2) and
eccG(vp) are at least 4, contradicting the 3-ASC property of G, again.

Now we consider the subcase when xvk /∈ E(G). From eccG(vn) = 4, we find that
there is at most one vertex vp with dG(vn, vp) = 4 and dG(vn, v j ) ≤ 3 for any vertex
v j with j 	= p. Considering that vn is pendant in G, all vertices except vp in T are at
distance at most 2 from vk in G. But, combining the fact that xvk /∈ E(G), we have
dG(v j , vk) ≥ 3 for any vertex v j with dT (v j , vk) ≥ 3 with j 	= p. A contradiction
occurs.
Case 2 xvn ∈ E(G).

In this case we first assume that eccG(vn) = 4. Then eccG(vk) = 3 and there exists
a vertex vi with dG(vn, vi ) = 4, i.e., dG(vk, vi ) = 3 and dG(x, vi ) = 3. If i = 1,
we find that dG(vi , v j ) ≥ 4 for any vertex v j with k + 1 ≤ j ≤ n − 1, which is
impossible since G is a 3-ASC graph. By symmetry, i 	= n − 1. It follows that vi has
two neighbors vi−1 and vi+1 in T . Moreover, neither of vi−1 and vi+1 is adjacent to
x in G.

Now we further consider the position of the vertex vi in T . Clearly, dG(vi , vk) =
3 ≤ dT (vi , vk). If dT (vk, vi ) > 3, then, from dG(x, vi ) = 3, we get dG(vi , vk) ≥ 4,
which is a clear contradiction. Thus dT (vk, vi ) = 3. If xvk /∈ E(G), then, assuming
without loss of generality that k < i , we find that dG(vk, vi+1) = 4, contradicting the
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3-ASC property of G. Next we deal with the subcase when xvk ∈ E(G). Note that
n ≥ 10. There is at least one vertex v j in T such that dT (vi , v j ) ≥ 4. Then in this
subcase we have dG(vi , v j ) ≥ 4 whenever v j x ∈ E(G) or not. A contradiction comes
again.

We have thus proved that eccG(vn) = 3 must hold. Next we distinguish the follow-
ing two subcases.
Subcase 2.1 xvk /∈ E(G).

In this subcase, we first prove eccG(x) = 3. If not, then we have eccG(x) = 4.
Then x must lie on an induced cycle C8 of G where vi ∈ V (C8) with dG(x, vi ) = 4,
or on an induced (x, vi )-path with dG(x, vi ) = 4 and vi being pendant in G. In the
former case, we can find at least one vertex v j ∈ V (C8) such that dG(vn, v j ) ≥ 4.
This is a clear contradiction. In the latter case, we claim that vi is the other diametrical
vertex in G, that is, dG(vi , vs) ≤ 3 for any vertex vs with 1 ≤ s ≤ n. But this cannot
be obeyed for any vertex vs with dT (vs, vi ) > 3 for n ≥ 10.

Next we claim that eccG(vk) = 3 and assume that on the contrary eccG(vk) =
4. Then there is exactly one vertex, say vi , with dG(vi , vk) = 4. Without loss of
generality, assume that i > k. Evidently, we have dT (vi , vk) ≥ 4 and xvi /∈ E(G).
Considering that eccG(vn) = eccG(x) = 3, from the structure of G, we observe that
dG(x, vi ) = 2. From the fact that dG(vi , v j ) ≤ 3 and dG(vk, v j ) ≤ 3 for any vertex
v j ∈ V (T )\{vi , vk}, we find that any vertex v j with j ∈ {m : m ≤ k−1, orm ≥ i+1}
must be adjacent to x in G.

If dT (vi , vk) = 4, then i = k + 4. Clearly, xvk+2 /∈ E(G). If not, we have
eccG(x) = 2, which is impossible. Since dG(vn, vk+3) ≤ 3, we get xvk+3 ∈ E(G)

from the fact that neither of vk+2 and vk+4 is adjacent to x in G. Moreover, we have
xvk+1 /∈ E(G). Otherwise, we get eccG(x) = 2, which is impossible. Then vk+1 is
just the eccentric vertex of x in G. Thus there must be a vertex v j ( j 	= k + 3, k + 4)
with dT (vk, v j ) ≥ 3 such that dG(vk+1, v j ) = 4, a contradiction.

If dT (vi , vk) > 4, we have xv j ∈ E(G) for any vertex v j with k + 3 < j < i ,
since dG(vk, v j ) ≤ 3. Moreover, neither of vk+1 and vk+2 is adjacent to x in G, for
otherwise eccG(x) = 2 would hold. But then dG(vi , vk+1) ≥ 4, a contradiction.

We have thus proved that eccG(x) = eccG(vk) = 3. From eccG(vk) = 3 we find
that xv j ∈ E(G) for any vertex v j with dT (v j , vk) ≥ 4. Because eccG(x) = 3, we
infer that there exist three consecutive vertices, say vp−1, vp, vp+1, such that they are
at distance at most 3 to vk and that none of them is adjacent to x in G. It implies that
dG(x, vp) = 3. Since n ≥ 10, there are at least two vertices v j with dG(v j , vp) = 4,
contradicting to the 3-ASC property of G.
Subcase 2.2 xvk ∈ E(G).

In this subcase we first assume that eccG(x) = 3. Then there exists a vertex vi with
dG(x, vi ) = 3. We may again assume without loss of generality that i > k. If vi is
pendant in G, then there are at least two vertices at distance at least 4 from vi in G,
contradicting to the 3-ASC property of G. If vi is non-pendant in G, then there are
three consecutive vertices vi−1, vi , vi+1, such that none of them is adjacent to x in G
and dG(x, vi ) = 3with dT (vi , vk) ≥ 2. If dT (vk, vi ) ≥ 3, we find that dG(vn, vi ) = 4,
which is impossible because of eccG(vn) = 3. While dT (vi , vk) = 2, for n ≥ 10,
there exist at least two vertices vp with dT (vi , vp) ≥ 4 such that dG(vi , vp) ≥ 4. This
contradicts the 3-ASC property of G. So it follows that eccG(x) = 4.
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If eccG(x) = 4, then there is a vertex vp with dG(x, vp) = 4. Obviously,
dT (vk, vp) ≥ 3.Considering thatvn, vk, x forma triangle inG,wegetdG(vn, vp) ≥ 4,
the final contradiction. 
�

Therefore Lemmas 4.5 and 4.6 immediately imply:

Theorem 4.7 If T is a tree of order n ≥ 10 and diameter n − 2, then θ3(T ) = 2.

In Theorem 4.7 we did not consider trees of small order. Note that K1,3 is the unique
tree of the smallest order of interest (that is, of order 4). For n = 5 there is also a
unique tree of interest, while for n = 6 there are two non-isomorphic trees of diameter
4. Any of these trees is an induced subgraph of C∗

6 which is in turn a smallest 3-ASC
graph, hence we have the 3-ASC index for 4 ≤ n ≤ 6. However, for 7 ≤ n ≤ 9 the
variety of the trees of interest becomes larger, hence the determination of the 3-ASC
index for all of them would be too extensive to be done here.

5 Three open problems

We conclude the paper with three open problems. First, in view of Theorems 2.1
and 2.3 we pose the following very ambitious task:

Problem 5.1 For any given integer k ∈ [1, 5] characterize the graphswith θ3(G) = k.

Next, in view of Lemma 3.2 and Theorems 3.3–3.7, it is natural to pose:

Problem 5.2 Characterize the graphs of diameter 2 with the 3-ASC index equal to 3
(equivalently, with the 3-ASC index equal to 4).

A classical result from random graph theory asserts that almost any graph has
diameter 2, cf. Diestel (2006, p. 312, Exercise 7). Since by Lemma 3.2 the 3-ASC
index of such a graph is either 3 or 4, our third problem reads as follows.

Problem 5.3 Is it true that the 3-ASC index of almost every graphs is 3 (resp. 4)?
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