
J Comb Optim (2018) 36:1074–1101
https://doi.org/10.1007/s10878-018-0291-9

On the m-clique free interval subgraphs polytope:
polyhedral analysis and applications

Mohammed-Albarra Hassan1 · Imed Kacem1 ·
Sébastien Martin1 · Izzeldin M. Osman2

Published online: 23 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper we study the m-clique free interval subgraphs. We investi-
gate the facial structure of the polytope defined as the convex hull of the incidence
vectors associated with these subgraphs. We also present some facet-defining inequal-
ities to strengthen the associated linear relaxation. As an application, the generalized
open-shop problem with disjunctive constraints (GOSDC) is considered. Indeed, by
a projection on a set of variables, the m-clique free interval subgraphs represent the
solution of an integer linear program solving the GOSDC presented in this paper.
Moreover, we propose exact and heuristic separation algorithms, which are exploited
into a Branch-and-cut algorithm for solving the GOSDC. Finally, we present and
discuss some computational results.

Keywords Interval graph · Polyhedral analysis · Branch-and-cut · Clique
1 Introduction

Motivated by some important parallel-machine scheduling applications, this paper
considers the problem of finding m-clique free interval subgraphs. Here, the term m-

B Sébastien Martin
sebastien.martin@univ-lorraine.fr

Mohammed-Albarra Hassan
mohamed-albarra.hassan-abdeljabbar@univ-lorraine.fr

Imed Kacem
imed.kacem@univ-lorraine.fr

Izzeldin M. Osman
izzeldin@acm.org

1 Université de Lorraine, LCOMS EA 7306, Metz 57000, France

2 Sudan University of Science and Technology, Khartoum, Sudan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-0291-9&domain=pdf
http://orcid.org/0000-0002-8528-6698

J Comb Optim (2018) 36:1074–1101 1075

clique freemeans that the subgraph does not contain any clique of size greater than or
equal to m + 1 where m is a given positive number. Indeed, this property is essential
to ensure the feasibility of a schedule on a set of parallel machines of cardinality equal
to m. More precisely, the considered scheduling application is related to an extension
of the open-shop family Gonzales and Sahni (1976) where jobs are assigned to a
set of machines and have to be sequenced under some disjunctive constraints. The
term disjunctive constraint means that some couples of jobs cannot run at the same
time (i.e., the time intervals when these jobs are performed cannot overlap). Such
an extension is called generalized open-shop with disjunctive constraints (GOSDC).
Given the structure of this scheduling problem, the study of the m-clique free interval
subgraphs polytope seems to be of an important utility.

In amore general way, the considered two families of subgraphs (having the interval
property or being m-clique free) have attracted the interest of many researchers. One
main reason for this increasing interest is that many real-world applications involve
solving problems on graphs, which are either interval graphs themselves or are related
to interval subgraphs or to cliques in a natural way. Indeed, numerous applications
of interval graphs have appeared in the literature including applications to genetic
structures, sequential storage and scheduling [see Golumbic 2004; Gacias et al. 2010].
The algorithmic aspects and the combinatorial structures of these subgraphs have been
the subject of an intensive research for several decades [see Golumbic (2004) for
instance]. In some applications, interval representations with special properties are
required. As an illustration, the application of the m-clique free interval subgraphs
arises in the context of scheduling and cloud computing [see Hassan Abdel-Jabbar
et al. 2016].

Now, we give a formal description of our problem and we present some notations.
All graphs in this paper are simple and have no self-loops. LetG = (V, E) be a graph.
An undirected graph G is called an interval graph if its vertices can be put into a
one-to-one correspondence with a set of intervals I of a linearly ordered set (like the
real line) such that two vertices are connected by an edge of G if their corresponding
intervals have nonempty intersection.

In other words, an interval graph is the graph showing intersecting intervals on a
line. Thus, we associate a set of intervals I = {I1, . . . , In} on a line with the interval
graph G = (V, E), where V = {1, . . . , n} and two vertices, u and v, are linked by an
edge if and only if Iu ∩ Iv �= ∅.

Clique is a very common structure in many applications since it is composed of
a subset of vertices as well as all the possible relationships among them. Therefore,
clique detection is playing an important role in various applications, such as social
recommendation Mokotoff and Chretienne (2002) and network routing.

More formally, a clique can be defined as follows. LetG = (V, E) be an undirected
graph. A clique in G is a subset S ⊂ V such that for any two vertices vi , v j ∈ S there
exists an edge (vi , v j) ∈ E .

Using the same notation, an m-clique in G is a clique S ⊂ V with |S| = m + 1.
Finally, we recall that a graph is m-clique free if it does not contain any m-clique.

In parallel machines scheduling some jobs in different machines can share any time
units, the jobs can be represented with nodes and edges indicate there is a shared time
units between jobs in different machines. For instance, if we consider 2 machines with

123

1076 J Comb Optim (2018) 36:1074–1101

the same speed and two jobs of lenght 3, then if the first job starts on the machine 1 at
time t = 0 and the second one starts on the machine 2 at time t = 1, then there exists
an edge between the vertices associated with these two jobs. But, if the second job
starts on machine 2 at time t = 4, then this edge does not exists. Thus, the solution
is mathematically formalized as a graph G = (V, E) where V denotes the set of
vertices (associated with jobs) and E denotes the set of relationships between vertices
(intersections of jobs on the time line). However, when we assign jobs to m parallel
machines, the solution is feasible for two types of graphs (i.e., an interval graph or a
m-clique free graph).

2 Polyhedral analysis

Let I := {I ⊆ E | G[I] induces an m-clique free interval graph}. The vector z I is
called the incidence vector associated with I , i.e., z I = (z Ie)e∈E , where z Ie = 1 if
e ∈ I and z Ie = 0 otherwise. We define them-Clique Free Interval Subgraph Polytope
(MCFISP) as follows:

PI(G,m) := conv{z I ∈ {0, 1}|E | | I ∈ I},

First, we give the dimension of PI(G,m).

Proposition 1 Polytope PI(G,m) is full dimensional.

Proof Wewill exhibit |E |+1 elements of Polytope PI(G,m)whose incidence vectors
are affinely independent.

Consider the sets I0 = ∅, Ie = {e} for all e ∈ E . Clearly, these sets inducem-clique
free interval subgraphs. Moreover, their incidence vectors are affinely independent.
Thus, we have |E | + 1 vectors of PI(G,m) affinely independent and the proof is
complete. �	

In the following propositions, we prove that the two trivial inequalities define facets.

Proposition 2 Inequalities ze ≥ 0, e ∈ E, define facets of PI(G,m).

Proof see the “Appendix”. �	
Proposition 3 Inequalities ze ≤ 1, e ∈ E, define facets of PI(G,m).

Proof see the “Appendix”. �	

2.1 Forbidden subgraphs inequalities

In this section we discuss graph properties in order to identify valid inequalities.
Properties on interval graphs have been studied in Lekkeikerker and Boland (1962).
The authors give all forbidden subgraphs in interval graphs. Indeed, if a graph does
not contain any one of the five subgraphs given in Fig. 1, then it is an interval graph.
The two first forbidden subgraphs are called Bipartite Claw and Umbrella. These

123

J Comb Optim (2018) 36:1074–1101 1077

2

1

3 4

5

6 7

(a)

2

1

3 4 5 6

7

(b)

b

a

1 2 3 ..n
c d

(c)
a

b c

1 2 3 4 ...n

(d)

1 2

3 ...n

(e)

Fig. 1 Forbidden subgraphs characterization. a Bipartite Claw. bUmbrella. c n-net, n ≥ 2. d n-tent, n ≥ 3.
e Hole, n ≥ 4

subgraphs are defined on only seven nodes. The three last forbidden subgraphs are
defined on various number of nodes. The n-net subgraphs are composed of n+4 nodes
{1, . . . , n, a, b, c, d} , where the edges are {a − b, 1− c, n − d} ∪ {1− b, 2 − b, 3−
b, . . . , n − b} ∪ {1 − 2, 2 − 3, . . . , (n − 1) − n}. The n-tent subgraphs are defined
as follows: the nodes {a, b, c} are connected by a triangle, the nodes {1, . . . , n} are
connected in a line form, nodes 1 and b are connected, node n is linked to c and the
nodes in {b, c, 2, . . . , n − 1} define a clique. Finally, the fifth forbidden configuration
is a hole of more than 3 nodes, which is a cycle without chord. These five forbidden
subgraphs ensure that the graph is an interval one. In addition, to be m-clique free, we
remind that the graph cannot contain any clique of size greater than or equal to m + 1.

In the next subsectionwe describe valid inequalities associatedwith these forbidden
subgraphs and we prove that these inequalities can define facets for PI(G,m) under
some specific conditions.

2.1.1 Bipartite claw

In this subsection, we give inequalities to avoid the forbidden bipartite claw subgraph.
An example of bipartite claw is given in Fig. 1.

In what follows, we give some notations.
Let us consider the complete graph K7 with seven nodes. We partition this graph

into BC and BC , where BC is the set of all edges that form the bipartite claw and
BC is the set of edges in the associated complementary graph of BC . Moreover, BC
is partitioned as follows:

• Subset BC
4
h contains all the edges such that each of them enables to form a hole

of size 4 in a bipartite claw.
• Subset BC
 contains three edges such that when we add one of them to BC , then
we obtain a central triangle.

123

1078 J Comb Optim (2018) 36:1074–1101

2

1

3 4

5

6 7

(a)

2

13 4

5

6 7

(b)

2

1

3 4

5

6 7

(c)

2

13 4

5

6 7

(d)

Fig. 2 Subsets of the complementary Bipartite Claw. a Subset BCi . b Subset BC
4
h . c Subset BC

5
h .

d Subset BC

• Subset BCi contains the edges that are able to form a triangle with the vertex 1.

• Subset BC
5
h is composed of all edges such that each of them enables to form a

hole of size 5 in the bipartite claw.

Figure 2 shows these subsets.
As a consequence, the previous definitions lead explicitly to the following subsets:

– BC = {(1, 2), (1, 3), (1, 4), (2, 5), (4, 7), (3, 6)}.
– BC = { (7, 1), (7, 2), (7, 3), (7, 5), (7, 6), (6, 1), (6, 2), (6, 4), (6, 5), (5, 1),

(5, 3), (5, 4), (4, 2), (4, 3), (3, 2) }.
– BC

4
h = {(3, 5),(2, 6),(5, 4),(2, 7),(3, 7) ,(4, 6)}.

– BC
 = {(2, 3),(2, 4),(3, 4)},
– BCi = {(1, 5), (1, 6), (1, 7)}.
– BC

5
h = {(5, 6), (5, 7), (6, 7)}.

We consider two cases, when m = 2, and when m ≥ 3.
If m = 2, then the following inequality is valid:

∑

e∈BC
ze ≤ 5. (1)

It is worthnoting that keeping all the edges of BC leads to the impossibility of
respecting the validity of the constraint for this special case when m = 2. Indeed,
when we add an edge from BC
 ∪ BCi in Fig. 2d to BC , the resulting subgraph will
contain a clique of size 3 and hence would not be anm-clique. Moreover, if we add an

edge e ∈ BC
4
h ∪ BC

5
h to BC , then we obtain a hole. If we add another edge to break

this hole, then we obtain a clique of size 3.

123

J Comb Optim (2018) 36:1074–1101 1079

Proposition 4 Inequality (1) defines a facet of PI(G,m), when m = 2.

Proof see the “Appendix”. �	
Now, if m ≥ 3, then the following inequality is valid.

∑

e∈BC
ze −

∑

e∈BC

ze −
∑

e∈BCi

ze ≤ 5 (2)

Indeed, if we add only one edge (respectively two edges) of BC
 to the bipartite
claw, then the resulting subgraph contains 2 − net (respectively 3 − net), which is
already excluded by definition (as we mentioned in 2.1). We can observe that if we

add one edge of BC
, for instance (2, 3), and the edge (2, 6) or (3, 5) from BC
4
h to

BC , then we obtain an m-clique free interval subgraph. Furthermore, if we add also
the edge (5, 6), then the result remains an m-clique free interval subgraph. It is clear
that when we add one, two or three edges of BCi to BC , then the result is anm-clique
free interval subgraph. The result is the same when we add (2, 4) and (4, 5) to BC .

Proposition 5 Inequality (2) defines a facet of PI(G,m), when m ≥ 3.

Proof Let us denote byaz ≤ α the inequality (2). Letbz ≤ β be an equality that defines
a facet of PI (G,m), such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}.
Since PI (G,m) is full dimensional, we need to prove that there exists ρ such that
b = ρa for some ρ ∈ R.

Let e1, e2 ∈ BC be two edges and let us define I1 = BC \{e1} and I2 = BC \{e2}.
It is clear that the incidence vectors of I1 and I2 satisfy inequality (2) with equality.
Since azI1 = azI2 , bzI1 = bzI2 , implying that b(e1) = b(e2). We set b(e1) = ρ. As
e1 and e2 are arbitrary in BC, then b(e) = b(e′) = ρ ∀e, e′ ∈ BC .

Let e3 ∈ BCi . We can remark that the incidence vectors of I3 = BC ∪ {e3} and
I1 satisfy inequality (2) with equality. As azI3 = azI1 , then bzI3 = bzI1 , implying
that b(e3) = −b(e1). As e3 is arbitrary in BCi and e1 ∈ BC , then b(e) = −b(e′′) for
every e′′ ∈ BCi , which leads to b(e′′) = −ρ.

The incidence vectors of the following three sets I4 = BC ∪ {(2, 4), (5, 4)}, I5 =
BC∪{(2, 4), (5, 4), (2, 7)} and I6 = BC∪{(2, 4), (5, 4), (5, 7)} satisfy inequality (2)
with equality. Since azI4 = azI5 = azI6 , we have bzI4 = bzI5 = bzI6 , which implies
that b((2, 7)) = 0 and b((5, 7)) = 0. By symmetry, we have b((5, 4)) = b((2, 7)) =
b((6, 4)) = b((3, 7)) = b((3, 5)) = b((2, 6)) = b((5, 7)) = b((5, 6)) = b((6, 7)) =
0.

Similarly, the incidence vectors of the two sets I7 = BC \ {(1, 4)} and I4 verify
inequality (2) with equality. Since azI7 = azI4 , bzI7 = bzI4 , implying that b((1, 4)) =
−b((2, 4)). By symmetry, we have b((2, 4)) = b((3, 4)) = b((2, 3)) = −ρ.

Let e8 ∈ E\(BC∪BC). The incidencevectors of sets I8 = (BC\{(1, 2)})∪{e8} and
I9 = BC \{(1, 2)} satisfy inequality (2) with equality. Since azI8 = azI9 , bzI8 = bzI9 ,
which implies that b(e8) = 0. By symmetry, we have b(e) = 0 ∀ e ∈ E \ (BC ∪ BC).

To summarize, there exists ρ such that b = ρa for some ρ ∈ R. �	

123

1080 J Comb Optim (2018) 36:1074–1101

2

1

3 4 5 6

7

(a)

2

1

3 4 5 6

7

(b)

2

1

3 4 5 6

7

(c)

2

1

3 4 5 6

7

(d)

Fig. 3 Subsets of umbrella and its complementary. a Set Ei
u . b Set Et

u ∪ Ec
u . c Set E

a
u . d Set Eh

u

2.1.2 Umbrella inequalities

For the umbrella subgraph as shown in Fig. 3b, let Gu = (Uu, Eu) be a graph that
constitutes the umbrella and let Eu be a set of the complementary edges for Gu . In
what follows, we will present a family of valid inequalities that avoid the umbrella
subgraphs. To analyze this forbidden subgraph we need the following notations:

Let Ei
u ⊂ Eu be the set of the three edges {(1,3),(1,4),(1,5)} in the umbrella

subgraph. Let Et
u ⊂ Eu be the set of the edges such that when we add one of these

edges to the umbrella we create a new triangle. Subset Ec
u is the dashed edges in

Fig. 5a. Finally, Ea
u ⊂ Eu is the set of the around edges and Eh

u ⊂ Eu is the set of
edges such that if we add one of them to the umbrella, then they will form a hole of
size 4 or of size 5. All these subsets are illustrated in Fig. 4.

– Ei
u = { (1, 3), (1, 4), (1, 5) }.

– Et
u = { (1, 7), (3, 7), (5, 7) }.

– Ec
u = {(2, 4), (3, 5), (4, 6)}.

– Ea
u = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6), (4, 7) }.

– Eh
u = { (2, 7), (6, 7), (2, 5), (2, 6), (3, 6) }.

It can be observed that the graph induced by Hu = {Ei
u ∪ Et

u ∪ Ec
u ∪ Ea

u ∪ Eh
u } is

a complete graph.
Whenm = 2, the triangle becomes a forbidden subgraph and the umbrella inequal-

ities are dominated by the inequalities (9) presented in Sect. 2.1.6.
For this forbidden subgraph we focus on the instances for which m ≥ 3.
Whenm = 3, in order to keep all edges of Eu it is necessary to add at least one edge

of Et
u . Moreover, when we add an edge from Ec

u in this case the subgraph contains a
clique of size 4. If we add an edge from Eh

u , then the induced subgraph will contain a
hole.

Thus, the valid inequalities when m = 3 will be:

∑

e∈Ea
u \{(4,7)}

ze + z(2,6) + z(2,5) + z(3,6) ≤ 5. (3)

Proposition 6 Inequality (3) defines a facet of PI(G,m) if m = 3.

Proof see the “Appendix”. �	

123

J Comb Optim (2018) 36:1074–1101 1081

When m ≥ 4, to find a feasible solution we can add also the edges from Ec
u . Then,

the valid inequalities when m ≥ 4 will be:

∑

e∈Ea
u

ze −
∑

e∈Et
u∪Ec

u

ze ≤ 6. (4)

Proposition 7 Inequality (4) defines a facet of PI(G,m) if m ≥ 4.

Proof see the “Appendix”. �	

2.1.3 n-net inequalities

The n − net forbidden subgraph is shown in Fig. 1c. We will give some notations to
help in analyzing the n − net forbidden subgraph.

Let Gnet = (Unet , Enet) be the graph that forms a net of size n (i.e., n − net) and
Enet be the set of complementary edges of Gnet . To avoid to have a subgraph that
represents an n − net , where n ≥ 2 we need either to eliminate an edge from the
n − net without inducing a hole (this edge does not belong to Eh

net), or to add an edge

that does not create a hole (this edge does not belong to Eh̄
net).

To analyze this forbidden subgraph we will use the following notations. From
Fig. 1c let us consider:

– Eh̄
net = {(a, c), (a, d)} ∪ {(c, 3), (c, 4), . . . , (c, n)} ∪ {(d, 1), (d, 2), . . . , (d, n −

2)} ∪ {(c, d)}.
– Eh

net = {(b, 2), . . . , (b, n − 1)}.
We propose valid inequalities that delete the n − net forbidden subgraphs.

∑

e∈Enet\Eh
net

ze −
∑

e∈Enet\Eh̄
net

ze ≤ |Enet \ Eh
net | − 1. (5)

Proposition 8 Inequality (5) defines a facet of PI(G,m).

Proof see the “Appendix”. �	

2.1.4 n-tent inequalities

Figure 1d shows the n− tent forbidden subgraph. A graph is non-interval if it contains
an n − tent forbidden subgraph Gtent . The subgraph Gtent can be transformed into
a valid one by adding or removing one or more edges if such modifications do not
create a hole.

Let the graph Gtent = (Utent , Etent) be a graph that constitutes an n− tent (n ≥ 3)
and Etent be the set of complementary edges.

From Fig. 1c

– Eh
tent = {(b, c), (c, 4), (b, 2)},

– Eh̄
tent = {(1, 4), (2, 5), . . . , (n, n + 3)}.

123

1082 J Comb Optim (2018) 36:1074–1101

We can notice that, all n-tent where n ≥ 5 contain a clique of size 5 then the clique
inequality cuts this n-tent subgraph if m ≤ 4. It is the same idea for all n-tent. Indeed,
when n = 4 (respectively n = 3), the clique inequality cut these n-tent sub graph if
m = 3 (respectively m = 2).

The following inequality allows us to avoid the n-tent forbidden subgraphs.

∑

e∈Etent\Eh
tent

ze −
∑

e∈Etent\Eh̄
tent

ze ≤ |Etent \ Eh
tent | − 1. (6)

Proposition 9 Inequality (6) defines a facet of PI(G,m), when m ≥ 5 or (n = 4 and
m = 3) or (n = 3 and m = 2).

Proof see the “Appendix”. �	

2.1.5 Hole inequalities

Here, it is convenient to define a hole as an induced subgraph of G isomorphic
to Ck for some k ≥ 4, Schrijver (2003). The hole C is a forbidden subgraph as
depicted in Fig. 1e. Let C denote the set of edges that form the hole, i.e., C = {
(u1, u2),(u2, u3),…,(u|C|−1, u|C|),(u|C|, u1) }. If i is multiple of |C |, then ui = u|C|.
Otherwise, if i > |C |, then ui = ui ′ , where i ′ is the rest of the euclidean division of i
by |C |. Let C denote the set of all chords of hole C .

Suppose we have a hole of size 4. Obviously, this hole is non-interval graph. Never-
theless, the subgraph induced by a hole can be transformed to a feasible one by adding
at least one chord.

Proposition 10 For a hole C, the minimum number of necessary chords that should
be added to the hole to be an interval graph is |C | − 3, when |C | ≥ 4.

Proof We prove this proposition by induction.When |C | = 4, then we need one chord
kc = 1, and then the proposition is true.

Let us assume that the property is true until |C | = l and kc = l − 3. We need
to prove it for a cycle C ′ where |C ′| = |C | + 1 and that kc′ = |C ′| − 3. Let C̃ =
{u1, u2, u3, . . . , u|C|} be the hole graph given by C where we add kc edges in order to
make it hole free and let (ui , ui+1) be an edge, where i ∈ {1, 2, . . . , |C | − 1}. Now,
we will construct C̃ ′ from C̃ by adding the vertex u|C|+1 in C̃ , by replacing the edge
(ui , ui+1) by (ui , u|C|+1) and (u|C|+1, ui+1). Then, we find a unique hole of a size 4
in the new cycle. Therefore, |C̃ ′| = l + 1. It is necessary to add one edge to break this
hole. Thus, kc′ = l ′ − 3 is true. As C and kc are arbitrary, then the property is true for
every hole. �	

Now, we will present valid inequalities for the forbidden hole subgraph.
If m = 2, then the inequality (7) is valid.

∑

e∈C
ze +

∑

e∈C
ze ≤ |C | − 1. (7)

123

J Comb Optim (2018) 36:1074–1101 1083

u1
u2

u3

u4

u5
u6

un

un−2
un−1

(a)

u1
u2

u3

u4

u5
u6

un

un−2
un−1

(b)

u1
u2

u3

u4

u5
u6

un

un−2
un−1

(c)

Fig. 4 Hole free subgraphs

Indeed, if we add one chord to hole C , then we will obtain a triangle or another
hole and it is not feasible for m = 2. It is worth to note that this inequality for m = 2
is equivalent to the clique inequalities described in the next subsection.

If m ≥ 3, then the following inequality is valid.

∑

e∈C
(|C | − 3)ze −

∑

e∈C
ze ≤ (|C | − 1)(|C | − 3). (8)

Proposition 11 Let C be a hole of size greater than 3, then inequality (8) associated
with cycle C defines a facet of PI(G,m) if m ≥ 3.

Proof Let us denote by az ≤ α the inequality (8), associated with hole C . Let bz ≤ β

be a facet defining inequality of PI(G,m) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈
PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1 and e2 be two distinct edges of hole C . The solutions I1 = C�{e1} and
I2 = C�{e2} arem-clique free interval subgraphs.We deduce that I1, I2 are solutions.
Moreover, we have azI1 = azI2 . Hence, bzI1 = bzI2 . This implies that b(e1) = b(e2).
Set b(e) = (|C | − 3)ρ. As e1, e2 are arbitrary then b(e) = b(e′) ∀e, e′ ∈ C . We
deduce that b(e) = (|C | − 3)ρ for all e ∈ C .

Let ui ∈ V (C). The solution I3 = C ∪ (δ(u) ∩ C), illustrated in Fig. 4a, and the
solution I4 = (I3 \ {(ui , ui+2)}) ∪ (ui+1, ui+3), illustrated in Fig. 4b, are feasible
and verify the inequality (8) with equality. Moreover, we have azI3 = azI4 and then
bzI3 = bzI4 . This implies that b(ui , ui+2) = b(ui+1, ui+3). Thus, by symmetry
b((ui , ui+2)) = b((ui+1, ui+3)) are arbitrary for all ∀i ∈ {1, 2, . . . , |C |}.

The solution I5 = (I3 \ (ui , ui+ j)) ∪ (ui+ j−1, ui+ j+1)), illustrated in Fig. 4c, is
feasible and verifies the inequality (8) with equality. Therefore, azI5 = azI3 . Hence
bzI5 = bzI3 . This implies that b(ui , ui+ j) = b(ui+ j−1, ui+ j+1). As these edges are
arbitrary then b(e) = b(e′) for all e′ ∈ C .

Now, we will consider the two solutions I1 and I3. These solutions are feasible and
verify the inequalities (8) with equality. Hence, azI1 = azI3 and therefore bzI1 = bzI3 .
This implies that b(e1) = −∑

e′∈δ(ui)\C b(e′). As e1 and ui are arbitrary for all e ∈ C

and ui ∈ V (C), then b(e1) = −(|C | − 3)b(e). We deduce that b(e) = −ρ ∀e ∈ C .
Let e3 ∈ E \(C∪C). The solutions I7 = I3∪{e3} and I3 are feasible and verify the

inequalities (8) with equality. Hence, azI7 = azI3 and then bzI7 = bzI3 . This implies
that b(e3) = 0. As b(e3) is arbitrary, then b(e) = 0 for all e ∈ E \ (C ∪ C). �	

123

1084 J Comb Optim (2018) 36:1074–1101

2.1.6 Clique inequalities

In this section we study the structure of a clique-free subgraph and we propose valid
inequalities and facets of PI(G,m).

Proposition 12 Let K be a clique and let V (K) be its set of vertices. If m = 2, then
the following inequality

∑

e∈E(K)

ze ≤ |V (K)| − 1 (9)

is valid and defines a facet of PI(G,m).

Proof see the “Appendix”. �	

Remark that, the inequalities (9) are equivalent to the hole inequalities and dominate
the umbrella inequalities when m = 2.

Proposition 13 Let K be a clique of size m + 1. The inequality

∑

e∈E(K)

ze ≤ |E(K)| − 1 (10)

defines a facet of PI(G,m).

Proof see the “Appendix”. �	

Let f (K ,m) be a function giving the minimum number of edges necessary to
be removed from E(K) such that the resulting graph G ′(K) is m-clique free. Let
α = �|V (K)|

m �, nα−1 = mα − |V (K)| and nα = |V (K)|−(nα−1)(α−1)
α

.

Proposition 14 f (K ,m) = nα−1
(α − 1)(α − 2)

2
+ nα

(α)(α − 1)

2
.

Proof Let E ′ be a set of f (K ,m) edges such that E(K) \ E ′ is m-clique free. Note
that in the complementary graph G(K) we have a stable set of size |K |. If we add
E ′, then there does not exist a stable of size m + 1 (m-stable free). Let us consider a
minimum set of edges E ′′ ∈ E(K) such that |E ′′| < |E ′| and G(K) \ E ′′ is m-clique
free and thus G(K) ∪ E ′′ is m-stable free. Clearly E ′′ is a set of m disjoint cliques
K = {K1, . . . , Km}, otherwise E ′′ is not minimal or contains a stable set of sizem+1.
To have theminimum set of edges, it is important to balance the size of cliques. Indeed,
if we have two cliques Ki and K j where |Ki | ≥ |K j |+2, then we can easily prove the
following result |E(Ki)| + |E(K j)| > |E(Ki \ {u})| + |E(K j ∪ {u})|, where u ∈ Ki .
Thus, it can be deduced that the maximum difference between the cardinalities of two
cliques of K is less or equal to 1. �	

123

J Comb Optim (2018) 36:1074–1101 1085

Proposition 15 Let K be a clique. The following inequality

∑

e∈E(K)

ze ≤ |E(K)| − f (K ,m) (11)

is valid for PI(G,m).

Proof First note that inequality (10) is a special case of inequality (11). However,
for the sake of clarity, we prefer to do it step by step. By definition f (K ,m) is the
minimum number of edges necessary to be removed from E(K) such that the resulting
graph G ′(K) is m-clique free. Thus, the inequality (11) is valid. �	

In the next subsection, we will improve this family of inequalities.

2.1.7 Clique–Hole inequalities

In order to get an m-clique free subgraph, we need to remove from G(K) a set of m
cliques of similar size α or α −1 (as we mentioned in the previous proof). Other holes
will remain and they must be avoided.We observe that if we removem disjoint cliques
from G(K), then we obtain a complete bipartite subgraph between all pairs of two
cliques. Let Hi j = (Ki , K j , Ei j) be a complete bipartite graph. Note that H contains
a hole of a size greater than or equal to 4 if |Ki | ≥ 2 and |K j | ≥ 2. To remove every
hole in Hi j , the minimum number of edges E ′ necessary to be eliminated is equal to
max(|Ki |, |K j |) − 1, otherwise we can always take 2 nodes in Ki or K j such that
these two nodes are not covered by E ′. Note that E ′, with size max(|Ki |, |K j |) − 1,
covers the maximum nodes of Ki and K j . We can reinforce the inequality (11) by the
following inequality. Let α = ∑

i∈m(max{|Ki | − 1, 0}) − maxi∈m |Ki | − 1.

Proposition 16 Let K be a clique. Then, the inequality

∑

e∈E(K)

ze ≤ |E(K)| − (f (K ,m) + α) (12)

is valid for PI(G,m).

Proof We can notice that if we unbalance two cliques Ki and K j to reduce the value
max(|Ki |, |K j |)−1 by 1, then the number of edges necessary to be removed increases
by max(|Ki |, |K j |) − min(|Ki |, |K j |). �	

3 Cutting plane algorithms

Cutting plane method allows us to strengthen the linear relaxation by adding inequal-
ities. Cutting plane algorithms mainly consist in generating constraints by means of
a separation procedure [see, for example, Jiinger et al. (1995), Aardal and Hoesel
(1999), Vallada and Ruiz (2012) and Schrijver (2003)]. Let z∗ be the incidence vector
associated with the value of the variable z in the linear relaxation. The separation

123

1086 J Comb Optim (2018) 36:1074–1101

problem consists in finding if there exists a valid inequality az ≤ b0 that cuts off
the solution z∗, i.e., az∗ > b0. The separation algorithm associated with a family of
inequalities aE

′
x ≤ bE

′
for all E ′ ∈ E ′ consists in finding a set E ′ ∈ E ′ such that

aE
′
z∗ > bE

′
.

The results of the previous sections have allowed us to derive some exact separation
algorithms and some approximate separation algorithms. Furthermore, at the end of
this section we propose a “lazy separation procedure” to ensure that the integer solu-
tions are m-clique free interval subgraphs. In the next paragraphs, we will describe
these separation algorithms for all inequalities described in the previous section.

3.1 Bipartite claw separation

In this section we describe the BC separation algorithms.We propose three algorithms
to separate the bipartite claw inequalities. One is an exact algorithm and two others
are heuristic procedures. We consider only m ≥ 3 (note that it is easy to adapt the
algorithm for m = 2).

Let the vector z∗ ∈ R
|E| be a solution of a linear relaxation. We define a weight for

each edge of the complete graphG as follows:w(e) = z∗e for all e ∈ E . The separation
algorithm consists in finding one bipartite claw BC such that the associated inequality
is violated by z∗. This inequality is then added to the separation linear relaxation. This
corresponds to find a bipartite claw BC ⊆ E such that:

∑
e∈BC z∗e − ∑

e∈BC
 z∗e −∑
e∈BCi

z∗e > 5.
From Fig. 2d, the subsets are the following:

BC = {(1, 2), (1, 3), (1, 4), (2, 5), (4, 7), (3, 6)}.
BC
 = {(2, 3),(2, 4),(3, 4)}.
BCi = {(1, 5), (1, 6), (1, 7)}.

Proposition 17 If a partial bipartite claw B̃C is not violated by z∗, then every bipartite
claw BC including this partial bipartite claw B̃C is not violated.

It can be observed that, from Fig. 6a if we select the 3 first vertices 1, 2 and 3 such that
(z∗1,2 + z∗1,3 − z∗2,3) is less than 1, then there does not exist a violated bipartite claw
within these 3 vertices in this position. Indeed, if z∗e = 1,∀e ∈ BC \ {(1, 2), (1, 3)}
and z′e = 0,∀e′ ∈ BC
, then we obtain in the best case, a left hand side value less
than 5. Indeed,

∑
e∈BC\{(1,2),(1,3)} z∗e = 4. Thus, 4 + 0 + (z∗1,2 + z∗1,3 − z∗2,3) < 5.

In the same way, if we add the vertex 4 and the value of (z∗1,4 + z∗1,2 + z∗1,3 − z∗2,4 −
z∗2,3 − z∗3,4) is less than 2, then there does not exist a violated bipartite claw within
these 4 vertices in this position. In the best case we obtain a left side value that is
3+ z∗1,4 + z∗1,2 + z∗1,3 − z∗2,4 − z∗2,3 − z∗3,4. Thus, the left hand side is less than 5 and the
value of

∑
e∈BC\{(1,2),(1,3),(1,4)} z∗e = 3. With the same argument we test the weight

of all partial subgraphs to drop non interesting bipartite claws. This process is used
for the exact and the first heuristic algorithms.

123

J Comb Optim (2018) 36:1074–1101 1087

3.1.1 Exact separation (ExBC-sep)

Now, we will explain the exact separation algorithm. The exact algorithm consists in
testing all the possible seven vertices in this order (1, 2, 3,…,7). We select the nodes
such that the values of the weighted edges in the incidence graph is maximized as
follows: the weight of BC , minus the value of edges in BC
, minus the value of
edges BCi . The running time of the exact algorithm in the worst case is bounded by
O(n7). Indeed, we must select the seven vertices such that the weight of the induced
graph is maximum and then the number of iterations is bounded by n7. Nevertheless,
the running time is practically shorter with the improvement we presented before.

3.1.2 Heuristic 1: separation (H1BC-sep)

In this heuristicwe start by searching the vertices 1, 2, 3, and4 thatmaximizew(1, 2)+
w(1, 3) + w(1, 4) − w(2, 4) − w(2, 3) − w(3, 4) from Fig. 6a based on the results of
Bipartite Claw in Sect. 2.1.1. If the value of (z∗1,2 + z∗1,3 + z∗1,4 − z∗2,4 − z∗2,3 − z∗3,4)
is greater than 2, then it is still possible to find a violated BC inequality with this set
of vertices. After that, using the greedy approach, we search to add the best weighted
vertex 5 according to the incident weighted edge, if the partial BC is violated, then
we will search for the best vertex 6 and with the same idea we will add vertex 7. If
the BC induced by these vertices is violated by z∗, then we add the inequality to the
relaxation. By using this greedy approach, the heuristic running time is O(n4).

3.1.3 Heuristic 2: separation (H2BC-sep)

This heuristic follows a greedy approach to find a violated BC inequality. We search
at each step the best next vertex to add in BC . The idea is to find the ’best weighted’
edge in the graph. This edge is considered as z1,2, if the weight of the edge z∗1,2 > 0.
The heuristic tries to find with the greedy approach given in Heuristic 1 the next best
ordering of vertices 3, 4, …, 7. This heuristic has O(n2) running time.

3.2 Umbrella separation

In this subsection we present three separation algorithms associated with the umbrella
inequality. We propose an exact separation algorithm and two heuristics based on a
greedy approach. The separation algorithm consists in finding an umbrella, such that
the associated inequality is violated by z∗. If the associated inequality is violated by
z∗, then we add this inequality to the linear relaxation. Thus, we search an umbrella,
which is subset of E such that

∑
e∈Ea

u
z∗e − ∑

e∈Et
u∪Ec

u
z∗e > 6 where m ≥ 4. Then, it

is possible to adapt the algorithm for m = 3.

3.2.1 Exact separation algorithm

The exact separation algorithm starts by finding first edges z1,2 and z2,3. If z∗1,2+z∗2,3 <

1, then the algorithm cannot find an umbrella within these two edges in this position.

123

1088 J Comb Optim (2018) 36:1074–1101

2

1

3 4 5 6

7

−z1,7

−z3,7 −z5,7

−z3,5 −z2,4 −z4,6

(a)

2

1

3 4 5 6

7

z1,2

z2,3

z3,4 z4,5

z5,6

z1,6

z7,4

(b)

Fig. 5 Coefficient of umbrella and its complementary edges. a The coefficient of Et
u∪Ec

u . bThe coefficient
of Ea

u

Fig. 6 Basic edges for Bipartite
Claw and Umbrella. a Basic
nodes for BC. b Basic nodes for
UH1

2

1

3 4

(a)

1

2 3 4

(b)

In the next step, the algorithm searches the best vertex 4, that satisfies z∗1,2 + z∗2,3 +
z3,4 − z2,4 ≥ 2, and then the algorithm adds vertex 5, then vertex 6 and finally vertex
7. Figure 5 illustrates the umbrella and the complementary subgraphs. The running
time of the exact algorithm in the worst case is in O(n7).

3.2.2 H1U-sep separation

In this heuristic we start by searching the vertices 1, 2, 3, and 4 that maximize (z1,2 +
z2,3 + z3,4 − z2,4). In Fig. 5 the coefficient of each edge is illustrated. Figure 6b shows
these basic edges. If this value is greater than 4, then we search vertex 6, and then
vertex 7. If the umbrella induced by these vertices is violated by z∗, then we add this
inequality. By using the greedy approach the running time is reduced to O(n4).

3.2.3 H2U-sep separation

This heuristic follows a greedy approach to find a violated umbrella inequality. We
search at each step the best next edge to be added to the umbrella. The heuristic starts
by the best weighted edge z1,2, then with the greedy approach it searches the best
next vertex 3 to be added to the umbrella. By following this order, the best weighted
vertexes of the umbrella are determined one after one. If it is violated by z∗, then the
inequality is added. This heuristic has O(n2) running time.

123

J Comb Optim (2018) 36:1074–1101 1089

a1

a

b1

c1

b c

(a)

a1

a

b1 c1

b

c

c

(b)

a1

a

b1 c1

b

c

c

(c)

Fig. 7 Adding one vertex to 2-net to find 3-net. a 2-net. b From 2-net to 3-net. c 3-net

3.2.4 n-net separation

In this subsectionwe describe the n-net separation algorithms. Let the vector z∗ ∈ R
|E|

be a solution of the linear relaxation. The weighted vector is defined in the previous
sections. The separation algorithm consists in finding one n-net where n ≥ 2, such
that the associated inequality is violated by z∗. This corresponds to find an n-net ⊆ E
such that

∑
e∈Enet\Eh

net
z∗e − ∑

e∈Enet\Eh̄
net

z∗e > |Enet \ Eh
net | − 1. From Fig. 1c, the

subsets are the following:

– Enet = {(a, b), (c, 1), (d, n), (1, 2) . . . , (n − 1, n)},
– Eh

net = {(b, 2), . . . , (b, n − 1)}.
Now, we present the n-net separation algorithm. Here, we search an n-net such that∑
e∈Enet\Eh

net
z∗e − ∑

e∈Enet\Eh̄
net

z∗e > |Enet \ Eh
net | − 1.

Let us consider Fig. 7a. We search the edge (a, a1) with the maximum weight
w((a, a1)). Then, we search the best vertex b1 such that w((a1, b1)) is maximum. By
a greedy search we continue for finding sequentially c1 and c. By considering 2-net, if
the value of

∑
e∈Enet\Eh

net
z∗e − ∑

e∈Enet\Eh̄
net

z∗e is greater than 6, then we try to extend
it to a 3-net in the following way: By adding a vertex (c′) adjacent to c. Figure 7b
explains the process, when the dashed edges are added.

It is important to mention that we remove the edge (a1, c1) (see. Fig. 7c) if n + 1
net is violated. Then, we add the n-net inequality (if n ≥ 2) and we stop the algorithm.

The proposed heuristic running time is O(n2).

3.2.5 n-tent separation

For the n-tent separation algorithmwe propose the following algorithm,which is based
on a greedy approach.

Again, the vector z∗ ∈ R
|E |. The n-tent separation algorithm consists in finding

an n-tent, such that the associated inequality is violated by z∗. Thus, we search an

123

1090 J Comb Optim (2018) 36:1074–1101

Fig. 8 Adding one vertex to
3-tent to find 4-tent. a 3-nent. b
4-tent

a

b c

1 2 3

(a)

a

b c

1 2 3 4

(b)

n-tent where n ≥ 3, n-tent⊆ E such that
∑

e∈Etent\Eh
tent

ze − ∑
e∈Etent\Eh̄

tent
ze ≤

|Etent \ Eh
tent | − 1.

We search for the best za,b, and za,c in the first step (see 8a). In the next step,
we search the best nodes 1, 2, 3 one by one using a greedy approach to maximize
the sum of n-tent edges, by considering the weight of the edges from n-tent and its
complementary. If 2-tent is not found, this means that 3-tent does not exist. If 3-tent
is found, then we try to add the best node 4, which is connected with node c′ and
connecting c′ to a1 and to remove (a1, c) to have the structure of 4-tent. The heuristic
continues for searching for n + 1-net at each step. If the heuristic failed to find n + 1-
net, then the violated n-net inequality associated with the found n-net will be added.
The proposed heuristic running time is O(n3).

3.3 Hole separation

Now, we explain the hole separation algorithm, which is based on a greedy approach.
As in the previous paragraphs, the relaxed solution is represented by vector z∗ ∈ R

|E |.
The separation algorithm consists in finding a forbidden subgraph hole, such that the
associated hole inequality is violated by z∗. Thus, we search a hole of size C where
holeC ⊆ E such that

∑
e∈C (|C | − 3)ze − ∑

e∈C ze > (|C | − 1)(|C | − 3).
The algorithm starts by the edge (u1,u2) withw((u1, u2)) is maximum (see Fig. 9).

By a greedy search, we pick the vertex u3 such that w((u2, u3)) − w((u1, u3)) is
maximum. With the same process, we search a sequence of vertices u4, . . . , un . In
each step, we consider the cycle where we connect u1 to un . We find a hole where the
associated inequality is violated and then we add it.

123

J Comb Optim (2018) 36:1074–1101 1091

Fig. 9 Hole
u1

u2

u3

u4

u5
u6

un

un−2
un−1

Fig. 10 Clique of size 4

b

a

c

d

If
∑

e∈C (|C | − 3)ze − ∑
e∈C ze ≤ (|C | − 1)(|C | − 3) where C is the incident

cycle, then we stop the algorithm since we cannot find a cycle where the associated
inequality is violated.

3.4 Clique separation

In this subsection we explain the clique separation algorithm. The vector z∗ ∈ R
|E |

represents the solution. The clique separation algorithm consists in finding a clique,
such that the associated inequality is violated by z∗. More precisely, we search a clique
of size K , E(K) ⊆ E such that

∑
e∈E(K) ze > |E(K)| − f (K ,m).

The heuristic starts by the edge (a,b) such thatw((a, b)) ismaximum.By the greedy
searchwe find the vertex c such thatw((a, c))+w((a, b))+w((c, b)) is maximum. By
the same process we search the vertex d such thatw((a, c))+w((a, b))+w((c, b))+
w((b, d))+w((c, d))+w((a, d)) is maximum (see Fig. 10). In each step we consider
the clique where we connect a vertex with all other vertices in the clique. If we find a
clique where the associated inequality is violated, then this inequality is added.

If
∑

e∈E(K) ze ≤ |E(K)| − f (K ,m), then we stop the algorithm, since we cannot
find a clique where associated inequality is violated, and we add the inequality of
clique of size n − 1.

3.5 Lazy constraint approach

In this subsection, we propose some algorithms to ensure that a solution given by an
integer value vector z̄ ∈ {0, 1}|V |×|V | induces an m-clique free interval subgraph. We
consider the induced graph G̃ = (V, Ẽ) where Ẽ contains all edges such that z̄e = 1.
For the interval graph detection, we use the algorithm given in Habib et al. (2000) to
check if G̃ is an interval graph. If G̃ is not an interval graph, thenwe add an interdiction
inequality

123

1092 J Comb Optim (2018) 36:1074–1101

∑

e∈Ẽ
ze −

∑

e∈E\Ẽ
ze ≤ |Ẽ | − 1.

This algorithm runs in O(n + mlog(n)) Habib et al. (2000).
For the clique inequalities, we search the clique of a maximum size. We use the

integer linear program given in Pardalos and Xue (1994) to find the maximum clique
in G̃. Finding the maximum clique in G is an NP-hard problem. We use CPLEX to
solve this problem. If G̃ contains a clique K of a size greater than m, then we add the
following clique inequality associated with K .

∑

e∈E(K)

ze ≤ |E(K)| − 1.

We can note that, the lazy constraints are used only to check the validity of an
integer solution.

If no clique inequality and no interdiction inequality are generated, then the solution
is feasible.

4 Application to the generalized open shop problem with disjunctive
constraints

TheGeneralizedOpenShopwithDisjunctiveConstraints (GOSDC) can be formulated
as follows. LetM be the set ofmachines. For every i ∈ M we consider the set of jobs Ji
to be performed on machine i and we denote by J = {J1, . . . , Jm} the set of all these
sets and by J = ⋃

i∈M Ji the union of these sets. We denote by pi j the processing
time of job j on its machine i . We consider an incompatibility graph GI = (VI , EI)

such that for each job j ∈ J we associate a vertex v j ∈ VI and there exists an edge
between v j1 and v j2 if j1 and j2 cannot run at the same time. It is worthnoting that it is
necessary to consider a linear ordering on eachmachine. To the best of our knowledge,
this special problem has not been studied before.

4.1 Integer linear programming formulation

In this subsection, we present an integer linear programming (ILP) formulation for
solving theproblem.Weneed a family of binaryvariables. In the following,wedescribe
the variables used in the formulation:

z̄ j1, j2 =
{
1 if job j1 runs before job j2
0 otherwise

∀ j1, j2 ∈ J.

z j1, j2 =
{
1 if j1 and j2 run at the same time
0 otherwise

∀ j1 ∈ Ji , j2 ∈ Ji ′ |i �= i ′ ∈ M.

For every j ∈ J , we consider the variable y j ∈ N
+ representing the starting time

of job j .
Cmax ∈ N

+ is the maximum completion time, such that Cmax ≤ C , where C is an
upper bound obtained heuristically.

123

J Comb Optim (2018) 36:1074–1101 1093

The GOSDC can be solved by the following ILP, denoted by (PGOS):

minCmax

y j + pi j ≤ Cmax , ∀i ∈ M ∀ j ∈ Ji , (13)

y j1 + pi j1 ≤ y j2 + C ·z̄ j2, j1 , ∀i ∈ M ∀ j1 ∈ Ji and j2 ∈ J, (14)

z̄ j1, j2 + z̄ j2, j1 = 1, ∀i ∈ M ∀ j1, j2 ∈ Ji , (15)

z̄ j1, j2 + z̄ j2, j1 = 1, ∀(v j1 , v j2) ∈ EI , (16)

z̄ j1, j2 + z̄ j2, j1 + z j2, j1 = 1, ∀(v j1 , v j2) /∈ EI , (17)
∑

(j1, j2)∈E(Ī)

z j1, j2 −
∑

(j1, j2)∈E\E(Ī)

z j1, j2 ≤ |E(Ī)| − 1, ∀I ⊆ I, (18)

∑

(j1, j2)∈E(K)

z j1, j2 ≤ |E(K)| − 1, ∀K ⊆ K, (19)

Cmax ∈ N
+, (20)

y j ∈ N
+ ∀i ∈ M ∀ j ∈ Ji , (21)

z j1, j2 ∈ {0, 1} ∀i ∈ M ∀ j1, j2 ∈ Ji , (22)

z̄ j2, j1 ∈ {0, 1} ∀i ∈ M ∀ j1, j2 ∈ Ji , (23)

The objective function is to minimize the makespan. Inequalities (13) ensure that
the starting time for each job plus its processing time is less than or equal to the total
completion time. Inequalities (14) and inequalities (15) guarantee that there is no two
jobs running on the same machine at the same time and control the linear ordering.
Inequalities (16) ensure that if two jobs are linked by an edge in the compatibility graph,
then they do not run at the same time. Indeed, for these two jobs j1 and j2 either j1
before j2 or j2 before j1. Inequalities (17) ensure the three possibilities: j1 before j2 or
j2 before j1 or they run at the same time. Inequalities (18) and (19) guarantee that the
induced subgraphs are m -clique free interval subgraphs. The number of inequalities
may be exponential and thus we will use the separation algorithm presented in the
previous section.

In the proposed formulation, I is the set of all subgraphs such that for all I ∈ I,
G[I] is not an interval subgraph. On the other hand, the set K contains all the cliques
of size m + 1 included in VI . It is worth noting that the proposed valid inequalities
in the previous part of this paper will ensure that the ILP will restrict the exploration
on a reduced feasible space since every feasible schedule of PGOS can be associated
with an m-clique free interval subgraph defined on GI . In other words, the projection
on the variables zi, j gives the polytope we previously studied. The constraints (18)
and (19) corresponds to m-clique free interval subgraphs.

5 Experimental results

In order to evaluate the efficiency of the inequalities mentioned in Sect. 2.1, we devel-
oped the mentioned exact and heuristic separations. All computational results are
obtained using Cplex 12.6 and JAVA for implementing exact and heuristic algorithms.

123

1094 J Comb Optim (2018) 36:1074–1101

The ILP with the valid inequalities is tested on the following proposed benchmark of
instances.

The processing times are uniformly distributed between 50 and 150 as it is common
in the literature Hall and Posner (2001). The graph density (GD) is equal to 0.5 and
calculated as follows: GD = |E |

|V |(|V |−1) where E is the set of edges associated with
precedence constraints between jobs and V is the set of vertices associated with jobs.
The results are given for 4 families of instances. Each family contains 5 instances with
the same parameters.

The numerical tests have been carried out on an Intel Core i5 of 3.4 GHz on linux
environment. The required CPU time is measured in seconds. We limit to 3600 s the
algorithm running time for each instance, by using 4.0 GB of RAM.

The next tables provide the following information:

– |Ji |: Number of jobs per machine.
– m: Number of machines.
– |J |: Number of jobs.
– rootGap : The gap between the lower bounds and the upper bounds (100× UB−LB

LB)
at the the root node.

– Method: Inequalities used for the separation:
– 0: Basic model;
– 1: Only the bipartite claw inequalities (H1BC-Sep),
– 2: Only the Umbrella inequalities (H1U-sep),
– 3: Only the Hole inequalities,
– 4: Only the Clique–hole inequalities,
– 5: Only the n-net inequalities,
– 6: Only the n-tent inequalities,
– 7: All inequalities of methods 1 to 6,
– 8: Cplex with only its generic cuts

– Nodes : The number of nodes in the branching tree.
– gap : The gap between the lower bounds and the upper bounds

(
100 × UB−LB

LB

)
.

– CPU: Computational time (limited to 1 h).
– Ct BC: The number of bipartite claw inequalities added in the Branch-and-cut
method (B&C).

– Ct UMB: The number of umbrella inequalities added in the B&C.
– Ct H: The number of hole inequalities added in the B&C.
– Ct Q: The number of clique–hole inequalities added in the B&C.
– Ct NN: The number of n-net inequalities added in the B&C.
– Ct NT: The number of n-tent inequalities added in the B&C.
– o/p: The number of solved instances among the 5 tested instances.

For the solving methods numbered 0 to 7 we remove all the proper improvements of
CPLEX.

Notice thatwhenm = 2wedo not test the options 2 and 3 since the hole inequalities,
clique inequalities and umbrella inequalities are dominated by or equivalent to the
inequalities (9). For the option 4 and m = 2 we consider an adaptation of the clique
separation proposed in Sect. 3.4 where right-hand-side is equal to the number of
vertices in the current clique. We present the results where we already selected the

123

J Comb Optim (2018) 36:1074–1101 1095

Table 1 Average CPU time

|Ji | m |J | rootGap Method CPU Nodes Gap o/p

5 2 10 0.44 0 0 248.2 0.00 5/5

5 2 10 0.44 1 0 384.6 0.00 5/5

5 2 10 0.44 4 0 152.6 0.00 5/5

5 2 10 0.44 5 0 248.2 0.00 5/5

5 2 10 0.44 6 0 232.8 0.00 5/5

5 2 10 0.44 7 0 143.4 0.00 5/5

5 2 10 0.44 8 0 272.2 0.00 5/5

10 2 20 0.48 0 2182.6 888005.6 0.05 2/5

10 2 20 0.48 1 3600 1384352 0.07 0/5

10 2 20 0.48 4 930.2 385605.2 0.00 4/5

10 2 20 0.48 5 2182.6 867387.4 0.04 2/5

10 2 20 0.48 6 1564.6 649562.6 0.03 3/5

10 2 20 0.48 7 1579.2 554582.4 0.01 3/5

10 2 20 0.48 8 452.8 214562 0.00 5/5

5 4 20 0.66 0 3600 283161 0.59 0/5

5 4 20 0.66 1 3600 252580 0.48 0/5

5 4 20 0.66 2 3600 132601 0.57 0/5

5 4 20 0.66 3 3600 168232.4 0.46 0/5

5 4 20 0.66 4 3600 213900.4 0.57 0/5

5 4 20 0.66 5 3600 186662 0.58 0/5

5 4 20 0.66 6 3600 137594.8 0.59 0/5

5 4 20 0.66 7 3600 353032.8 0.27 0/5

5 4 20 0.66 8 3600 260540.2 0.59 0/5

5 6 30 0.78 0 3600 209214.4 0.77 0/5

5 6 30 0.78 1 3600 18177.8 0.77 0/5

5 6 30 0.78 2 3600 20070.2 0.77 0/5

5 6 30 0.78 3 3600 86451.6 0.77 0/5

5 6 30 0.78 4 3600 138560.2 0.77 0/5

5 6 30 0.78 5 3600 146006.8 0.77 0/5

5 6 30 0.78 6 3600 92747.4 0.77 0/5

5 6 30 0.78 7 3600 30685.6 0.77 0/5

5 6 30 0.78 8 3600 127214.2 0.77 0/5

best separation algorithm for each family of inequalities i.e., the H1BC-sep for the BC
inequalities and the H1U-sep for the umbrella inequalities. Table 1 presents the results
for seven different methods. First, we observe that for all instances on 2 machines
CPLEXwith its proper improvements can solve all of them to optimality. Furthermore,
with 5 jobs per machine the number of nodes decreases when we add cuts . In this
case, we notice that adding all the inequalities is the best option in order to reduce the
number of generated nodes. With 2 machines and 10 jobs per machine, if we do not

123

1096 J Comb Optim (2018) 36:1074–1101

consider the method 8, we notice that we reduce the CPU time and the option 4 is the
most efficient for solving this family of instances. Indeed, the CPU time is only 930
seconds with the method 4. Secondly, if we increase the number of machines, then we
cannot solve instances with 5 jobs per machine. However, we can reduce the gap by
using our valid inequalities. For 5 jobs per machine and 4 machines, the gap is divided
by 2 by using all the inequalities, whereas for 6 machines all methods have the same
gap. We can note that the rootGap is not always dependent of the solving method. Two
reasons can explain this observation: either it is due to the value of C or it is due to
the added inequalities, which focus on only one family of variables.

Table 2 presents a complement of informations with the details of the average of
the number of generated inequalities during the Branch-and-cut procedure.We remark
that, when m > 2, we generate a small number of clique inequalities.

6 Conclusion and perspectives

In this paper we considered the m-clique free interval subgraphs. We studied the
facial structure of their polytope and we proposed some facet-defining inequalities to
reinforce the associated linear relaxation. Moreover, the GOSDC was studied as an
application in scheduling. Exact and heuristic separation algorithms were presented
and used into a Branch-and-cut procedure for solving the GOSDC. Computational
experiments were carried out and the results show that the algorithms are capable to
solve many instances to optimality within reasonable computation time.

As a perspective, further research in this direction will be helpful to strengthen
the integer programming formulations of a large variety of scheduling problems as
another application to the m-clique free interval subgraphs.

Appendix

Proof of Proposition 2 Let us denote by az ≤ α inequality −ze ≤ 0 associated with
e ∈ E . Let bz ≤ β be a facet defining inequality of PI(G,m), such that {z ∈
PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some
ρ ∈ R.

Clearly I0 = ∅ is feasible. Let I0 = ∅ be a solution, and the associated incidence
vector z I0 verifies −ze = 0.

Let e′ ∈ E \ {e}. The solution Ie′ = {e′} is feasible and the incidence vector z Ie′

associated with Ie′ verifies −ze = 0.
Since, azI0 = azIe′ , we deduce that bzI0 = bzIe′ . This implies that b(e′) = 0 for

all e′ ∈ E \ {e}. Therefore, we set b(e) = ρ, and then b = ρa. �	
Proof of Proposition 3 Let us denote by az ≤ α inequality ze ≤ 1 associated with
e ∈ E . Let bz ≤ β be a facet defining inequality of PI(G,m), such that {z ∈
PI(G,m) : az = α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some
ρ ∈ R.

Consider the feasible solution I0 = {e}. And the associated incidence vector z I0

verifies ze = 1.

123

J Comb Optim (2018) 36:1074–1101 1097

Table 2 Average number of inequalities

|Ji | m Method Ct BC Ct UMB Ct H Ct Q Ct NN Ct NT

5 2 0 0 0 0 0 0 0

5 2 1 3.6 0 0 0 0 0

5 2 4 0 0 0 10.4 0 0

5 2 5 0 0 0 0 0 0

5 2 6 0 0 0 0 0 1

5 2 7 2 0 0 5.4 0 0.8

5 2 8 0 0 0 0 0 0

10 2 0 0 0 0 0 0 0

10 2 1 1210.2 0 0 0 0 0

10 2 4 0 0 0 1157 0 0

10 2 5 0 0 0 0 1.6 0

10 2 6 0 0 0 0 0 92.6

10 2 7 549.6 0 0 822.6 0 44.2

10 2 8 0 0 0 0 0 0

5 4 0 0 0 0 0 0 0

5 4 1 7654.2 0 0 0 0 0

5 4 2 0 6962.4 0 0 0 0

5 4 3 0 0 4182.8 0 0 0

5 4 4 0 0 0 8 0 0

5 4 5 0 0 0 0 288 0

5 4 6 0 0 0 0 0 1781.4

5 4 7 5966.6 2207.2 2043.4 8.2 591.6 1189

5 4 8 0 0 0 0 0 0

5 6 0 0 0 0 0 0 0

5 6 1 28265 0 0 0 0 0

5 6 2 0 28241.6 0 0 0 0

5 6 3 0 0 6781.8 0 0 0

5 6 4 0 0 0 132.8 0 0

5 6 5 0 0 0 0 524.2 0

5 6 6 0 0 0 0 0 9771.4

5 6 7 11780.8 10271.8 1316.6 96.8 563.6 4493.4

5 6 8 0 0 0 0 0 0

Let e′ ∈ E \ {e}. The solution Ie′ = {e′, e} is feasible and the incidence vector z Ie′
associated with Ie′ verifies ze = 1.

Since, azI0 = azIe′ , we deduce that bzI0 = bzIe′ . This implies that b(e′) = 0 for
all e′ ∈ E \ {e}. Therefore, we set b(e) = ρ, and then b = ρa. �	

Proof of Proposition 4 Let us denote by az ≤ α the inequality (1). Let bz ≤ β be an
inequality that defines a facet of PI (G,m), such that {z ∈ PI(G,m) : az = α} ⊆

123

1098 J Comb Optim (2018) 36:1074–1101

{z ∈ PI(G,m) : bz = β}. Since PI (G,m) is full dimensional, we need to prove that
there exists ρ such that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ BC be two edges. Clearly, the solutions I1 = BC \ {e1}, and I2 =
BC \ {e2} are feasible. Their incidence vectors satisfy the inequality (1) with equality.
Since, azI1 = azI2 , bzI1 = bzI2 , it follows that b(e1) = b(e2). We set b(e1) = ρ. As
e1 and e2 are arbitrary in BC , then b(e) = b(e′) for all e, e′ ∈ BC .

The solutions I3 = BC \ {(1, 4)}, and I4 = I3 ∪ {(2, 4)}, I5 = I3 ∪ {(5, 4)}, and
I6 = I3 ∪ {(5, 7)} are feasible. Their incidence vectors satisfy the inequality (1) with
equality. Since, azI3 = azI4 = azI4 = azI5 = azI6 , bzI3 = bzI4 = bzI4 = bzI5 =
bzI6 , it follows that b((2, 4)) = b((5, 4)) = b((5, 7)) = 0. By symmetry, b(e) = 0,

for all e ∈ BC
4
h ∪ BC

5
h ∪ BC
.

The solutions I7 = BC \ {(4, 7)} and I8 = I7 ∪ {(1, 7)} are feasible and verify
the inequality (1) with equality. Since, azI7 = azI8 , bzI7 = bzI8 , it follows that
b((1, 7)) = 0. By symmetry, we have b((1, 5)) = b((1, 6)) = 0.

Let e3 ∈ E \ (BC ∪ BC). The solutions I3 and I9 = I3 ∪ {e3} are feasible and
verify the inequality (1) with equality. Since, azI3 = azI9 , bzI3 = bzI9 , which implies
that b(e3) = 0. By symmetry, we have b(e) = 0 for all e ∈ E \ (BC ∪ BC). Thus
b = ρa. �	
Proof of Proposition 6 Let us denote by az ≤ α the inequality (3) associated with e.
Let bz ≤ β be a facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) : az =
α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Ea
u \ {(4, 7)}. The solutions I1 = Eu \ {e1} and I2 = Eu \ {e2} are

feasible and the incidence vectors z I1 and z I2 verify the inequality (3) with equality.
Moreover, we have azI1 = azI2 . Hence, bzI1 = bzI2 . This implies that b(e1) = b(e2).
We set b(e1) = ρ. As e1 and e2 are arbitrary in Ea

u \ {(4, 7)}, by symmetry, we have
b(e′) = b(e) = ρ for all e ∈ Ea

u \ {(4, 7)}.
The solution I3 = Ea

u \{(4, 7), (1, 6)} and I4 = (I3∪{(2, 5)})\{(4, 5)} are feasible
and the incidence vectors z I3 and z I4 verify the inequality (3) with equality. Moreover,
we have azI3 = azI4 . Hence, bzI3 = bzI4 . This implies that b((4, 5)) = b((2, 5)).
Thus, from theprevious resultswededuce thatb((2, 5)) = b(e) for all e ∈ Ea

u\{(4, 7)}.
The solution I5 = (I3∪{(2, 6)})\{(5, 6)} is feasible, such that the incidence vectors

z I5 and z I3 verify the inequality (3) with equality. Moreover, we have azI5 = azI3 .
Hence, bzI5 = bzI6 . This implies that b((2, 6)) = b((5, 6)). Indeed, from the previous
results we have b((2, 6)) = b(e) for all e ∈ Ea

u \ {(4, 7)}.
The solution I6 = (I3 ∪ {(3, 6)}) \ {(5, 6)} is feasible and the incidence vector z I3

and z I6 verify the inequality (3) with equality. Moreover, we have azI3 = azI6 . Hence,
bzI3 = bzI6 . This implies that b((3, 6)) = b((5, 6)). Indeed, from the previous results
we can deduce that b((3, 6)) = b(e) for all e ∈ Ea

u \ {(4, 7)}.
The solutions I7 = Ea

u \ {(4, 7) ∪ (1, 6)} and I8 = (I7 ∪ {(4, 7)} ∪ Ei
u) are feasible

and the incidence vectors z I7 , and z I8 verify the inequality (3) with equality. Moreover,
we have azI7 = azI8 . Hence bzI7 = bzI8 . This implies that b(e) = 0 for all e ∈ Ei

u .
Let e ∈ {(2, 7), (3, 7), (1, 7), (5, 7), (6, 7)}. The solutions I1 and I9 = I1 ∪ {e}

are feasible and the incidence vectors z I1 , z I9 verify the inequality (3) with equality.

123

J Comb Optim (2018) 36:1074–1101 1099

Moreover, we have azI1 = azI9 . Hence, bzI1 = bzI9 . This implies that b((2, 7)) =
b((3, 7)) = b((1, 7)) = b((5, 7)) = b((6, 7)) = 0. Thus b = ρa. �	
Proof of Proposition 7 Let us denote by az ≤ α inequality (4) associated with e. Let
bz ≤ β be a facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) : az =
α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Et
u ∪ Ec

u be two edges, where e1 �= e2. We consider the edge sets
I1 = Eu ∪ {e1} and I2 = Eu ∪ {e2} where the incidence vectors z I1 and z I2 are
solutions of PI(G,m) and satisfy the inequality (4) with equality. Moreover, we have
azI1 = azI2 . Thus, bzI1 = bzI2 . This implies that b(e1) = b(e2). As e1, e2 are
arbitrary, then b(e) = b(e′) for all e, e′ ∈ Et

u ∪ Ec
u .

Let e3 ∈ Ea
u . The solution I3 = Eu \ {e3} is feasible and the incidence vector

z I3 verifies the inequality (4) with equality. Moreover, we have azI1 = azI3 . Hence,
bzI1 = bzI3 . This implies that b(e3) = −b(e1). Thus, by symmetry we have b(e′) =
−b(e) for all e ∈ Et

u ∪ Ec
u, e

′ ∈ Ea
u .

The solutions I4 = Eu \ {(1, 6)}, I5 = (Eu \ {(1, 6)}) ∪ Ei
u , I6 = I5 \ {(1, 5)},

I7 = I6 \ {(1, 4)} and I8 = I7 \ {(1, 3)} are feasible. The incidence vectors z I4 , z I5 ,
z I6 , z I7 and z I8 verify the inequality (3) with equality. Since azI4 = azI5 = azI6 =
azI7 = azI8 , bzI4 = bzI5 = bzI6 = bzI7 = bzI8 , it follows that b(e) = 0 for all
e ∈ Ei

u .
The solutions I9 = Eu ∪ {(2, 7), (2, 4)}, I10 = Eu ∪ {(2, 5), (2, 4)}, I11 = Eu ∪

{(2, 4)}, I12 = Eu \ {(2, 3)}, I13 = I12 ∪ {(2, 6)}, I14 = I12 ∪ {(2, 5)}, I15 =
Eu \ {(5, 6)} and I16 = I15 ∪ {(3, 6)} are feasible and verify the inequality (4) with
equality. Since azI9 = azI10 = azI11 = azI12 = azI13 = azI14 = azI15 = azI16 ,
bzI9 = bzI10 = bzI11 = bzI12 = bzI13 = bzI14 = bzI15 = bzI16 ,it follows that
b((2, 6)) = b((2, 5)) = b((2, 7)) = b((6, 7)) = b((3, 6)) = 0.

Let e ∈ E \ (Eu ∪ Ēu). The solutions I17 = Eu \ {(4, 7)} and I18 = I17 ∪ {e} are
feasible and verify the inequality (4) with equality. Since azI17 = azI18 , bzI17 = bzI18 .
By symmetry, we have b(e) = 0.

We set b(e) = ρ for e ∈ Eu and the proof is ended. �	
Proof of Proposition 8 Let us denote by az ≤ α the inequality (5) associated with e.
Let bz ≤ β be a facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) : az =
α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Enet \ Eh
net be two edges, where e1 �= e2. We consider the edge

sets I1 = Enet \ {e1} and I2 = Enet \ {e2}. Their incidence vectors z I1 and z I2 are
solutions of PI(G,m) and satisfy the inequality (5) with equality. Moreover, we have
azI1 = azI2 and then bzI1 = bzI2 . This implies that b(e1) = b(e2). As e1, e2 are
arbitrary, then b(e) = b(e′) for all e, e′ ∈ Enet \ Eh

net .
We consider the edge sets I3 = Enet \{(b, 1)} and I4 = Enet \({(b, 1)}∪Eh

net).Their
incidence vectors z I3 and z I4 are solutions of PI(G,m) and satisfy the inequality (5)
with equality. Moreover, we have azI3 = azI4 . Hence, we have bzI3 = bzI4 . This
implies that b(e) = 0 for all e ∈ Eh

net .

Let e3 ∈ Enet \ Eh̄
net . The solution I5 = Enet ∪ {e} is feasible and satisfies the

inequality (5) with equality. Moreover, we have azI1 = azI5 and then bzI1 = bzI5 .
This implies that b(e) = −b(e′) for all e ∈ Enet \ Eh

net and e′ ∈ Enet \ Eh̄
net .

123

1100 J Comb Optim (2018) 36:1074–1101

Considering the edge sets I6 = Enet ∪ {(c, 2), (c, 3), . . . , (c, n), (c, d)}, I7 =
Enet ∪ {(c, 2)}, I8 = Enet ∪ {(d, 1), (d, 2), . . . , (d, n − 1)}, I9 = Enet ∪ {(d, n −
1)},I10 = Enet ∪ {(a, 1)}, I11 = Enet ∪ {(a, 1), (a, c)},I12 = Enet ∪ {(a, n)}, I13 =
Enet ∪{(a, n), (a, d)}. These edge sets are solutions and satisfy the inequality (5) with
equality. Moreover, we have azI6 = azI7 = azI8 = azI9 = azI10 = azI11 = azI12 =
azI13 . Hence, we have bzI6 = bzI7 = bzI8 = bzI9 = bzI10 = bzI11 = bzI12 = bzI13 .
Thus, b(e) = 0 for all e ∈ Eh̄

net .
Let e ∈ E\(Enet∪Enet). By considering the feasible solutions I14 = Enet \{(a, b)}

and I15 = Enet \ {(a, b)} ∪ {e}, we have azI14 = azI15 . Hence, bzI14 = bzI15 . This
implies that b(e) = 0.

We set b(e) = ρ for e ∈ Enet \ Eh
net and the proof is complete. �	

Proof of Proposition 9 Let us denote by az ≤ α the inequality (6) associated with e.
Let bz ≤ β be a facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) : az =
α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e1, e2 ∈ Etent \ Eh
tent be two edges, where e1 �= e2. We consider the edge

sets I1 = Etent \ {e1} and I2 = Etent \ {e2}. Their incidence vectors z I1 and z I2 are
solutions of PI(G,m) and satisfy the inequality (6) with equality. Moreover, we have
azI1 = azI2 and then bzI1 = bzI2 . This implies that b(e1) = b(e2). As e1, e2 are
arbitrary, then b(e) = b(e′) for all e, e′ ∈ Etent \ Eh

tent .
We consider the edge sets I3 = Etent \{(a, c)}, and I4 = Etent \({(a, c)}∪{(b, c)})

there incidence vectors z I3 , and z I4 are solutions of PI(G,m) and satisfy the inequality
(6) with equality. Moreover, we have azI3 = azI4 and then bzI3 = bzI4 . This implies
by symmetry that b((b, c)) = b((b, 2)) = b((c, 4)) = 0.

Let e3 ∈ Etent \ Eh̄
tent . The solution I5 = Etent ∪ {e} is feasible and satisfies the

inequality (6) with equality. Moreover, we have azI1 = azI5 . Hence, bzI1 = bzI5 .
This implies that b(e) = −b(e′) for all e ∈ Etent \ Eh

tent and e′ ∈ Etent \ Eh̄
tent .

Let (i, i + 3) ∈ Eh̄
tent . The solutions I6 = Etent ∪ {(i, i + 3), (i, i + 2)} and

I7 = Etent ∪ {(i, i + 2)} are feasible and satisfy the inequality (6) with equality.
Moreover, we have azI6 = azI7 and then bzI6 = bzI7 . Thus, b(e) = 0 for all e ∈ Eh̄

tent .
Let e ∈ E\(Etent∪Etent). By considering the feasible solutions I8 = Etent\{(a, c)}

and I9 = Etent \{(a, c)}∪{e}, we have azI8 = azI9 and then bzI8 = bzI9 . This implies
that b(e) = 0.

We set b(e) = ρ for e ∈ Etent \ Eh
tent and the proof is complete. �	

Proof of Proposition 12 Remark that if m = 2, then a solution can be given only by
a forest in the subgraph G(K). We deduce that the maximum number of edges in this
subgraph is equal to |V (K)| − 1.

Let us denote by az ≤ α the inequality (9) associated with e. Let bz ≤ β be a
facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) : az = α} ⊆ {z ∈
PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let (u, v), (u, w) ∈ E(K), be two connected edges. Considering a line Tuv begin-
ning by (u, v) and finishing by the vertexw and the line Tuw = Tuv\{(u, v)}∪{(u, w)}.
These two solutions are feasible and satisfy the inequality (9) with equality. More-
over, we have azTuv = azTuw . Hence, bzTuv = bzTuw . This implies that b((u, v)) =
b((u, w)). By symmetry, we deduce then that b(e) = b(e′) for all e, e′ ∈ E(K).

123

J Comb Optim (2018) 36:1074–1101 1101

Let e ∈ E \ E(K). By considering the feasible solution T ′
uv = Tuv ∪ {e}, we have

azTuv = azT
′
uv . Hence, bzTuv = bzT

′
uv . This implies that b(e) = 0. �	

Proof of Proposition 13 Let us denote by az ≤ α the inequality (10) associated with
e. Let bz ≤ β be a facet defining inequality of PI (G,m) such that {z ∈ PI(G,m) :
az = α} ⊆ {z ∈ PI(G,m) : bz = β}. We show that b = ρa for some ρ ∈ R.

Let e, e′ be two edges in E(K). The solution I1 = E(K)\{e} and I2 = E(K)\{e′}
are feasible andverify the inequality (10)with equality.Hence,azI1 = azI2 . Therefore,
bzI1 = bzI2 . This implies that b(e) = b(e′). We set b(e) = ρ. As b(e) and b(e′) are
arbitrary, then b(e) = b(e′) for all e, e′ ∈ E(K).

Let e1 be an edge in E \ E(K). The solution I3 = I1 ∪ {e1} and I1 are feasible and
verify the inequality (10) with equality. Hence, azI1 = azI3 . Therefore bzI1 = bzI3 .
This implies that b(e1) = 0. As b(e1) is arbitrary we deduce that b(e) = 0, for all
e ∈ E \ E(K). Thus b = ρa. �	

References

Aardal K, Van Hoesel CPM (1999) Polyhedral techniques in combinatorial optimization II: applications
and computations. Stat Neerl 53(2):131–177

de CM Nogueira João Paulo, Arroyo José Elias C, Villadiego Harlem Mauricio M, Gonçalves Luciana
B (2014) Hybrid GRASP heuristics to solve an unrelated parallel machine scheduling problem with
earliness and tardiness penalties. Electron Notes Theor Comput Sci 302:53–72

Gacias Bernat, Artigues Christian, Lopez Pierre (2010) Parallel machine scheduling with precedence con-
straints and setup times. Comput Oper Res 37(12):2141–2151

Golumbic Martin Charles (2004) Algorithmic graph theory and perfect graphs, vol 57. Elsevier, New York
Gonzales T, Sahni S (1976) Open shop scheduling to minimize finish time. J ACM 23:665–679
Habib M, McConnell R, Paul C, Viennot L (2000) Lex-BFS and partition refinement, with applications

to transitive orientation, interval graph recognition, and consecutive ones testing. Theor Comput Sci
234:59–84

Hassan Abdel-Jabbar M-A, Kacem I, Martin S (2016) Lecture Notes of Computer. Science 9849:308–319
Hall Nicholas G, Posner Marc E (2001) Generating experimental data for computational testing with

machine scheduling applications. Oper Res 49(7):854–865
Jiinger M, Reinelt G, Thienel S (1995) Practical problem solving with cutting plane algorithms in combi-

natorial optimization. Comb Optim Dimacs 20:111–152
Lekkeikerker C, Boland J (1962) Representation of a finite graph by a set of intervals on the real line.

Fundam Math 51(1):45–64
Mokotoff E, Chretienne P (2002) A cutting plane algorithm for the unrelated parallel machine scheduling

problem. Eur J Oper Res 141:515–525
Pardalos PM, Xue J (1994) The maximum clique problem. J Global Optim 4(3):301–328
Schrijver A (2003) Combinatorial optimization : polyhedra and efficiency. Algorithms and combinatorics,

vol 24. Springer, Berlin
Vallada E, Ruiz R (2012) Scheduling unrelated parallel machines with sequence dependent setup times and

weighted earliness tardiness minimization. InJust-in-Time systems. Springer, New York, pp 67–90

123

	On the m-clique free interval subgraphs polytope: polyhedral analysis and applications
	Abstract
	1 Introduction
	2 Polyhedral analysis
	2.1 Forbidden subgraphs inequalities
	2.1.1 Bipartite claw
	2.1.2 Umbrella inequalities
	2.1.3 n-net inequalities
	2.1.4 n-tent inequalities
	2.1.5 Hole inequalities
	2.1.6 Clique inequalities
	2.1.7 Clique–Hole inequalities

	3 Cutting plane algorithms
	3.1 Bipartite claw separation
	3.1.1 Exact separation (ExBC-sep)
	3.1.2 Heuristic 1: separation (H1BC-sep)
	3.1.3 Heuristic 2: separation (H2BC-sep)

	3.2 Umbrella separation
	3.2.1 Exact separation algorithm
	3.2.2 H1U-sep separation
	3.2.3 H2U-sep separation
	3.2.4 n-net separation
	3.2.5 n-tent separation

	3.3 Hole separation
	3.4 Clique separation
	3.5 Lazy constraint approach

	4 Application to the generalized open shop problem with disjunctive constraints
	4.1 Integer linear programming formulation

	5 Experimental results
	6 Conclusion and perspectives
	Appendix
	References

