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Abstract Online social networks have become popular media worldwide. However,
they also allow rapid dissemination of misinformation causing negative impacts to
users. With a source of misinformation, the longer the misinformation spreads, the
greater the number of affected users will be. Therefore, it is necessary to prevent
the spread of misinformation in a specific time period. In this paper, we propose
maximizing misinformation restriction (MMR) problem with the purpose of finding a
set of nodes whose removal from a social network maximizes the influence reduction
from the source ofmisinformationwithin time and budget constraints.We demonstrate
that theMMR problem is NP-hard even in the case where the network is a rooted tree

B My T. Thai
thaitramy@tdt.edu.vn; mythai@cise.ufl.edu

Canh V. Pham
maicanhki@gmail.com

Hieu V. Duong
dvhieubg95@gmail.com

Bao Q. Bui
buiquybao.c500@gmail.com

Huan X. Hoang
huanhx@vnu.edu.vn

1 Division of Algorithms and Technologies for Networks Analysis & Faculty of Information
Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2 Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL 32611, USA

3 University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam

4 Faculty of Information Technology and Security, People’s Security Academy Hanoi, Hanoi,
Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-0252-3&domain=pdf


J Comb Optim (2018) 35:1202–1240 1203

at a single misinformation node and show that the calculating objective function is
#P-hard. We also prove that objective function is monotone and submodular. Based
on that, we propose an 1−1/

√
e-approximation algorithm. We further design efficient

heuristic algorithms, named PR-DAG to show MMR in very large-scale networks.

Keywords Approximation algorithm · Social networks · Misinformation ·
Information diffusion

1 Introduction

Online social networks (OSNs) have provided an effective platform for interaction
and communication for billions of users. Many people have integrated popular online
social sites into their daily lives and considered them as the main source of informa-
tion. For example, the news about the death of Bin Laden was released on Twitter
before the US government officially announced it on social media (Sutter 2017). Fur-
thermore, information spreads on OSNs can have substantial impact on the society,
especially political trends. For instance, Facebook and Twitter had great impact on
the US Presidential Election in 2008 and the Arab Spring in 2010 (Hughes and Palen
2009; Wolfsfeld et al. 2013).

Unfortunately, rapid dissemination of information on OSNs can be used to spread
misinformation to a large amount of users. This may lead to huge economic losses as
well as negative impacts on the community in real life. For example, false information
about assassination of President Obama has indirectly caused a damage of $136.5
billion to the financial market (Domm 2013). In addition, misinformation on social
networks had a significant impact on the US Presidential Election in 2016 (Gentzkow
2017). In order for the OSN to serve its users as a reliable channel of information, it is
critical to have effective measures to detect the sources of misinformation and restrict
their spread.

Identifying sources of misinformation is a basis for preventing misinformation.
Some initial studies have used data mining methods to detect sources of misin-
formation/rumors (Qazvinian et al. 2011; Kwon et al. 2013). Recently, in order
to prevent the outbreak of misinformation and rumors, a commonly used strat-
egy is to block accounts and links which play a vital role in the propagation
process. For example, in 2015, Twitter removed 125,000 accounts which was sus-
pected to relate to terrorisms (Yadron 2017). Facebook deleted 30,000 fake accounts
reporting rumors in France before the Presidential Election in 2017 (Kottasov
2017).

However, in reality, we cannot remove too many nodes and links because it can
affect the spread of information and freedom of speech. Therefore, it is necessary
to have an optimal solution for selecting edges and nodes needed to be removed.
Information diffusion models provide the basis for the study of solutions to pre-
vent the spread of misinformation in which two most used ones are linear threshold
model (LT) and the independent cascade model (IC) (Kempe et al. 2003). Kimura
et al. proposed heuristic methods to remove sets of edges from network in order to
minimize influence from sources of misinformation (Kimura et al. 2008, 2009). In
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LT model, Khalil et al. (2014) proposed an algorithm with an approximation ratio
of 1−1/e − ε for this problem. Recently, Zhang et al. has designed a strategy to
vaccinate sets of edges or nodes in order to reduce the influence of sources of epi-
demics (Zhang and Prakash 2015, 2014). After that, (Zhang et al. 2016a, c) proposed
a strategy of placing monitor machine to prevent the impact of sources of misin-
formation to important users. In essence, vaccinating and placing monitor on nodes
are equivalent to removing nodes from the network, from the abstraction point of
view.

A shortcoming of the above studies is that they do not take into account the time
constraints when preventing spread of known sources of misinformation. In reality,
information is spread from this user to another through only a few hops. The earlier
the preventing of spread of misinformation, the smaller the amount of affected users.
In addition, cost of removing one user from the network by placing monitor machine
or vaccinating nodes are often different. Therefore, in this paper, we investigate a
problem, Maximizing Misinformation Restriction which seeks the set of nodes to
be removed satisfying two conditions: (1) the total cost to remove nodes does not
exeed given budget; (2) the number of propagation hops is limited, such that the
influence reduction of misinformation source is maximal. Our main contributions are
summarized as follows:

– We expand the LT model by combining the constraint of number of propagation
step hops, called T-LT model, given a set of source of misinformation nodes, time
constraint and limited budget. In this model, we formulate Maximizing Misinfor-
mation Restriction (MMR) problem that seeks a set of nodes to remove from the
network within limited budget and time constraints such that influence reduction
of misinformation sources is maximized.

– For complexity, we show that MMR is NP-hard and even if when the network is
a rooted tree at single misinformation source node, and prove that calculation of
the objective function is #P-hard.

– When the network has a form of tree rooted from only one misinformation source,
we designed aFully Polynomial - Time Approximation Scheme (FPTAS) algorithm
which is the best approximation algorithm for NP-hard problem. In general case,
we prove that the objective function is monotone and submodular, and thus a
Greedy algorithmwill have an approximation ratio of 1−1/

√
e.We further propose

Speed-up Greedy (SG) algorithm by using the state-of-the-art technique in Zhang
et al. (2016b). SG provide an approximation ratio of 1−1/

√
e − ε. In order to

make this solution scalable to billion of nodes and edges, we introduce an efficient
heuristic algorithm, called PR-DAG.

– Experiments are performed on real-world social traces of Gnutella, Oregon, Epin-
ions and EU Email datasets showed the performance of our purposed algorithms.
In each of these networks, we observe that PR-DAG and SG outperformed base-
line methods and they gave the similar result in terms of maximizing the target
function while PR-DAG run faster than SG (upto 45 times faster). Experiments
also sho that PR-DAG is scalable with EU Email networks, which is large-scale
social network contain about 265K nodes and 420K edges.
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1.1 Related work

Studying information propagation model is critical for research about influence maxi-
mization problem (Kempe et al. 2003) and reducing spread of misinformation/rumors
on social networks (Zhang and Prakash 2015; Khalil et al. 2014; Kimura et al. 2008,
2009; Zhang and Prakash 2014; Zhang et al. 2013, 2016a, b; He et al. 2011; Budak
et al. 2011; Nguyen et al. 2013). In Domingos and Richardson (2001) studied propa-
gation of information on social networks based on data mining technique. Based on
this study, Kempe et al. (2003) proposed two information propagation models which
are the Linear Threshold (LT) and the Independent Cascade (IC). In these models, they
proposed the problem of Influence Maximization (IM) and a greedy algorithm with a
ratio of 1−1/e. Later, numerous works about proposed scalability and efficiency algo-
rithms have been done (Goyal et al. 2012; Chen et al. 2010a, b; Nguyen and Zheng
2013). In addition, many related diffusion information and variable problems were
proposed and studied (Liu et al. 2012; Chen et al. 2012; Zhang et al. 2013; Bhagat
et al. 2012) and some studies have extended these two models (Zhang et al. 2013; Liu
et al. 2012; Chen et al. 2012).

An important task of preventing misinformation is to identify the source of mis-
information or rumors. They can be identified through collecting contents of posts,
comments, shares (Qazvinian et al. 2011). Rumors can be identified by using features
such as time, structures and language of users (Kwon et al. 2013). In order to prevent
the spread of misinformation or bad information, some work proposed a campaign
of injecting good information into some nodes in order to fight the misinformation
(Budak et al. 2011; Nguyen et al. 2013; He et al. 2011). Budak et al. Budak et al.
(2011) proposed a problem of selecting a seed set to create positive information so
that the number of users believing in negative information is minimized. He et al.
(2011) studied Influence Blocking Maximization problem which chose k nodes to
initiate positive information in order to minimize influence of negative information.
Nguyen et al. (2013) studied β I

T -Node Protectors problem with the purpose of seek-
ing the smallest set of nodes with good information to decontaminate misinformation.
However, in order to apply all above strategies, we need to know the content of the
negative information and create positive information equivalently. Furthermore, it is
difficult to persuade users when they already believe in the false information.

Recently, another branch of work used vaccinating/monitoring (Zhang and Prakash
2014, 2015; Zhang et al. 2016a, b) on a set of edges or nodes which are equiva-
lent to solution of removing edges or nodes in the network to reduce the influence
of misinformation sources (Khalil et al. 2014). Zhang et al. (2016a) proposed τ -
MP problem that prevent propagation of misinformation from the sources to center
set nodes at most guaranteed threshold τ ∈ [0, 1] by placing monitors on some
nodes. They showed that the problem was #P-hard under IC model and proposed
greedy algorithm based on cut sets method. However, it is difficult to apply it for
a large number of central nodes because the algorithm using a Monte–Carlo sam-
pling technique which takes a long running time. Given a set of infected notes in a
network, Zhang and Prakash (2015, 2014) proposed a vaccination strategy for the
k remaining nodes so that the number of infected nodes after propagation is min-
imal under IC model. The similar method have also been applied for groups of
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edges and nodes to control propagation of epidemics under LT model (Zhang et al.
2016b).

Most of existingworks ignored two important aspectswhich are the time constraints
and the cost of monitoring/vaccinating/removing a set of nodes. Preventing the spread
of misinformation within time constraints is essential to limit their harmful effects.
Moreover, the recent studies showed that information is spread after few hops from
the source and almost negligible in the next steps (Cha et al. 2009; Leskovec et al.
2007). In addition, we considered cost of monitoring/vaccinating/removing each node
on network and the total cost is limited.

1.2 Organization

The rest of the paper is structured as follows. We formulate the propagation models
and problem definition in Sect. 2. Section 3 introduces some hardness and complexity
results. Sections 4, 5 present our proposed algorithms. The experiments on several
datasets are presented in Sect. 6. Finally, we give some implication for future work
and conclusion in Sect. 7.

2 Model and problem definitions

In this section, we define the diffusion model called Time constraint Linear Threshold
(T-LT) based on the traditional LTmodel.We next formulate theMMR problem,which
aims to find a set of nodes to remove from the network with limited budget and time
constraints. In Table 1, the frequently used notations are summarized.

2.1 Diffusion model

The most well known models are the LT model and the IC model (Kempe et al. 2003).
However, they are not suitable for the time constraints of propagation process. In this
subsection, we first describe the standard LT model and then present our extension
that incorporates time constraints of the diffusion.

2.1.1 Linear threshold model

Let G = (V, E, w) be a social network with a set of nodes V and a directed edge E ,
with |V | = n and |E | = m. In this paper, the concept of vertex is equivalent to node.
Each directed edge (u, v) ∈ E is associated with an influence weight w(u, v) ∈ [0, 1]
such that

∑
u∈N−(v) w(u, v) ≤ 1.

Given a subset S = {s1, s2, . . . , sp} ⊂ V represents a source of misinformation (as
the seed set in IM problem). In this paper, each node has two states, active and inactive,
σ(S) denotes the expected number of activated nodes. In the LT model, the influence
cascades in G are illustrated as follows. First, every node v ∈ V uniformly chooses a
threshold θv ∈ [0, 1], which represents theweighted fraction of u’s neighbors thatmust
be active to activate u. Next, the influence propagation happens in round t = 1, 2, 3...
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Table 1 Table of symbols

Notional Description

n,m The number of nodes and the number of edges

N−(v), N+(v) The sets of incoming, and outgoing neighbor nodes of v

d−(v), d+(v) In-degree, out-degree of v

S Set of misinformation source nodes, for short is source

Gd = (Vd , Ed ) The graph of Vd , Ed which are the set of nodes and edges within d
distance from any node in S

NE (A) The set of incoming and outgoing neighbor edges of A

G(G) The set of sample graph generating from G

G(G \ X) The set of sample graph generating from G \ X , X ⊂ E

σd (S) Influence of S after d hops

σd (S, A) Influence of S when remove set of nodes A ∈ V after d hop

P(G, u) The set of all simple paths starting node u in G

P(G, u, v) The set of all simple paths starting from u and ending at v

Pi (G, u, v), Pi (G, u) The set of paths each of which has the length i in P(G, u, v) and P(G, u),
respectively

σd,E (S, X) Influence of source S after d hops when removing set of edges X ∈ E

h(A) The reducetion of influence of source S when removing set A (objective
function)

– At round 1, all nodes in S are activated and the others are inactive.
– At round t > 1, an inactive node v is activated if weighted number of its incoming
active neighbors is greater than or equal its threshold:

∑

incoming infected neighbor u

w(u, v) ≥ θv.

– Since a node becomes activated, its status remains in the spreading process. The
influence propagation stops when no more nodes can be activated.

2.1.2 Time constraint linear threshold model

We are going to describe our extension to the LT model that incorporates time-
constraint diffusion processes, called T-LT. Similar to the LT model, in this model,
each node chooses a uniform random number in [0, 1] as a threshold, and the spreading
process performs in discrete steps. The new aspect in our model is that the influence
is limited to the nodes that are within d ≥ 1 hops from the source. In other words,
the difference of T-LT is the propagation process ends after the d propagation steps.
The LT model is a special case of T-LT with d = |V |. Therefore, T-LT inherits some
characteristics of LT model.

Kempe et al. (2003) proved LT to be equivalent to live-edge model and sample
graph. In LT model, for every node v ∈ V , picks at most one random incoming edge,
such that the edge (u, v) is selected with probability w(u, v), and no edge is selected

123



1208 J Comb Optim (2018) 35:1202–1240

with probability 1−∑
u∈N−(v) w(u, v). The selected edges are called live and all other

edges are called blocked. Pr[g|G] denotes the probability of sample graph g in G, we
have:

Pr[g|G] =
∏

v∈V
p(v, g,G) (1)

where

p(v, g,Gd(S)) =
{

w(u, v), If ∃u : (u, v) ∈ Eg

1 − ∑
u:(u,v)∈E w(u, v), Otherwise

(2)

R(g, S) denotes the set of nodes reachable from S in g, by claim 2.6 in Kempe et al.
(2003), we have:

σ(S) =
∑

g∈G(G)

Pr[g|G]R(g, S) (3)

Rd(g, S) denotes the set of nodes reachable from S in g within distance d. In T-LT
model, we notice that v is reachable from source S if and only if: (1) there exits at
least one path consisting entirely of live edges (called live-path) from some nodes in
S to v, and (2) the collective number of hops along the shortest live-path from S to v

is not greater than d. By proof of Theorem 2.11 in Chen et al. (2013), the equivalence
between LT and live-edge model is with respect to all active sets St , where t is the
number of step of propagation. Hence, the influence of S after d hops is:

σd(S) =
∑

g∈G(G)

Pr[g|G]Rd(g, S) (4)

The influence of S after removal of A ⊂ V \ S is equal to the influence of S on residual
graph, the influence of S at this time is:

σ(S, A) =
∑

g∈G(G[V \A])
Pr[g|G]Rd(g, S) (5)

To simplify, instead of considering all sample graphs in G, we only need to consider
the sample graphs in Gd(S). We define benefit of A is expected reduction of influence
of S after removing A, that is,

hd(A) = σd(S,∅) − σd(S, A) (6)

For convenience, we simplify the symbol hd(·) by h(·) because G and d is constant.
Our purpose is to choose a set A with a given budget such that h(A) is maximal. The
definition of the problem is presented in the next subsection.
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2.2 Problem definition

Suppose that each node u ∈ V has a cost c(u) ≥ 0 for removing from V \ S and a
limited cost is L > 0. When d = 1 finding the solution is trivial and does not make
much sense, so we only consider the case d ≥ 2. In this paper, we considerMaximum
Misinformation Restriction (MMR) which is defined as follows:

Definition 1 (MMR) Given a graph G = (V, E, w) on T-LT model with d ≥
2 be a number of hops of propagation, potential misinformation sources S =
{s1, s2, . . . , sp} ⊂ V , and a budget L > 0. Find the set of vertices A with total
cost c(A) = ∑

u∈A c(u) ≤ L to maximize h(A).

MMR is generalized by the following cases:

– Whend = n:MaximumMisinformationRestriction onwhole process propagation
of misinformation source S.

– When c(u) = 1 ∀u ∈ U ⊂ V, c(u) = +∞, u ∈ V \ U , find the set A in the
allowed area U to maximize h(A).

3 Hardness and complexity

In this section, we show thatMMR is NP-hard even when the graph is the rooted tree
by reducing from the 0-1 Knapsack problem. Furthermore, we prove that the exact
calculation of h(A) is #P-hard.

Theorem 1 MMR is NP-hard in T-LT model, even for d = 2 and the input graph is
the rooted tree.

Proof To prove that MMR is NP-hard, we will reduce the decision of 0–1 Knapsack
problem.
Knapsack Given 2n + 2 positively integers: W, K , s1, . . . , sn, c1, . . . , cn , determine
whether there is a sequence x = (x1, x2, . . . , xn) ∈ {0, 1}n such that ∑n

i=1 wi xi ≤ W
and

∑n
i=1 ci xi ≥ K .

Construction Let I1 = (W, K , w1, . . . , wn, c1, . . . , cn) is an instance of Knapsack.
We construct a rooted tree I2 = (G, S, d, L) which is an instance ofMMR as follows
(Fig. 1):

– We build only one source node S = {s}. For each ci , we construct a direct simple
path, in which: the starting node is s, ci next nodes: ui,1, ui,2, . . . , ui,ci , the weight
of all edges in this path is 1.

– The cost of nodes: c(u1,i ) = 1, c(u2,i ) = c(u3,i ) = . . . = c(uci ,i ) = +∞,
i = 1 . . . n.

– Finally, set L = W and Z = K and d = maxi=1...n{ci }.
By the construction, we obtain graph G = (V, E, w) satisfies LT model. Now,

we prove that if I1 has a solution x = (x1, x2, . . . , xn) the I2 has a solution A =
{ui,1|xi = 1} such that h(A) ≥ Z and vice versa.

(→) Suppose x = (x1, x2, . . . , xn) is solution of instance I1. Now with our con-
struction we see that, we chose set A = {ui,1|xi = 1}. We have c(A) = ∑

i |xi=1 wi ≤
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Fig. 1 Reduce from 0 to 1
Knapsack to MMR

Fig. 2 The constructing
instance in the reduction from
instance G = (V, E) of s−t
paths problem to instance G′ of
the exact computation of h(A)

by adding a new node t ′

W = L . According LT model, for each path, we select ui,1 in set A, the influence
from s to another nodes is blocked, implies the reduction of influence is ci . Therefore,
h(A) = ∑

i |xi=1 ci ≥ K = Z .
(←) Otherwise, if I2 has the solution A, A can not contain ui, j for j ≥ 2 since

the cost of this node is +∞. Suppose A = ui,1, i ∈ I , now we chose a vector
x = (x1, x2, . . . , xn) for xi = 1 if u1,i ∈ A, otherwise xi = 0. We have c(A) =∑

i |ui,1∈A wi = ∑n
i=1 xiwi ≤ L = W and h(A) = ∑

i |ui,1∈A ci = ∑n
i=1 xi ci ≥ Z =

K implies x is solution of I1 ��

Theorem 2 It is #P-hard to compute h(A) in T-LT model.

Proof We will reduce from the s-t paths problem defined in the following. Given a
directed graph G = (V, E), |V | = n, |E | = m, computing the number of (directed)
paths from node s to node t that visit every node at most once has been proved to be
#P-complete (Valiant 1979). From G, we construct a graph G ′ by adding a new node
t ′ and adding an edge from t to t ′ with weight w(t, t ′) = 1. The number of vertices of
G is n + 1. Let Δ be the maximum in-degree of any node in G ′. For e �= (t, t ′), e ∈ E
we set w(e) = w = 1/Δ, this assumption satisfies the LT model since the total of
in-neighbour weight is less than 1. We set S = {s}, A = {t ′} and d = n + 1. We will
show that if for any eligible w computing h(t ′) on G ′ is solvable, the s-t problem is
also solvable (Fig. 2).
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By the equivalence given claim 2.6 in Kempe et al. (2003), we have:

σd(S,∅) =
∑

x∈P(G ′,s)

∏

e∈x
w(e). (7)

σd(S, A) =
∑

x∈P(G ′\{t ′},s)

∏

e∈x
w(e). (8)

Eliminate the same elements in the two above equations, the remaining paths contain
node t ′, we have

h(t ′) = σd(S,∅) − σd(S, A) =
∑

x∈P(G ′,s,t ′)

∏

e∈x
w(e) (9)

Since each simple path from s to t ′ in G ′ contains a simple path from s to t in G, we
have:

h(t ′) =
∑

x∈P(G ′,s,t ′)

∏

e∈x
w(e) =

n−1∑

i=0

∑

x∈Pi (G,s,t)

(

w(t, t ′)
∏

e∈x
w(e)

)

=
n−1∑

i=0

wi · αi

(10)

where αi = |Pi (G, s, t)|. For Eq. (10), we can set weight w to n distinction values
w1, w2, . . . , wn andwe have value of h(t ′) corresponding towi . Hence, we obtain a set
of n linear equations with {α0, α2, . . . , αn−1} as variables. The matrix of this equation
is Mn×n = {mi j } and mi j = wi , i, j = 0, .., n − 1 so this is Vandermonde matrix
and we can easily to compute the unique solution {α0, α2, . . . , αn−1} for the linear
system of equations. The total of s-t paths in G is

∑n−1
i=0 αi . IfA is a polynomial-time

algorithm which can calculate exactly h(t ′), we can use h(t ′) to calculate s-t paths,
implying that the exact calculaiton of h(t ′) is at least as hard as s-t paths problem ��

4 Approximation algorithms

In this section, we introduce some approximation algorithms forMMR problem. First,
we provide a Fully Polynomial Time Approximation Scheme (FPTAS) algorithm for
the case when the network is a rooted tree at single misinformation source node. In
the general case, we designed a fast greedy algorithm with a ratio of 1− 1/

√
e as the

objective function is proved to be monotone and submodular.

4.1 FPTAS for rooted tree

In this section, we consider tree version of MMR (called T-MMR) that means the
network is a tree rooted at a source node I . We designed FPTAS for T-MMR, the
algorithm has the best approximation ratio (1 − ε) for NP-hard problem.

123



1212 J Comb Optim (2018) 35:1202–1240

4.1.1 Calculate benefit of nodes

When the graph is a tree rooted at I , we consider the sub-tree rooted I that each node
has a maximum depth d, called TI . If we select node u, the influence of I will not
reach any descendant nodes of u. I n f (u, v) denotes the influence from u to v when u
is activated, D(u) is the set of descendant nodes of u on TI , we have:

h(v) = I n f (I, v) + I n f (I, v) ·
∑

u∈D(v)

I n f (v, u) (11)

To calculate h(.)we propose a recursive algorithm based on Depth-First Search (DFS)
described in Algorithm 1.

Algorithm 1: Calculate benefit of node u for tree CalBen(TI , u)

Data: A tree TI = (VI , EI , w), I .
Result: benefit h(u), u ∈ V

1 h ← 1
2 if u is not a leaf then
3 for v is child of u do
4 h ← h + CalBen(v) · w(u, v)

5 end
6 end
7 h ← h · I n f (I, par(u)) · w(par(u), u)

8 Return h

Lemma 1 Algorithm 1 has a complexity is O(nT ), where nT is number of nodes in
TI .

Proof The steps of the algorithm is similar to the algorithmDFS so it has a complexity
O(mT + nT ) = O(nT ) (due to TI is a tree) ��

4.1.2 FPTAS for T-MMR

Based on the tree structure of the problem, we used dynamic programming method to
design a Fully Polynomial Time Approximation Scheme (FPTAS). This algorithm is
divided into two phases. In the first phase, we find sub-tree rooted at I with the depth
d to satisfy the time constraint of the problem. Next, we standardize benefit value of
nodes as well as the flow values. Basically, we try to bound them by a polynomial in
n and 1

ε
. In the second phase, we use the dynamic programming to find the solution

in polynomial time. The algorithm is summarized in Algorithm 2 (Fig. 3).
Phase 1: PreprocessingWe find sub-tree root at I has the depth at most d. Next we

will calculate the benefit of nodes by Algorithm 1 and standardize the benefit as shown
in line 4 in Algorithm 2 then h(u) is scaled down by a factor K . This preprocessing
step ensures that all h(u) is integer between 0 and � n

ε
�.

Phase2:DynamicProgramming In the secondphase,weusedynamicprogramming
to find an optimal solution for the MMR problem instance (G, I, h) Now, given the
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Fig. 3 The tree TI root at I

tree G = (V, E) with |V | = n, and the root I . In order to describe the dynamic
algorithm, we use the following the notations:

– T u : The sub-tree rooted at u in TI , with the set of vertices V u and the set of edges
Eu .

– t (u): The outcoming degree of node u.
– u1, u2, . . . , ut (u): represent children of u.
– T u

i : The i-th sub-tree of tree rooted at u i.e, the subtree rooted at i-th u’s child.

We define the following recursion functions:

– Fu(p): The minimum total costs when removing a set of nodes in T u so that the
total benefits gained on T u is at least p.

– Fu
i (p): The minimum total costs to remove a set of nodes in T u

i so that the total
benefits gained on T u

i is at least p.
– Hu

i (p): The minimum total costs when removing the set of nodes in subtrees
{T u

1 , T u
2 , . . . , T u

i } so that the total benefits gained is at lest p, where i = 1 . . . t (u).

The core of the dynamic algorithm is to compute Fu(p) and Hu
i (p) through the

following recursions:

Fu(p) =
{
min{Hu

t (u)(p), c(u)}, If h(u) ≥ p
Hu
t (u)(p), Otherwise

,∀p = 1...�n
2

ε
� (12)

Fu
i (p) = min

q=1...p
{Hu

i−1(q) + Fu
i (p − q)},∀p = 1...�n

ε
�, i = 1 . . . t (u). (13)

The basic cases are as follows.

Fu(p) =
{
0, p ≤ 0

+∞, p > � n2
ε

� (14)

Fu
i (p) =

{
0, p ≤ 0

+∞, p > � n2
ε

� (15)
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If node u is a leaf.

Fu(p) =
{
c(u), If h(u) ≥ p
+∞, Otherwise

(16)

Finally, the maximum objective for instance (G, I, h′) is given at the root u by:

OPT (T, I, h′) = max{p|Fu(p) ≤ C} (17)

Lemma 2 Algorithm 2 finds an optimal solution for T-MMR instance (G, I, h′) has
the complexity of O(ε−2n5)

Algorithm 2: FPTAS for T-MMR
Data: G = (V, E, w), I, d, ε > 0.
Result: A

1 Phase 1: Preprocessing
2 Find sub-tree TI of G root I has depth d.
3 CalBen(TI , u),∀u ∈ TI
4 B = max{h(v)|v ∈ V, c(v) ≤ L}, K = εB

n

5 Let h′(u) = � h(u)
K �

6 Phase 2: Dynamic Programming algorithm
7 Compute Fu(p), Fu

i (p) using the recursions (12) and (13)
8 Find an optimal solution, call A′, by tracing from max{p|Fu(p) ≤ L}
9 Return A′

Proof The accuracy of the dynamic programming algorithm comes from the sub-
optimal structure of the problem. For calculation Fu(p), the major portion of running
time is to compute Fu

i (p). Since node u has maximum n − 1 children and q ≤ p ≤
� n2

ε
�. The running time to compute is O(n · � n2

ε
� · � n2

ε
�) = O(ε−2n5) ��

Theorem 3 Algorithm 2 is FPTAS for T-MMR.

Proof Let A∗ be an optimal solution of T-MMR instance I1 = (G, I, h) with the
objective value OPT = h(A∗). A′ is an optimal solution of T-MMR instance I2 =
(G, I, h′) by running Agorithm 2 with the objective value OPT ′ = h′(A), with h′(.)
is value of for I2.We see that A′ is feasible solution of I1 since it satisfies the condition
that the highest cost is L . We need to prove:

h(A′) ≥ (1 − ε) · h(A∗) (18)

Due to rounding down h′(u) in line 4 in Agorithm 2, we have:

h(u) ≥ K · h′(u), h′(u) ≥ h(u)

K
− 1
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Therefore:

h(A′) ≥ K · h′(A′) ≥ K · h′(A∗) ≥ h(A∗) − n · K = OPT − ε · M

Since we filtered nodes u with c(u) > L , we have OPT ≥ M . Therefore,

h(A′) ≥ OPT − ε · M ≥ (1 − ε) · OPT

Thus the objective of A′ is within a factor 1 − ε of OPT i.e. Algorithm 2 is (1 − ε)

approximation for 0 < ε < 1 for T-MMR. Combining lemma 2 this alg. has a time
complexity of O(ε−2n5) so it is a FPTAS ��

4.2 Approximation algorithm for general case

We next introduce our (1 − 1/
√
e)-approximation algorithm. We first present the

following lemmas and theorems.

Lemma 3 σd,E (S, X) is monotonically decreasing function of the set of edges X to
be deleted.

Lemma 4 The function σd,E (S, X) is supermodular, i.e. for X ⊆ Y ⊂ E and ∀e ∈
E \ Y then:

σd,E (S, X) − σd,E (S, X ∪ {e}) ≥ σd,E (S,Y ) − σd,E (S,Y ∪ {e}) (19)

The proofs of Lemmas 3 and 4 are presented in “Appendix”.

Theorem 4 The benefit function h(A) is monotone:

h(A) ≤ h(T ) (20)

and submodular function:

h(A ∪ {v}) − h(A) ≥ h(T ∪ {v}) − h(T ), (21)

where ∀A ⊆ T ⊂ V, v /∈ T

Proof Removing a vertex u is equivalent to the influence passing through edges
adjacent to it blocked. Hence, σd(S, A) = σd,E (NE (A)). For vertex v ∈ V then
NE (A) ⊆ NE (A + {v}) combining with Lemma 3, we obtain that σd(S, A) is mono-
tonically decreasing which infers that h(A) is monotonically increasing.
Denote ET,v = NE (T +{v})\NE (T ), EA,v = NE (A+{v})\NE (A). Due to A ⊆ T
the set of edges adjacent to v but not adjacent to any vertices in T is subset of set of
edges adjacent with v but not adjacent any vertices in A, we have ET,v ⊆ EA,v and
NE (A)∪ ET,v ⊆ NE (A)∪ NE (v) = NE (A+{v}). Using Lemmas 4 and 3, we have:

123



1216 J Comb Optim (2018) 35:1202–1240

σd(S, A) − σd(S, A + {v}) = σd,E (S, NE (A)) − σd,E (NE (A + {v}))
≥ σd,E (S, NE (A)) − σd,E (S, NE (A) ∪ ET,v)

≥ σd,E (S, NE (T )) − σd,E (S, NE (T ) ∪ ET,v)

= σd(T ) − σd(T + {v})

Combine with the definition of (Eq. 5) we have:

h(A + {v}) − h(A) ≥ h(T + {v}) − h(T )

This has completed the proof ��
In Algorithm 3, we make a greedy strategy. In each step, we select a node u that
maximizes the marginal benefit over the cost ratio if the cost of u is not greater than
the remaining budget. Let A be the set of currently selected vertices, the marginal
benefit of node u over the cost ratio is calculated by the formula:

δ(v) = h(A ∪ v) − h(A)

c(v)
,∀v ∈ V \ A (22)

The algorithm terminates when at least one of the two conditions occurs: no bud-
get remains, or no node can be added to A. In the case that all nodes have the

Algorithm 3: Greedy algorithm
Data: G = (V, E, w), L , d, S.
Result: A

1 A ← ∅;
2 U ← Nd (S);
3 repeat

4 δ(v) = h(A ∪ v) − h(A)

c(v)

5 u = argmaxv∈U,c(v)≤L δ(v)

6 if c(A ∪ u) ≤ L then
7 A ← A ∪ u
8 end
9 U ← U \ u

10 until U = ∅;
11 Return A;

same cost, Algorithm 3 achieves an approximation ratio of 1 − 1/e. However, with
different node costs, Algorithm 3 can have unbounded approximation ratio and
it gives even bad results. For example, considering the directed network contain-
ing t + 2 nodes V = {I, u, v1, v2, . . . , vt }, I is a source node, the set of edges
E = {(I, u), (I, v1), (v1, v2), (v2, v3), . . . , (vt−1, vt )} and the weight of all edges is
equal to 1. Let the cost c(u) = 1−ε, c(vi ) = t,∀ i = 1 . . . t and the budget L = t . The
optimal solution is node v1 which achieves a benefit of t . Algorithm 3 only chooses
node u since it has the maximum benefit gained over cost ratio 1/(1 − ε), resulting
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benefit is 1. Next, we inherit idea of Khuller et al. (1999) to modify the Algorithm 3
to achieve a constant approximation ratio. First, we remove all nodes that cost more
than the budget because they are not feasible solutions. Let A1 be selected set of nodes
by Algorithm 3. We will consider another candidate solution vmax , which is the node
that has the largest benefit. We compare the benefit of A1 and vmax , then output the
one with higher benefit. The process is summarized in Algorithm 4.

Theorem 5 Algorithm 4 provides a (1− 1√
e
)-approximation to findmax h(S) problem.

Algorithm 4: Improved Greedy Algortihm (IGA)
Data: G = (V, E, w), L , d, S.
Result: A

1 U ← remove all nodes having cost greater than L from V
2 A1= Result of Greedy;
3 vmax = argmaxu∈U h(v)

4 A = argmax{h(A1), h(vmax )}
5 Return A;

Proof Straightforward based on Khuller et al. (1999). ��
Complexity Let R be the maximum time needed to calculate the value of h(A),∀A ⊆
V . Algorithm 3 runs in O(n2R) where n is the number of nodes, k is the number of
iterators. umax can be determined inO(nT ) time. Hence, Algorithm 4 runs inO(n2R).
Note that we can improve the approximation ratio to 1−1/e by inheriting greedy with
partial heuristic enumeration (Khuller et al. 1999). However, the time complexity of
O(n4R) will become unfeasible. The difficulty in implementing the Algorithm 4 is
computing. Kempe et al. (2003) used Monte–Carlo simulations method to estimate
the influence function and this method can be applied for the algorithm. However, it
is hard to apply to large graphs due to its high complexity. Therefore, to speed up the
Algorithm 4, we will propose Speed-up Greedy (SA) algorithm based on two aspects:
(1) simplifying the source nodes S into super source node I , and (2) and fast updating
the function based on characteristics of generated samples.

4.2.1 Speed-up of the improved greedy algorithm

In this subsection, we apply GREEDY-LT method proposed by Zhang et al. (2016b)
which is the state-of-the-art method to Speed-up IG algorithm. We first simplify the
MMR problembymerging set source S = {s1, s2, . . . , sp} into a supper source node I .
In T-LT model if a healthy node has multiple neighbors which are source nodes, it will
have a new edge weight which would be the sum of weights. For example, if node u
has two source neighbors s1 and s2, the weight of merged node I would be: w(I, u) =
w(s1, u) + w(s2, u). The details of this method are presented in Algorithm 5 and
equivalence between the before and after instances ofMMR is proved in Proposition 1.
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Proposition 1 Given an instance of theMMR instance (G, S, w) under T-LT model,
Algorithm 5 outputs an equivalent instance (G ′, I, w′) where I is the only source of
misinformation node in the new graph G ′.

Proof We will prove this proposition by induction. If a node v connects to two source
nodes u1 and u2. In T-LT model, the influence of u1 and u2 to v will be w(u1, v) +
w(u2, v) which is the same as the total influence of output of Algorithm 5 (line 9).
When v has i + 1 incoming neighbours source nodes u1, u2, . . . , ui+1. Denote by
w′
i (I, v) is influence after merging i nodes. When merging a new source node ui+1,

the total influence is w′
i+1(I, v) = w′

i (I, v) + w(ui+1, v) which is the same as the
output of Algorithm 5 (line 9) ��

Algorithm 5: Mere source nodes S into supper source I -Merge(G, S)

Data: G = (V, E, w), S.
Result: G′, w′ and supper source node I

1 G′ ← G
2 Add node I to G′
3 for s ∈ S do
4 if there exits edge (s, v) then
5 if (I, v) /∈ G′ then
6 Add edge (I, v) to G′
7 w′(I, v) = w(s, v)

8 else
9 w′(I, v) = w′(I, v) + w(s, v)

10 end
11 Remove (s, v) from G′
12 end
13 end
14 Remove all nodes in S from G′
15 Return G′, I

Complexity As the same method in Zhang and Prakash (2015), the complexity of
alg. 5 is O(p + |N (S)|), where |N (S)| is number of neighbours of S.

Next, to speed up Algorithm 4, we propose the Speed-up Greedy algorithm (SGA)
summarized in Algorithm 6. Firstly, we merge S into a supper source node I and we
obtain the new graph is G ′ (line 2). LetR be the set of η samples generated from G ′.
In each sample graph g ∈ G(G ′), all nodes reachable from I is a tree root at I . Since
the time constraint is d, denoted I dI ∼ g is sub-tree of T root at I with height at most
d, Let L denote the set of η sample graphs and T = {T d

I ∼ g|g ∈ G(G ′)}, h(u, TI )
denotes the benefit of node u in T d

I , we have h(u, TI ) = |{v|v ∈ subtree(u)}| is the
number of nodes that under the sub-tree root at u (including u) in TI . After that, we
apply the framework of Algorithm 4 with the marginal benefit of node u over tree TI
is:

h(I, T d
I ) − h(I, T d

I \ u) = h(u, T d
I ) (23)
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The problem of computing the h(·) exactly has been shown to be #P-Hard. Thus
we apply the Sample Average Approximation (SAA) framework to approximate the
function h(·) in near-linear time by using empirical average over set L. That is,

h(A) ≈ ĥ(A) = 1

η

∑

T d
I ∼g,g∈L

h(I, T d
I \ {A}) (24)

The marginal benefit of node u on G is approximated by the average marginal benefit
for all tree T d

I ∈ L.

δ(A, u) ≈ δ̂(A, u) = ĥ(A) − ĥ(A \ {u})
= 1

η

∑

T d
I ∼g,g∈L

h(I, T d
I \ {A}) − h(I, T d

I \ {A ∪ u}) (25)

We choose the node that has the largest marginal benefit δ̂(A, u) in line 7 and choose
the set of nodes A1 by framework of Algorithm 3 (lines 8–19). We remove the node
which is picked into A1 and update function h(u, TI ), u ∈ TI (line 16) in two cases
as follows: (1) for children of u, we can remove them because they are not connected
to I , (2) for any ancestor v of u, h(v, T d

I \ u) = h(v, T d
I ) − h(u, T d

I ), this task can be
done in O(1). The algorithm has an approximation ratio of 1 − 1/

√
e − ε where ε is

the approximation factor for estimating h(·).
Complexity of SG algorithm Denoted md = |Ed |, nd = |Vd |. Generating set tree

T can be done by using BFS algorithmwith the depth d, this task takesO(η(md +nd))
(line 4). Calculating h(TI , u),∀u ∈ TI can be done using Algorithm 1, the running
time is O(ηnd). For greedy phase, in each iterator, choosing node u which has the
largestmarginal benefit needsO(nd ), updating the set of treesL needsO(ηnd ). Hence,
the total time of this phase isO(k1ηnd) where k1 is the number of iterations of greedy
pharse (lines 8–19). Therefore, Algorithm 6 runs in O(η(md + k1nd)).

5 DAG-based algorithm

In the previous section, we introduced the approximation algorithms. However, diffi-
cult to apply these algorithms for large networks due to the fact that it estimate h(A)

based on Monte–Carlo simulation method which runs for long time. Therefore, in this
section, we will introduce an effective heuristic algorithm which is scalable for large
networks. First, we are going to extract directed acyclic graph (DAG) from original
graph and apply it to estimate the influence propagation. Whereby, we will provide a
metricmeasuring the role of a node inmisinformation propagation, called propagation
role. Next, we put it into framework of Algorithm 4 instead of marginal benefit. To
speed-up algorithm, we narrow candidate for solution set in DAG. The details of this
algorithm are described in next subsections.
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Algorithm 6: Speed-up Greedy (SG) algorithm
Data: Graph G = (V, E, w), source S, budget L > 0
Result: set of nodes A

1. U ← V
2. (G′, I ) ← Merge(G, S)

3. foreach G′ do
4. Grenerate set η live-edge graphs L and set tree T .

5. For each T d
I ∈ T , calculate h(u, T d

I ) for all u ∈ T d
I (Algorithm 1)

6. end

7. vmax ← argmaxu∈V,c(u)≤L
1
η

∑
TI ∈L

(
h(I, T d

I ) − h(I, T d
I \ v)

)

8. repeat
9. cmin ← argminv∈V c(v)

10. If cmin + c(A1) > L then break

11. u ← argmaxv∈V 1
c(v)

1
η

∑
T d
I ∈T

(
h(I, T d

I ) − h(I, T d
I \ v)

)

12. U ← U \ {u}
13. if c(A1) + c(u) ≤ L then
14. A1 ← A1 ∪ {u}
15. foreach T d

I ∈ T do
16. If u ∈ T d

I , remove node u and update h(v, T d
I ), ∀v ∈ T d

I .
17. end
18. end
19. until U = ∅;
20. A ← argmaxvmax ,A1 {h(umax ), h(A1)}
21. return A;

5.1 DAG construction

Recent studies have shown that the influence of a node is very small for a long path
(Chen et al. 2010a) so we ignore these paths. On the other hand, the union ofmaximum
influence paths is a good way to approximate the influence (Chen et al. 2010a, 2012,
2010b; Nguyen and Zheng 2013). Furthermore, for the time constraint of d in the
MMR problem, we only consider paths has length at most d. Therefore, we use the set
of paths which have two characteristics above as a basis for building the DAG. The
following definitions are the basis for our method.

Definition 2 (Influence path) For a path P(u, v) = {u = x1, x2, . . . , xl = v}, of
length l from a node u to v, define the influence of the path, Inf(P(u, v)), as:

Inf(P(u, v)) =
l−1∏

i=1

w(xi , xi+1) (26)

Definition 3 (Maximum influence path) TheMaximum Influence PathMI P(G, u, v)

from u to v is defined as:

MIP(G, u, v) = arg max
P∈P(G,u,v)

{Inf(P)} (27)
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Fig. 4 DAG construction by Algorithm 7: a graph G′ with source node I , b MIOA(G, I, d, θ) for
d = 2, θ = 0.051, c DAG was constructed from MIOA(G, I, d, θ) by add a valid edge (v2, v4)

Definition 4 (Maximum influence path within length constraint) TheMaximum Influ-
ence Path MI Pd(G, u, v) from u to v within length d is defined as:

MI Pd(G, u, v) = arg max
P∈P1(G,u,v)∪P2(G,u,v)...∪Pd (G,u,v)

{Inf(P)} (28)

MI Pd(G, u, v) is different from MI P(G, u, v). For MI Pd(G, u, v), we consider all
paths from u to v which have the maximum length of d and then choose the path that
has the greatest influence. Based on MI Pd(G, u, v), we define Maximum Influence
Path Out-Arborescence with Length Constraint as follows:

Definition 5 For a graph G, an influence threshold θ , the Maximum Influence Out-
Arborescence of a node u ∈ V, MIOA(G, u, d, θ) with length of d, is:

MIOA(G, u, d, θ) =
⋃

v∈V,Inf(MI Pd (G,u,v))≥θ

MI Pd(G, u, v) (29)

MIOA(G, u, θ) is defined as the union of all MI Pd(G, u, x),∀x ∈ V with influence
path greater than a threshold θ and the maximum length of d. MIOA(G, u, d, θ)

gives the local influence regions (given lower bound) of u within d hops, so with
different values of θ wehavedifferent local influence regions sizes.MIOA(G, u, d, θ)

can be computed by modifying Dijkstra algorithm in graph Gd with edge weight
− logw(u, v) for edge (u, v).

Now, we use MIOA(G, I, d, θ) to build the DAG and use it to approximate the
influence from node to node in graph. DAG is a finite directed graph with no directed
cycles which has at least a topological ordering. In the MIOA(G, u, d, θ) tree, we
add edges from the node with low depth to node with high depth (or high height to
low height) in original graph, we obtain a DAG. d(I, u) denotes the depth of node u
on the tree MIOA(G, I, d, θ). The DAG constructing procedure is summarized in
Algorithm 7 (Fig. 4).

In DAG, we design a metric to measure the propagation role of a node u in the
diffusion from source I . The metric combines the two following aspects: (1) influence
from I to u, and (2) influence from u to the other nodes in DAG. We define them as
fin(u) and fout (u) respectively,
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Algorithm 7: Construct DAG D from G = (V, E, w) - DAG(G, S)

Data: A graph G, misinformation source S and threshold θ .
Result: DAG D

1 (G′, I ) ← Merge(G, S, θ)

2 D = MIOA(I,G′, d, θ)

3 foreach edge e = (u, v) ∈ G′|u, v ∈ D do
4 if d(I, u) < d(I, v) then
5 D = D ∪ (u, v)

6 end
7 end
8 return D

fin(u) =
∑

P∈P(D,I,u)

Inf(P) (30)

fout (u) =
∑

v∈U

∑

P∈P(D,u,v)

Inf(P) (31)

Finally, the propagation role of node u defined is,

r(u) = fin(u) · fout (u) (32)

For example, in Fig. 6, fin(v1) = w(I, v1) = 0.6, fout (v1) = 1+0.2·1+0.3·1 = 1.5,
r(v1) = 0.6·1.5 = 0.9. Similarly, r(v2) = 0.75, r(v3) = 0.12, r(v4) = 0.23, r(v6) =
0.2. Chen et al. (2010b) design a linear-time to estimate influence from seed set node

Algorithm 8: Calculate the Propagation Role of all nodes in D
Data: DAG D, supper source node I
Result: r(u), ∀u ∈ D

1 fin(u) ← 0, fout (u) ← 1,∀u ∈ D
2 fin(I ) = fout (I ) ← 1
3 topoList ← ∅
4 Topologically sort all nodes from I in D into a sequence topoList based on DFS
5 foreach u ∈ topoList (from the first to the last) do
6 foreach v ∈ N−(u) do
7 fin(v) ← fin(v) + fin(u) · w(u, v)

8 end
9 end

10 foreach u ∈ topoList (from the last to the first) do
11 foreach v ∈ N+(u) do
12 fout (v) ← fout (v) + fout (u) · w(v, u)

13 end
14 end
15 return fin(u) · fout (u), u ∈ D

on DAG. We use this method to calculate fin(·), fout (·) and r(·). The procedure is
showed in Algorithm 8. We first assign fin(I ) = fout (I ) = 1, fin(u) = 0, fout (u) =
1,∀u ∈ D \ I and topological sort all nodes inD from I using DFS.We then calculate
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the influence from I to each node in order from first to last (lines 5–9). We use node
u to update the influence from I to its out-neighbour v (line 7). For fout (u), we do
the same above works from the last to the first of list. This work can be performed
concurrently with DFS topological sort.

5.2 Algorithm description

The heuristic algorithm is proposed based on a combination of the following aspects:
(1) constructingDAGfromoriginal graph and calculating the propagation rolemeasure
of each node 8, (2) using the framework of Algorithm 4 in which margain benefit
be replaced by propagation role. The algorithm is presented in Algorithm 9. The

Algorithm 9: Remove nodes based Propagation Role in DAG (PR-DAG)
Data: Graph G = (V, E, w), S = {s1, s2, . . . , sq }, budget L > 0, θ, d
Result: set of nodes A.

1. Construct graph D = DAG(G, S, θ) (alg. 7)
2. Calculate r(u), ∀u ∈ D (alg. 8)
3. U ← VD \ I
4. vmax ← argmaxu∈U,c(v)≤L ( fin(u) · fout (u))

5. Gcur ← G′
6. repeat
7. cmin ← argminv∈U c(v)

8. If cmin + c(A1) > L then break;
9. Construct graph D = DAG(Gcur , I ) (alg. 7)
10. Calculate fin(u) and fout (u), ∀u ∈ D (alg. 8)
11. rcmax ← 0; umax ← null
12. foreach u ∈ U do
13. if c(A1) + c(u) ≤ L then
14. if r(u)/c(u) > rcmax then
15. rcmax ← r(u)/c(u)

16. umax ← u
17. end
18. else
19. U ← U \ {u}
20. end
21. end
22. U ← U \ {umax }; Gcur ← Gcur \ {umax }
23. A1 ← A1 ∪ {umax }
24. until U = ∅;
25. D1 ← DAG(G \ A1, I ), D2 ← DAG(G \ vmax , I )
26. return A1 if EstInf(D1, I ) < EstInf(D2, I ) else vmax

algorithm starts by constructing the DAG graph from original graph G (line 1). Then,
it selects the node that maximizes r(·)with the cost less than the budget L is performed
(line 4). From line 5 to 24, the greedy phase is showed. The set vertices of D except
I is considered as candidate set in order to choose the solution (line 3). For the repeat
loop (lines 6–23), the node that has the ratio of propagation role per cost in current
DAG is selected in each iteration. Note that, the current DAG is built from residual
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graph. The nodes has cost more than the remaining costs are remove from candidate
setU (line 19). This phase stops when the candidate is empty (line 24) or no node has a
cost that is less than the remaining cost (line 8). Finally, we approximate the influence
of I on current graph by its influence on D,

σ(I ) ≈ EstInf(D, I ) =
∑

u∈D
fin(u) (33)

Algorithm compares the influence of sourcewhen remove set A1 and vmax then returns
the solution with the smaller propagation influence (line 26).

5.3 Running time

Next, we consider the worst-case running time of PR-DAG. Suppose that nθ ,mθ is
the largest number of nodes and edges in D. Calculating MIOA(G, I, d, θ) from
G takes O(mθ + nθ log nθ ), so constructing D takes O(mθ + nθ log nθ ) (line 1).
Calculate propagation role of each node u ∈ D using Algorithm 8 takes O(nθ + mθ )

time complexity (line 2). For the repeat loop from lines 6 to 32, denote k1 is the number
of iterators. For each iterator, we have to construct DAG and calculate the propagation
role of each node. This work can be done in O(nθ + mθ ) + O(nθ + nθ log nθ ) =
O(mθ + nθ log nθ ). The selection of nodes that maximize ratio propagation role per
cost can be done in linear time. Hence, the total time of loop isO(k1(mθ +nθ log nθ )).
This is also the complexity of the algorithm.

6 Experiments

In this section, we are going to experimentally evaluate and compare the performance
of our proposed algorithms to several widely used methods in the following aspects:
(1) objective of solution, and (2) running time on various real social network datasets.

6.1 Experiment settings

We have implemented the proposed algorithms in Python 2.7. All experiments are
conducted using a 2 × Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz with 8 ×
16GB DIMM ECC DDR4 @ 2400MHz main memory.

Baseline compared For a comparative analysis of the performance of our proposed
algorithms, we will compare our proposed algorithms SG, PR-DAG to various base-
line algorithms.

– Random: Randomly select nodes within budget L among the Nd(S).
– DegreeCentrality (DC): The heuristic algorithmbase centralitymeasure.We select
nodeswith the highest degree among the Nd (S) andwe keep on adding the highest-
degree nodes until total costs of the selection of nodes exceed L .
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Table 2 Datasets

Dataset Gnutella
Leskovec
et al. (2007)

Oregon
Leskovec
et al. (2005)

Epinions
Richardson
et al. (2003)

EU email
Leskovec et al.
(2007)

Num. of nodes 6301 10,670 75,879 265,214

Num. of edges 20,777 22,002 508,837 420,045

Type Directed Undirected Directed Directed

Avg. degree 3.29 2.06 6.70 1.58

6.1.1 Datasets

We run our experiment on multiple real datasets. In addition, we try to pick datasets
of various sizes from different domains, in which the MMR problem is especially
applicable. Table 2 shows datasets we used.

Gnutella The snapshot of the Gnutella peer-to-peer file sharing network in August
2002. Nodes represent hosts in the Gnutella network topology and edges represent
connections between the Gnutella hosts (Leskovec et al. 2007). It contains 20,777
links among 6,301 hosts.

Oregon This is a graph of Autonomous Systems (AS) peering information inferred
from Oregon route-views in March 31 2001 and May 26 2001 (Leskovec et al. 2005).

Epinions The Epinions dataset was extracted (Richardson et al. 2003) and obtained
from http://snap.stanford.edu/data. This is a who-trust-whom online social network
of a a general consumer review site Epinions.com. Members of the site can decide
whether to “trust” each other. All the trust relationships interact and form the Web
of Trust which is then combined with review ratings to determine which reviews are
shown to the user.

EU Email The network was generated using email data from a large European
research institution. For a period from October 2003 to May 2005 (18 months) we
have anonymized information about all incoming and outgoing emails of the research
institution. Given a set of email messages, each node corresponds to an email address.
There is a directed edge between nodes i and j , if i sends at least one message to j .

6.1.2 Parameter settings

Calculating the edge weights We assign the weights of edges in LT model according
to previous studies (Goyal et al. 2012; Chen et al. 2010b; Khalil et al. 2014; Kempe
et al. 2003; Zhang et al. 2016b). The weight of the edge (u, v) is calculated as follows:

w(u, v) = 1

d−(v)
(34)

Choice of Source nodes We use the methods in Nguyen et al. (2013); Zhang et al.
(2016a) to select the source of misinformation. Accordingly, the nodes generating
misinformation often have a small number of out-neighbors but are typically located in

123

http://snap.stanford.edu/data


1226 J Comb Optim (2018) 35:1202–1240

the vicinity of celebrities (high-degree nodes). Therefore, sources are chosen randomly
from the neighbors of high-degree nodes. For each dataset, we choose a set of source
nodes with size |S| = 100.

In all experiments, we choose different θ for each different social network. Cha
et al. (2009) showed that information mostly propagates within 2 to 5 hops so we
choose d = 3, 4, 5. To get the expected benefits after removing the set of nodes, we
run Mote–Carlo simulation 10,000 times and take the average.

6.2 Experiment results

6.2.1 Comparison of solution quality of MMR in the case of general cost

In this experiment, we compare algorithms when d varies, the budget L =
{10, 15, 25, 40, 60, 80, 100} and the costs of node are uniformly distributed in[1.0,
3.0]. Figures 5, 6, 7, and 8 show the performance ofSG,PR-DAG,DC andRandom
algorithms on Oregon, Epinion, Gnutella and EU Email networks. On avarage, we
observe that SG and PR-DAG give better performance compare to the others.

ComparePR-DAGwithSG: for Oregon network,PR-DAG is better 1.37 to 12.6%
than the result of SG. For Epinions, SG is better than the result of PR-DAG. There
is not much diffirent between SG and PR-DAG when d = 3, 4 (2.6 and 4.8% times
better). In case of d = 5, the distance is enlarged. For Gnutella,PR-DAG is better than
SG when d = 3 and worse than SG when d = 4, 5. In EU Email, the running time
of SG is over 72h, so we ignore SG on above dataset. However, as shown in Fig. 8,
PR-DAG still performs better than the others. This shows that for large networks (with
265K nodes and 420K edges), PR-DAG finshed within allowed time and gives good
performance. Comparing with DC algorithm, the objective function of PR-DAG and
SG is 1.05 to 1.72 times better than DC. As the cost of selection of nodes increases,
the gap between PR-DAG and the others is getting larger. Random algorithm has
a much worse results, indicating that a careful selection solution is critical to block
misinformation propagation.

6.2.2 Comparison of solution quality of MMR in the case of unit-cost version

To observe more clearly on the performance of these algorithms, we have conducted
experiments with the case of all node costs are equal to 1 on datasets. We set L varies
from 1 to 50, and d varies from 3 to 5. Figures 9, 10 and 11 display the objective
function on Gnutella, Oregon and Epinions, respectively. PR-DAG is very close to
SG. The larger value of k, the smaller the gap betwen PR-DAG and SG. Especially,
with cost greater than 25,PR-DAG and theSG achieve the same level of performance.
It is very clear to prove that PR-DAG can find the solution during the constructing
DAG from original graph which effectively approximate the influence between nodes.
Like the previous test case, for EU Email, the running time of SG is over 72h, so we
ignore SG on above dataset. Therefore, SG algorithm is not feasible when finding
the solution on large networks. Comparing PR-DAGwithDC, PR-DAG outperforms
DC algorithm in term of benefit of selected nodes. On avarage, PR-DAG is 1.51 times
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Fig. 8 Comparison onMMR
problem for EU Email with
general cost and d = 3
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better on Gnutella, 5.12 times better on Oregon, 1.43 times better on Epinions, and
1.14 times better on EU Email. These results are also consistent with what have been
observed in the previous test case.

6.2.3 Scalability

In this subsection, we show some running time results to demonstrate scalability.
Tables 3 and 4 show the running time for PR-DAG and SG. We did not show the
running time of Random and DC because they are fast heuristics that finish in the
order of seconds. As expected,PR-DAG is much faster thanSG. In average,PR-DAG
is up to 32.5 and 45.4 times faster SG on general cost and unit-cost case, respectively.
We also show detail the running times of PR-DAG and SG on Oregon in Figs. 12 and
13, for other networks we got similar results. We observe that as L increases, the gap
betweenPR-DAG andSG increases which is consistent with their analysis theoretical
complexities. For the large-scale dataset EU Email, PR-DAG took less than 11h to
select the set nodes, while SG could not finish in 72h. This again emphasizes the
scalability of PR-DAG for MMR on large-scale networks.

7 Conclusion

In this paper, we investigated a new NP-hard problem of Maximizing Misinformation
Restriction with the aim of maximizing the influence reduction of misinformation
source on OSNs by removing the set of nodes within time constraints and the limited
budget. We proved the hardness results, and provided the approximation algorithm to
solve the problem. In addition, due to the high runtime complexity of this approxima-
tion algorithm, a much more efficient heuristic algorithm was also proposed, named
PR-DAG. This algorithm shows large performance advantage in both solution quality
and running time on real social networks.
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Table 3 Running time (s) of PR-DAG and SG in general cost version when L = 100

Dataset d = 3 d = 4 d = 5

PR-DAG SG PR-DAG SG PR-DAG SG

Oregon 800.30 20,556.32 880.92 26,585.70 839.97 27,290.34

Epinions 9255.00 18,421.07 10,084.91 24,359.07 9984.81 26,665.14

Gnutella 172.53 1152.47 440.92 1721.73 676.95 1996.49

EU Email 19,973.13 –

Runs terminated when running time t > 72h (shown by ’–’)

Table 4 Running time (s) of PR-DAG and SG in unit-cost version when L = 50

Dataset d = 3 d = 4 d = 5

PR-DAG SG PR-DAG SG PR-DAG SG

Gnutella 98.79 999.78 252.23 1442.99 386.64 1702.31

Oregon 584.58 22,525.60 574.98 24,931.68 588.10 26,713.52

Epinions 27,482.42 65,809.16 28,858.84 90,167.34

EU Email 39,014.17 –

Runs terminated when running time t > 72h (shown by ’–’)

Appendix

We let e = (u, v), f = (u′, v′), Ge(G \ X) is the set of sample graph where incoming
edge e = (u, v) is selected for node v, Ge(G \ X) is the set of sample graph where a
different incoming edge e = (y, v) is selected for node v and G∅(G \ X) is the set of
sample graph where no incoming edge e = (y, v) is selected for node v. According
to Khalil et al. (2014), we have the following results:

Proposition 2 (Khalil et al. (2014), proposition 1)For every live-edge g ∈ G∅(G\X),
there exits a corresponding live-edge graph g̃ ∈ Ge(G \ X) and vice versa. If g =
(V, Eg) then g̃ = (V, Eg ∪ {e}).

Proposition 3 (Khalil et al. (2014), proposition 2) G(G \ (X ∪{e})) ⊆ G(G \ X) and
furthermore G(G \ (X ∪ {e})) = Ge(G \ X) ∪ G∅(G \ X).

Proposition 4 (Khalil et al. (2014), proposition 3) Given f = (u′, v′) ∈ E \ X, v′ �=
v, let t = |G∅(G \ (X ∪ { f }))| then G∅(G \ X) can be partitioned into t sets {Φi }ti=1
such that, for every Φi there exits a corresponding gi ∈ G∅(G \ (X ∪ { f })) and vice
versa.

Proposition 5 (Khalil et al. (2014), proposition 4) For every Φi ⊆ G∅(G \ X) and its
associated gi ∈ G∅(G \ (X ∪ {e})), Pr[gi |G \ (X ∪ { f })] = ∑

H∈Φi
Pr[H |G \ X ].
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Proof of Lemma 3 We need to show that σd,E (S, X) ≥ σd,E (S, X ∪ {e}). The idea of
the proof is similar to the theorem 5 in Khalil et al. (2014). Using Proposition 2 and
3, we have:

σd,E (S, X) − σd,E (S, X ∪ {e}) =
∑

g∈G(G\X)

Pr[g|G \ X ] fd(g, S)

−
∑

g∈G(G\(X∪{e}))
Pr[g|G \ (X ∪ {e})] fd(g, S) =

∑

g∈Ge(G\X)

Pr[g|G \ X ] · fd(g, S)

+
∑

g∈G∅(G\X)

(
Pr[g|G \ X)] − Pr[g|G \ (X ∪ {e})]

)
· fd(g, S)

+
∑

g∈Ge(G\X)

(
Pr[g|G \ X)] − Pr[g|G \ (X ∪ {e})]

)
· fd(g, S)

Recall that e = (u, v), for g ∈ G∅(G \ X), we have:

Pr[g|G \ X ] − Pr[g|G \ (X ∪ {e})] = −w(u, v)
∏

v′ �=v

P(v′, g,G \ X) (35)

For g ∈ Ge(G \ X) we have P(v, g,G \ X) = P(v, g,G \ (X ∪ {e})) = w(e) which
leads to Pr[g|G \ X ] = Pr[g|G \ (X ∪ {e})], it infers:

σd,E (S, X) − σd,E (S, X ∪ {e}) =
∑

g∈Ge(G\X)

Pr[g|G \ X ] · fd(g, S)

+
∑

g∈G∅(G\X)

−w(u, v)
∏

v′ �=v

p(v′, g,G \ X) · fd(g, S)

Using prop. 2, for g ∈ G∅(G \ X) there exits a corresponding g̃ ∈ Ge(G \ X) and
Pr[̃g|G \ X ] = w(u, v)

∏
v′ �=v p(v′, g̃,G \ X). Therefore,

σd,E (S, X) − σd,E (S, X ∪ {e}) =
∑

g∈G∅(G\X)

Pr[̃g|G \ X ]
(
fd(g̃, S) − fd(g, S)

)

(36)

We can see that g is a subgraph of g̃, the set of vertices which can reach from S in g is
subset of the set of vertices which can reach from S in g̃. Hence, fd(g̃, S)− fd(g, S) ≥
0, which completes the proof. ��

Proof of Lemma 4 the idea of the proof is similar to that of theorem 6 in Khalil et al.
(2014). For edge f ∈ E , let t = |G(G\(X{ f }))|. From Proposition 4, we can partition
G∅(G \ X) into t sets {Φ}ti=1, rewrite (36) as:
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σd,E (S, X) − σd,E (S, X ∪ {e}) =
∑

g∈G∅(G\X)

Pr[̃g|G \ X ]
(
fd(g̃, S) − fd(g, S)

)

=
t∑

i=1

∑

g∈Φi

Pr[̃g|G \ X ]
(
fd(g̃, S) − fd(g, S)

)

(37)

Using similar reasoning to that in Eq. (36) in the proof of lemma 1 for G \ (X ∪ { f }),
we have:

σd,E (S, X ∪ { f }) − σd,E (S, X ∪ { f, e})
=

∑

g∈G∅(G\(X∪{ f }))
Pr[̃g|G \ (X ∪ { f })]

(
fd(g̃, S) − fd(g, S)

)
(38)

We will compare two Eqs. (37) and (38) term by term for each gi ∈ G∅(G \ X), i =
1, . . . , t . It can be divided into two cases: (1) Φi = {Xi } in case in gi has another
incoming edge to v′ not f , now the terms in two equations are equal; (2) in the case
in gi has only incoming edge to v′ is f , then Φi = {gi , g′

i }, we need to prove:

Pr[g̃i |G \ X ]
(
fd(g̃i , S) − fd(gi , S)

)
+ Pr[g̃′

i |G \ X ]
(
fd(g̃′

i , S) − fd(g
′
i , S)

)

≥ Pr[g̃i |G \ (X ∪ { f })]
(
fd(g̃i , S) − fd(gi , S)

)

(39)

Using prop. 5 in Khalil et al. (2014), we have:

Pr[g̃i |G \ (X ∪ { f })] = Pr[g̃i |G \ X ] + Pr[g̃′
i |G \ X ] (40)

Hence, inequality (39) is true if:

fd(g̃′
i , S) − fd(g

′
i , S) ≥ fd(g̃i , S) − fd(gi , S) (41)

Note that g̃′
i = (V, Egi ∪{ f }) and live-edge graphs are constructed in a way that each

node has at most one incoming edge.We can see that: a reachability path in g̃i is clearly
presented in g̃′

i , hence if removing edge e from g̃i results in unreachability of some

nodes in gi . Similarly, some nodes become unreachable when removing e from g̃′
i .

Removing edge e from g̃′
i may disconnect some additional nodes whose paths derived

from the source including edge f . Therefore, the reduction in reachable nodes when
removing edge e from g̃′

i is the same or larger than the reduction when removing e
from g̃i , it implies (41) is true. ��
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