
J Comb Optim (2018) 35:997–1008
https://doi.org/10.1007/s10878-018-0249-y

Edge-disjoint spanning trees and the number
of maximum state circles of a graph

Xiaoli Ma1 · Baoyindureng Wu1 · Xian’an Jin2

Published online: 27 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Motivated by the connection with the genus of unoriented alternating links,
Jin et al. (Acta Math Appl Sin Engl Ser, 2015) introduced the number of maximum
state circles of a plane graph G, denoted by smax(G), and proved that smax(G) =
max{e(H) + 2c(H) − v(H)| H is a spanning subgraph of G}, where e(H), c(H)

and v(H) denote the size, the number of connected components and the order of H ,
respectively. In this paper, we show that for any (not necessarily planar) graph G,
smax(G) can be achieved by the spanning subgraph H of G whose each connected
component is a maximal subgraph of G with two edge-disjoint spanning trees. Such a
spanning subgraph is proved to be unique and we present a polynomial-time algorithm
to find such a spanning subgraph for any graph G.

Keywords Spanning trees · Polynomial-time algorithm · State circle · Link

1 Introduction

All graphs considered in this paper are undirected, finite, may have parallel edges,
but have no loops. Let G = (V (G), E(G)) be a graph. The order and size of G are

Research supported by NSFC (No. 11571294, 11671336).

B Baoyindureng Wu
baoywu@163.com

Xian’an Jin
xajin@xmu.edu.cn

1 College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang,
People’s Republic of China

2 School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian, People’s Republic
of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-0249-y&domain=pdf

998 J Comb Optim (2018) 35:997–1008

denoted respectively by v(G) and e(G), i.e. v(G) = |V (G)|, e(G) = |E(G)|. A
graph is said to be trivial if it has only one vertex and nontrivial otherwise. The graph
without edges are empty graphs. The case V (G) = ∅ is sometimes also included in
the set of graphs and called the null graph. The degree dG(v) of a vertex v in G is
the number of edges incident with v. A graph is called k-regular if all vertices have
degree k. A nontrivial graph is called k-edge connected if at least k edges are needed
to be removed in order to disconnect the graph.

A subgraph H of G is called a spanning subgraph of a graph G if V (H) = V (G).
For a graph G, we use τ(G) to denote the maximum number of edge-disjoint spanning
trees inG. A subgraph obtained by vertex deletions only is called an induced subgraph.
For X ⊆ V (G), G[X] denotes the subgraph induced by X , i.e. G[X] = G − (V \X).

The union of two graphs G1 and G2 is the graph G1 ∪ G2 with vertex set V (G1) ∪
V (G2) and edge set E(G1) ∪ E(G2). The intersection G1 ∩ G2 of G1 and G2 is
defined analogously.

A graph which can be drawn in the plane E2 in such a way that edges meet only
at points corresponding to their common ends is called a planar graph, and such a
drawing is called a planar embedding of the graph or a plane graph. For undefined
notations and terminologies, we refer the readers to Bondy and Murty (1976).

A link L is the disjoint union of embeddings of circles S1’s (simple closed curves)
into the Euclidean 3-space E

3. A link diagram D is a planar representation of a
link L . Given a nontrivial connected plane graph G, we can construct an alternating
link diagram D(G) via the medial construction as shown in Fig. 1. The trivial graph
corresponds to a simple circle surrounding it, i.e. the trivial knot diagram. When G is
disconnected, the corresponding a link diagram will be the disjoint union of diagrams
corresponding to components of G.

For each crossing of a link diagram there are two ways to smooth the crossing: the
A-splitting (parallel to the edge of G) and the B-splitting (crossing the edge of G) as
illustration in Fig. 2. Let D be a link diagram. A state S of D is a selection for each
crossing to be A-split or B-split. Give a state S, making the corresponding split for
each crossing gives a number of disjoint embedded closed circles, called state circles,
for S. We call the state which possesses maximum number of state circles to be a
maximum state. Note that the maximum state may not be unique.

The idea of studying links via graphs has been proven to be successful in many
ways, for instance, the proof (Thistlethwaite 1987) of a near 100-year conjecture posed

G G D(G) m

Fig. 1 A plane graph G and its medial graph Gm (in red); turning vertices of Gm to crossings of link
diagrams: the alternating link diagram D(G) (in red) constructed from G (Color figure online)

123

J Comb Optim (2018) 35:997–1008 999

B

B

A A

 A−split B−split
Fig. 2 A crossing and its A-split and B-split

by Tait in the late 1900s. Let G be a plane graph. Jin et al. (2015) defined smax(G)

to be the number of state circles of a maximum state of D(G), call it the number
of maximum state circles of G. In other words, smax (G) is the maximum number of
cycles over all bent Eulerian partitions of Gm .

This number is an upper bound of the maximum number of circles of Seifert states
of the corresponding alternating link diagram, while the maximum number of circles
of Seifert states of an alternating link diagram is related to the genus of corresponding
unoriented alternating link, a classical geometric invariant of links (Cheng et al. 2010;
Liu and Zhang 2012). In addition, Nakamura et al. (2014) introduced the state poly-
nomial P(D; x) for a virtual link diagram D which includes a classical link diagram
as a special case. So, smax (G) is exactly the degree of P(D(G); x) plus one.

Jin et al. (2015) observed that

smax(G) = max
H⊆G

{e(H) + 2c(H) − v(H)}, (1)

where the summation is over all spanning subgraphs H of G and c(H) is number of
connected components of H . Thus, the notion of the number of maximum state circles
can be extended from planar graphs to any abstract graphs. Later we shall use s(H)

to denote e(H) + 2c(H) − v(H).
From (1), smax(G) is independent of the particular embedding of a planar graph

G. A weak point of (1) is that computing smax(G) for a plane graph G is still time
consuming. In Sect. 2, we show that

Theorem 1.1 For any graph G,

smax(G) = s(H) = e(H) + 2c(H) − v(H),

where H is the spanning subgraph of G whose each component C is a maximal
subgraph of G with τ(C) ≥ 2.

Note that “C is a maximal subgraph of G with τ(C) ≥ 2” in Theorem 1.1 means
that there is no other subgraph F of G with τ(F) ≥ 2 properly contains C , and thus
C is an induced subgraph of G. The uniqueness of H will be proved in Theorem 2.4.
In Sect. 3, we provide a polynomial-time algorithm to find the spanning subgraph H
of a graph G, as described in the above theorem. In the last Sect. 4, we pose a problem
for further study.

123

1000 J Comb Optim (2018) 35:997–1008

2 The proof and some consequences

A fundamental structural theorem on edge-disjoint spanning trees in a graph, found
independently by Nash-Williams (1961) and Tutte (1961), will play an important role
in our investigation.

Theorem 2.1 (The Nash-Williams–Tuttte Theorem) A graph G has k edge-disjoint
spanning trees if and only if, for every partition P of V (G) into nonempty parts,

e(G/P) ≥ k(|P| − 1),

where e(G/P) is the graph obtained from G by contracting each part of P into a
single vertex.

Note that the trivial graph K1 is a graph which contains k edge-disjoint spanning
trees for any k ≥ 1. The following result is an easy consequence of the above theorem.

Corollary 2.2 (Gusfield 1983) If a graph G is 2k-edge-connected, then τ(G) ≥ k.

To prove Theorem 1.1, we need the following lemma.

Lemma 2.3 Let G1 and G2 be two graphs with V (G1) ∩ V (G2) �= ∅. If τ(Gi) ≥ 2
for each i ∈ {1, 2}, then τ(G1 ∪ G2) ≥ 2.

Proof Assume that T1 and T2 are two edge-disjoint spanning trees of G1; T ′
1 and T ′

2
are two edge-disjoint spanning trees of G2. It is easy to see that T1 ∪ (T1′\E(G1)) and
T2 ∪ (T2′\E(G1)) are two edge-disjoint connected spanning subgraphs of G1 ∪ G2.
Each connected spanning subgraph of G1 ∪ G2 contains a spanning tree, thus τ(G1 ∪
G2) ≥ 2.
�
Theorem 2.4 For a graph G, there is unique spanning subgraph H of G such that
each component C of H is a maximal subgraph of G with τ(C) ≥ 2.

Proof By Lemma 2.3, for a vertex v ∈ V (G), there is unique maximal subgraph Gv

of G with v ∈ V (Gv) and τ(Gv) ≥ 2. So, the result follows.
�
Now we are ready to prove our main theorem.

Proof of Theorem 1.1 Suppose that H is a spanning subgraph of G such that
smax(G) = s(H) = e(H) + 2c(H) − v(H) with c(H) as small as possible. Let
H1, H2, . . ., Hk be all components of H , where k = c(H).

Claim 1 Each Hi is an induced subgraph of G for i = 1, 2, . . . , k.
Suppose that Hj is not an induced subgraph of G for some j . Then e(G[V (Hj)]) >

e(Hj). Let H ′ be the spanning subgraph of G obtained from H by replacing Hj with
G[V (Hj)]. It is clear that s(H ′) − s(H) > 0. This proves the claim.

It remains to show the following claim.
Claim 2 Each component Hi (1 ≤ i ≤ k) is a maximal subgraph of G with two

edge-disjoint spanning trees.

123

J Comb Optim (2018) 35:997–1008 1001

Without loss of generality, let H1 has no two edge-disjoint spanning trees. By
Theorem 2.1, there is a partition P of V (H1) : V11 , V12 , . . ., V1p such that

e(H1/P) < 2(|P| − 1),

where p = |P|. Let H ′ be the spanning subgraph obtained from H by replacing H1
with G[V11], G[V12] , . . ., G[V1p]. So,

s(H ′) − s(H) = [e(H ′) + 2c(H ′) − v(H ′)] − [e(H) + 2c(H) − v(H)]
= −e(H1/P) + 2(|P| − 1) > 0,

contradicting the choice of H .
Next we show that each Hi is a maximal subgraph of G with two edge-disjoint

spanning trees. Suppose that H1 is not maximal with respect to the above property. By
Claim 1, there exists an induced subgraph H ′

1 of G with two edge-disjoint spanning
trees such that H1 ⊆ H ′

1 and V (H1) ⊂ V (H ′
1).

LetA = { j | V (Hj)∩V (H ′
1) �= ∅with 1 ≤ j ≤ k} and let H∗

1 = G[∪ j∈AV (Hj)].
By Lemma 2.3, H∗

1 has two edge-disjoint spanning trees. By Theorem 2.1, for any
vertex partition P1 of H∗

1 , e(H∗
1 /P1) − 2(|P1| − 1) ≥ 0.

Let H ′′ be the spanning subgraph of G obtained from H by replacing those
components Hj , j ∈ A with H∗

1 . Let P1 be the partition of V (H∗
1) composed of

V (Hj), j ∈ A. Therefore,

s(H ′′) − s(H) = [
e(H ′′) + 2c(H ′′) − v(H ′′)

] − [e(H) + 2c(H) − v(H)]

= e(H∗
1 /P1) − 2(|P1| − 1) ≥ 0.

By the maximality of s(H), s(H ′′) = s(H). However, c(H ′′) < c(H), contradict-
ing the choice of H .

This completes the proof of the claim and thus the proof of the theorem.
�
Corollary 2.5 If G is a graph with τ(G) ≥ 2, then smax(G) = e(G) − v(G) + 2.

Proof By the assumption, G is itself a maximal subgraph of G with τ(G) ≥ 2. So,
by Theorem 1.1,

smax (G) = s(G) = e(G) − v(G) + 2c(G) = e(G) − v(G) + 2.

�
Corollary 2.6 If G is a 4-edge-connected graph, then smax(G) = e(G) − v(G) + 2.

Proof It is an immediate consequence of Corollaries 2.2 and 2.5.
�
For a plane graph G, f (G) denotes the number of faces in G.

Theorem 2.7 [Euler’s Formula (Bondy and Murty 1976)] For a connected plane
graph G, v(G) − e(G) + f (G) = 2.

123

1002 J Comb Optim (2018) 35:997–1008

By Theorem 2.7 and Corollary 2.6, we can immediately obtain the following result
in Jin et al. (2015).

Corollary 2.8 [(Theorem 4.4 in Jin et al. (2015)] If G is a 4-edge-connected plane
graph, then smax(G) = f (G).

Corollary 2.9 Let G be a graph. If τ(F) < 2 for any nontrivial subgraph F of G,
then

smax(G) = v(G).

Proof Let H be spanning subgraph ofG whose each component is amaximal subgraph
of G with two edge-disjoint spanning trees. By Theorem 1.1, smax(G) = e(H) +
2c(H) − v(H). By the assumption, each component of H must be trivial, implying
that H is empty. Therefore,

smax(G) = s(H) = e(H) − v(H) + 2c(H) = 0 − v(G) + 2v(G) = v(G).

�
Let Ik denotes the graphs with exactly two vertices joined by k parallel edges. Note

that there are just two connected cubic graph of order 4, i.e. K4 and G4 as shown in
Fig. 3 (the left one).

Corollary 2.10 If G is a connected cubic graph then

smax(G) =
{
3 = v(G) + 1, if G ∼= I3
v(G), otherwise

Proof Since G is cubic, v(G) is even. If v(G) = 2, the G ∼= I3. It is clear that
τ(G) ≥ 2, and thus by Corollary 2.5, smax(G) = e(G) − v(G) + 2 = 3 = v(G) + 1.

If v(G) = 4, then G ∼= K4 or G ∼= G4. It is clear that τ(G) ≥ 2. By Corollary 2.5,
smax(G) = e(G) − v(G) + 2 = 4 = v(G).

Next assume that v(G) ≥ 6.

Claim If F is a nontrivial subgraph of G with τ(F) ≥ 2, then F ∼= I2 or F ∼= G3.
Since τ(F) ≥ 2, we have e(F) ≥ 2(v(F)−1). On the other hand, since�(F) ≤ 3,

e(F) ≤ 3
2v(F). Combining the above two inequalities with v(G) ≥ 6, it follows that

Fig. 3 Two small graphs G4
and G3 with parallel edges

G G4 3

123

J Comb Optim (2018) 35:997–1008 1003

v(F) ≤ 4 and F �= G. So, we conclude that F ∼= I2 or F ∼= G3 (the right one as
shown in Fig. 3).

To apply Theorem 1.1, let H be the spanning subgraph of G whose each component
C is a maximal subgraph of G with τ(C) ≥ 2. By the above claim, each component
of H is isomorphic to K1, or I2, or G3. Let c1, c2 and c3 be the number of components
of H , which are isomorphic to K1, or I2, or G3.

⎧
⎨

⎩

c1 + 2c2 + 3c3 = v(H)

c1 + c2 + c3 = c(H)

2c2 + 4c3 = e(H)

By Theorem 1.1,

smax (G) = s(H)

= e(H) − v(H) + 2c(H)

= (2c2 + 4c3) − (c1 + 2c2 + 3c3) + 2(c1 + c2 + c3)

= c1 + 2c2 + 3c3
= v(G).

So, the proof is completed.
�
In next section, we give a polynomial-time algorithm for finding the spanning

subgraph H of G such that each component C of H is a maximal subgraph of G with
τ(C) ≥ 2. Thereby, the computing the smax (G) for any graph is polynomial.

3 An algorithm

The following optimization problem closely related to the above is widely studied,
see Clausen and Hansen (1980), Hobbs (1989), Held and Karp (1971), Kundu (1974),
Roskind and Tarjan (1985), Tarjan (1974), Tarjan (1976) and Yao (1975).
The edge-disjoint spanning tree problem

Input a graph with w(e) as the multiplicity for each edge e.
Output determine τ(G) and find τ(G) edge-disjoint spanning trees of G.
Zhang and Ou (2008) introduced the following operation when they were investi-

gating the dynamic density of a graph. For a connected graph G, let T be a spanning
tree of G, and F be a spanning forest of G\T .

Zhang–Ou operation
If E(G)\(T ∪ F) �= ∅, then we choose an edge e0 ∈ E(G)\(T ∪ F).
First, the edge e0 is colored red. Then, for the spanning tree T , the subgraph T + e0

of G contains a unique cycle C . Color all these edges in C with red. Second, for each
red e′ ∈ T , color all edges of the unique cycle contained in F +e′ (if this cycle exists).
Take all newly colored edge e′′, color all edges in the unique cycle of T + e′′ and so
on. This will be repeated until one of the following two cases occurs:

1. A red edge e(1) joins two distinct components of F ;

123

1004 J Comb Optim (2018) 35:997–1008

2. No more edge can be further colored.

If (1) happens, F + e(1) is larger than F . However, the edge e(1) may not be that
extra edge e0. That is, it is possible that the edge e(1) came from the spanning tree T .
Now, let us trace back our coloring process. The edge e(1) was colored red because it
is contained in a cycle of T +e(2), where e(2) was colored red before the edge e(1) was
colored. Continue this trace-back procedure, we find a sequence of edges e(1), . . . , e(s)

such that e(i) ∈ T if i is odd and e(i) ∈ F if i is even for any i ≥ 1. Note that s is
even and e(s) is the extra edge e0 that the process started with. In addition, e(i) was
colored red because it is contained in the cycle of T + e(i+1) if i is odd (F + e(i+1) if
i is even). Now, the forest F is ready to be expanded by the following adjustment,

F := F + e(1) − e(2) + · · · + e(s−3) − e(s−2) + e(s−1)

and

T := T − e(1) + e(2) + · · · − e(s−1) + e(s).

Lemma 3.1 (Page 6 in Zhang and Ou 2008) If (2) happens, then τ(H − e) ≥ 2 for
any e ∈ E(H), where H is the subgraph of G induced by all red edges. In particular,
T ∩ H and F ∩ H are two edge-disjoint spanning trees of H.

Theorem 3.2 Let G be a connected graph and let C(G) = {(T, F)| T is a spanning
tree of G, F is a spanning forest of G\T }. If for a pair (T ′, F ′) ∈ C(G), the case (2)
occurs for any edge e ∈ E(G)\(T ′ ∪ F ′), then |F ′| ≥ |F | for any (T, F) ∈ C(G).

Proof Assume that the result is not true and let (T ′′, F ′′) be a pair in C(G) such that
|F ′′| is maximum, and subject to this, |(T ′′ ∪ F ′′) ∩ (T ′ ∪ F ′)| is maximum.
Claim 1 There is an (red) edge e0 ∈ (T ′ ∪ F ′)\(T ′′ ∪ F ′′).

Since |T ′′ ∪ F ′′| > |T ′ ∪ F ′|, there exists an edge e′′ ∈ (T ′′ ∪ F ′′)\(T ′ ∪ F ′).
First color e′′ in red and start Zhang–Ou operation for the pair (T ′, F ′). Let H ′ be the
subgraph induced by all red edges. by Lemma 3.1, τ(H ′ −e′′) ≥ 2. Moreover, T ′ ∩ H ′
and F ′ ∩ H ′ are two edge-disjoint spanning trees of H ′. This proves the claim.

Now we start another coloring process. First color e0 in red and start Zhang–Ou
operation for the pair (T ′′, F ′′). By themaximality of F ′′, (2) happens. By the argument
similar to the proof of Claim 1, there is a red edge e∗ ∈ (T ′′ ∪ F ′′)\(T ′ ∪ F ′) and a
red edge sequence e(1), e(2) . . . , e(r) such that e(1) = e∗, e(r) = e0. We consider two
possible cases.
Case 1 e∗ ∈ T ′′

Then r must be even. Let

T ∗ = T ′′ − e(1) + e(2) − · · · − e(r−1) + e(r)

F∗ = F ′′ − e(2) + e(3) + · · · − e(r−2) + e(r−1).

123

J Comb Optim (2018) 35:997–1008 1005

Case 2 e∗ ∈ F ′′
Then r must be odd. Let

T ∗ = T ′′ − e(2) + e(3) − · · · − e(r−1) + e(r)

F∗ = F ′′ − e(1) + e(2) − · · · − e(r−2) + e(r−1).

In the above two cases, it is clear that (T ∗, F∗) ∈ C(G) and

|(T ∗ ∪ F∗) ∩ (T ′ ∪ F ′)| > |(T ′′ ∪ F
′′
) ∩ (T ′ ∪ F ′)|,

contradicting that |(T ′′ ∪ F ′′) ∩ (T ′ ∪ F ′)| is maximum.
�
Theorem 3.3 Let G be a connected graph and let C(G)={(T, F)| T is a spanning
tree of G, F is a spanning forest of G\T }. Assume that (T ′, F ′) ∈ C(G) with the
property that |F ′| ≥ |F | for any (T, F) ∈ C(G) and let F ′

1, . . . , F ′
t be all components

of F ′. Let �i = G[V (F ′
i)] for each i . If τ(G ′) ≥ 2 for a subgraph G ′ of G, then

G ′ ⊆ �i for some i ∈ {1, . . . , t}.
Proof Suppose thatG ′ is a subgraphofG with τ(G ′) ≥ 2 such thatV (G ′)∩V (�i) �= ∅
for each i ∈ {1, . . . , s}, where 2 ≤ s ≤ t . Let T ′

1 and T ′
2 be two edge-disjoint

spanning trees of G ′. Note that T ′
1 ∪ (T \T ′

1) is a connected spanning subgraph of G
and T ′

2 ∪ (F\T ′
2) is spanning subgraph of G with c(T ′

2 ∪ (F\T ′
2)) < c(F). Moreover,

they are edge-disjoint. Take a spanning tree T ∗ of T ′
1 ∪ (T \T ′

1) and a spanning forest
F∗ of T ′

2 ∪ (F\T ′
2) with c(F∗) = c(T ′

2 ∪ (F\T ′
2)). It is clear that (T ∗, F∗) ∈ C(G).

However, |F∗| > |F ′|, a contradiction.
�

Algorithm 1.

Input : a connected graph G of order n
Output : the spanning subgraph H of G whose each component of H is a maximal
subgraph of G with two edge-disjoint spanning trees.

Step 0. � := G and H be the null graph.

Step 1. Find a spanning tree T of � and a spanning forest F of �\T with c(F) =
c(�\T).

If c(F) = 1, go to step 3.1.
Otherwise, go to Step 2.

Step 2. Is E(�)\(T ∪ F) = ∅ ? If yes, go to substep 2.1; if no, go to Substep 2.2.

Substep 2.1. Let F ′ := F , go to Step 3.2.

Substep 2.2. Take an edge e0 ∈ E(�)\(T ∪ F), do the Zhang–Ou operation until (2)
happens for any edge e ∈ E(�)\(T ∪ F). Denote the resulting pair by (T ′, F ′). Go
to Step 3.

Step 3. Is F ′ connected or not ? If yes, go to substep 3.1; if no, go to Substep 3.2.

123

1006 J Comb Optim (2018) 35:997–1008

Substep 3.1. H := H ∪ �.

Substep 3.2. Let F ′
1, . . . , F ′

t be all components of F ′. Let � := G[V (F ′
i)] for each i ,

and go to Step 1.

Step 4. Return H .

Theorem 3.4 Algorithm 1 is correct. That is, Algorithm 1 finds the spanning subgraph
H of G whose each component C is a maximal subgraph of G with τ(C) ≥ 2.

Proof By induction on the order n of G. The result is trivially true for n = 1. Now
assume that n ≥ 2. If τ(G) = 1, then after Step 2.2, wewill find a pair (T ′, F ′) ∈ C(G)

with maximum |F ′|. Let F ′
1, . . . , F ′

t be all components of F ′. By Theorem 3.3, any
maximal subgraph G ′ of G with τ(G ′) ≥ 2, G ′ ⊆ Hi for an integer i ∈ {1, . . . , t},
where �i = G[V (F ′

i)] for each i . By Substep 3.2, we will repeat the algorithm for
each �i . Thus, by induction hypothesis, our algorithm will find the spanning subgraph
Hi of Fi whose each component C is a maximal subgraph of Fi with τ(C) ≥ 2. It is
clear that H = ∪t

i Hi .
�

4 Concluding remark

Thegenus of an oriented link is theminimumgenus of any connected orientable surface
spanning it. The genus of an unoriented link L , denoted by g(L), is theminimum taken
over all possible orientations. Genus is an important invariant in knot theory. However,
it is hard to compute in general.

Let D be a link diagram of a link L . Let
−→
D be an orientation (going straight

ahead when meeting a crossing) of D. Splitting each crossing of
−→
D in the only way

compatible with the orientation, we obtain a set of mutually disjoint simple circles,
called Seifert circles (Seifert 1935) (see Fig. 4). We use −→s max(D) to denote the
maximum number of Seifert circles of

−→
D taken over all possible orientations of D. It

is clear that for a plane graph G,

−→s max (D(G)) ≤ smax (D(G)).

In some special cases, the equality holds. For example, G is 3-edge connected even
plane graph (i.e. the degree of each vertex is even). Let G be a plane graph. In fact,
the genus g(L(G)) of the link L(G) the link diagram D(G) represents is related to−→s max (D(G)) by the following equation (Crowell 1959;Gabai 1986;Murasugi 1958).

g(L(G)) = 2 − −→s max(D(G)) + e(G) − μ(L(G))

2
, (2)

123

J Comb Optim (2018) 35:997–1008 1007

Seifert circles

and

(a)

(b)

Fig. 4 a Splitting a crossing in the way compatible with the orientation; b Seifert circles of trefoil knot

where μ(L(G)) is the number of components of the link L(G), i.e. the number of
straight-ahead walks of Gm or the number of left-right paths of G.

It is interesting to formulate a graph-theoretical problem and find an efficient algo-
rithm for computing −→s max(D(G)).

Acknowledgements We are grateful to the referees for their constructive comments which helped to
improve the presentation of the paper. The first two authors are grateful to Professor C.Q. Zhang for
sending the appendix of the paper (Zhang and Ou 2008). The third author thanks Professors F.M. Dong,
Yuqing Lin, and Eri Matsudo for some helpful discussions. This works is also supported by President’s
Funds of Xiamen University (No. 20720160011).

References

Bondy JA, Murty USR (1976) Graph theory with applications. The Macmillan Press Ltd, London
ChengX, Liu S, ZhangH, QiuW (2010) Fabrication of a family of pyramidal links and their genus.MATCH

Commun Math Comput Chem 63:623–636
Clausen J, Hansen LA (1980) Finding k edge disjoint spanning trees of minimum total weight network: an

application of matroid theory. Math Program Stud 13:88–101
Crowell RH (1959) Genus of alternating link types. Ann Math 69:258–275
Gabai D (1986) Genera of the alternating links. Duke Math J 53:677–681
Gusfield D (1983) Connectivity and edge-disjoint spanning trees. Inform Process Lett 16:87–89
Held M, Karp RM (1971) The traveling salesman and minimum spaning trees. Math Program 1:6–25
Hobbs M (1989) Computing edge-toughness and fractional arboricity. Contemp Math 89:89–106
Jin X, Ge J, Cheng X, Lin Y (2015) The number of circles of a maximum state of a plane graph with

applications. Acta Math Appl Sin Engl Ser
Kundu S (1974) Bounds on the number of egde-disjoint spanning trees. J Comb Theory Ser B 17:199–203
Liu S, Zhang H (2012) Genera of the links derived from 2-connected plane graphs. J Knot Theory Ramif.

21:1250129
Murasugi K (1958) On the genus of the alternating knot, I, II. J Math Soc Jpn 10(94–105):235–248
Nakamura T, Nakanishi Y, Satoh S, Tomiyama Y (2014) The state numbers of virtual knot. J Knot Theory

Ramif 23:1450016
Nash-Williams CSJA (1961) Edge-disjoint spanning trees of finite graphs. J Lond. Math Soc 36:445–450
Roskind J, Tarjan R (1985) A note on finding minimum-cost edge-disjoint spanning trees. Math Oper Res

10:701–708
Seifert H (1935) Über das Geschlecht von Knoten. Math Ann 110:571–592

123

1008 J Comb Optim (2018) 35:997–1008

Tarjan RE (1974) A good algorithm for edge-disjoint branching. Inform Process Lett 3:51–53
Tarjan RE (1976) Edge-disjoint spanning trees and depth-first search. Acta Inform 6:171–185
Thistlethwaite MB (1987) A spanning tree expansion of the Jones polynomial. Topology 26:297–309
Tutte WT (1961) On the problem of decomposing a graph into n connected factors. J Lond Math Soc

36:221–230
Yao AC (1975) An O(|E |log log|V |) algorithm for finding minimum spanning trees. Inform Process Lett

4:21–23
Zhang C, Ou Y (2008) Clustering, community partition and disjoint spanning trees. ACMTrans Algorithms

4:35

123

	Edge-disjoint spanning trees and the number of maximum state circles of a graph
	Abstract
	1 Introduction
	2 The proof and some consequences
	3 An algorithm
	4 Concluding remark
	Acknowledgements
	References

