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Abstract
Given an n-vertex non-negatively real-weighted graph G, whose vertices are parti-
tioned into a set of k clusters, a clustered network design problem on G consists of
solving a given network design optimization problem onG, subject to some additional
constraints on its clusters. In particular, we focus on the classic problem of designing
a single-source shortest-path tree, and we analyse its computational hardness when
in a feasible solution each cluster is required to form a subtree. We first study the
unweighted case, and prove that the problem is NP-hard. However, on the positive
side, we show the existence of an approximation algorithm whose quality essentially
depends on few parameters, but which remarkably is an O(1)-approximation when
the largest out of all the diameters of the clusters is either O(1) or Θ(n). Further-
more, we also show that the problem is fixed-parameter tractable with respect to k
or to the number of vertices that belong to clusters of size at least 2. Then, we focus
on the weighted case, and show that the problem can be approximated within a tight
factor of O(n), and that it is fixed-parameter tractable as well. Finally, we analyse the
unweighted single-pair shortest path problem, and we show it is hard to approximate
within a (tight) factor of n1−ε , for any ε > 0.
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1 Introduction

In several modern network applications, the underlying set of nodes may be parti-
tioned into clusters, with the intent of modeling some aggregation phenomena taking
place among similar entities in the network. In particular, this happens in communi-
cation and social networks, where clusters may refer to local-area subnetworks and
to communities of individuals, respectively. While on the one hand the provision of
clusters allows to represent the complexity of reality, on the other hand it may ask
for introducing some additional constraints on a feasible solution to a given network
design problem, with the goal of preserving a specific cluster-based property. Thus, on
a theoretical side, given a (possibly weighted) graph G, whose vertex set is partitioned
into k pairwise disjoint subsets (i.e., clusters), a clustered (a.k.a. generalized) net-
work design problem on G consists of finding a (possibly optimal) solution to a given
network design problem on G, subject to some additional constraints on its clusters.
Depending on such constraint, the computational complexity of the resulting problem
may change drastically as compared to the unconstrained version. Therefore, this class
of problems deserves a theoretical investigation that, quite surprisingly, seems to be
rather missing up to now.

One of the most intuitive constraints one could imagine is that of maintaining
some sort of proximity relationship among nodes in a same cluster. This scenario has
immediate practical motivations: for instance, in a communication network, this can
be convincingly justifiedwith the requirement of designing a network on a classic two-
layer (i.e., local versus global layer) topology. In particular, if the foreseen solution has
to be a (spanning) tree T in G, then a natural requirement is that each cluster should
induce a (connected) subtree of T . For the sake of simplicity, in the following this
will be referred to as a clustered tree design problem (CTDP), even if this is a slight
abuse of terminology. Correspondingly, classic spanning-tree optimization problems
on graphs can be reconsidered under this new perspective, aiming at verifying whether
they exhibit a significant deviation (from a computational point of view) w.r.t. the
ordinary (i.e., non-clustered) counterpart. In particular, we will focus on the clustered
version of the problem of computing a single-source shortest-path tree (SPT) of G,
i.e., a spanning tree of G rooted at a given source node, say s, minimizing the total
length of all the paths emanating from s. It is worth noticing that an SPT, besides
its theoretical relevance, has countless applications, and in particular it supports a set
of primitives of primary importance in communication networks, as for instance the
broadcast protocol and the spanning tree protocol.

1.1 Contribution of the paper

Let G = (V , E, w) be a connected and undirected graph of n vertices and m edges,
where each edge (u, v) ∈ E is associated with a non-negative real weight w(u, v).
For a subgraph H of G, we will use V (H) (E(H), resp.) to denote the set of vertices
(edges, resp.) of H , and H [S] to denote the subgraph of H induced by S, S ⊆ V (H).
Moreover, πH (u, v) will denote a shortest path between vertices u and v in H , while
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dH (u, v) will denote the corresponding distance between u and v in H , i.e., the sum
of the weights of the edges in πH (u, v).

Formally, the clustered version of the SPT problem (CluSPT in the sequel), is
defined as follows. We are given a graph G defined as above, along with a partition of
V into a set of k (pairwise disjoint) clusters V = {V1, V2, . . . , Vk}, and a distinguished
source vertex s ∈ V . The objective is to find a clustered SPT of G rooted at s, i.e., a
spanning tree T of G such that T [Vi ], i = 1, . . . , k, is a connected component (i.e., a
subtree) of T , and forwhich the broadcast cost from s, i.e.cost(T ) = ∑

v∈V dT (s, v),
is minimum.

The SPT problem in a non-clustered setting has been widely studied, and in its
more general definition it can be solved in O(m+n log n) time bymeans of the classic
Dijkstra’s algorithm. More efficient solutions are known for special classes of graphs
(e.g., euclidean, planar, directed acyclic graphs, etc.), or for restricted edge weights
instances. In particular, if w is uniform, namely G is unweighted, then an optimal
solution can be found in O(m + n) time by means of a simple breadth-first search
(BFS) visit of G. Nevertheless, to the best of our knowledge nothing is known about
its clustered variant, despite the fact that, as we argued above, it is very reasonable
to imagine a scenario where an efficient broadcast needs to be applied locally and
hierarchically within each cluster.

Here, we then try to fill this gap, and we show that CluSPT, and its unweighted ver-
sion, say CluBFS, are actually much harder than their standard counterparts, namely:

1. CluBFS is NP-hard, but it admits an O(min{ 4nk
γ

, 4n2

γ 2 , 2γ }) approximation algo-
rithm, where γ denotes the length of the largest out of all the diameters of the
clusters. Interestingly, the approximation ratio becomes O(1) when γ is either
O(1) or Θ(n), which may cover cases of practical interest. However, we also

point out that in the worst case, namely for γ = Θ(n
2
3 ) and k = Θ( 3

√
n), the algo-

rithm becomes O(n
2
3 )-approximating. Besides that, we also show that the problem

is fixed-parameter tractable, as we can provide a Õ
(
min

{
2kk3n4, h

h
2m

})
time

exact algorithm,1 where h is the total number of vertices that belong to clusters of
size at least two.

2. CluSPT is hard to approximate within a factor of n1−ε for any constant ε ∈
(0, 1], unless P = NP, but, on the positive side: (i) it admits an n-approximation,
thus essentially tight, algorithm; (ii) similarly to the unweighted case, it is fixed-
parameter tractable as well.

Finally, we study the clustered single-pair shortest path problem (say CluSP in the
sequel) on unweighted graphs, i.e., the problem of finding a shortest path between
a given pair of vertices of G, subject to the constraint that the vertices from a same
cluster that belong to the path must appear consecutively. Notice that in this variant,
not all the vertices of a cluster must belong to a solution, and not all the clusters must
enter into a solution. We show that it cannot be approximated in polynomial time
within a factor of n1−ε , for any constant ε > 0, unless P = NP. This extends the
inapproximability result (within any polynomial factor) that was given in Lin and Wu

1 Throughout the paper, the notation Õ suppresses factors that are polylogarithmic in n.
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(2016) for the corresponding weighted version. Since obtaining an n-approximation
is trivial, the provided inapproximability result is a bit surprising, as one could have
expected the existence of a o(n)-approximation algorithm, similarly to what happened
for CluBFS.

1.2 Related work

Several classic tree/path-design problems have been investigated in the CTDP frame-
work. Some of them, due to their nature, do not actually exhibit a significant deviation
(from a computational point of view) w.r.t. the ordinary (i.e., non-clustered) counter-
part. For instance, the minimum spanning tree (MST) problem falls in this category,
since we can easily solve its clustered version by first computing a MST of each clus-
ter, then contracting these MSTs each to a vertex, and finally finding a MST of the
resulting graph. This favourable behaviour is an exception, however, as the next cases
show.

A well-known clustered variant of the traveling salesperson problem is that in
which one has to find a minimum-cost Hamiltonian cycle of G (where G is assumed
to be complete, and w is assumed to be a metric on G) such that all the vertices of
each cluster are visited consecutively. For this problem, Bao and Liu (2012) give a
13/6-approximation algorithm, thus improving a previous approximation ratio of 2.75
due to Guttmann-Beck et al. (2000). As a comparison, recall that the best old-standing
approximation ratio for the unclustered version of the problem is equal to 3/2 (i.e., the
celebrated Christofides algorithm).

Another prominent clustered variant is concerned with the classicminimum Steiner
tree problem. In this case, one has to find a tree of minimum cost spanning a subset
R ⊆ V of terminal vertices, under the assumption that nodes in R are partitioned into
a set of clusters, say {R1, R2, . . . , Rk}, and with the additional constraint that, in a
feasible solution T , we have that, for every i = 1, 2, . . . , k, the minimal subtree of T
spanning the vertices of Ri does not contain any terminal vertex outside Ri . For this
problem, again restricted to the case in which G is complete and w is a metric on G,
in Wu and Lin (2015) the authors present a (2 + ρ)-approximation algorithm, where
ρ � 1.39 is the best known approximation ratio for the minimum Steiner tree problem
(Byrka et al. 2013).

We also mention the clustered variant of the minimum routing-cost spanning tree
problem. While in the non-clustered version one has to find a spanning tree of G
minimizing the sum of all-to-all tree distances, and the problem is known to admit
a PTAS (Wu et al. 1998), in Lin and Wu (2016) the authors analyze the clustered
version, and show that on general graphs the problem is hard to approximate within
any polynomial factor, while if G is complete and w is a metric on G, then the
problem admits a factor-2 approximation. Interestingly, along the way the authors
present an inapproximability result for CluSP (on weighted graphs), which was in
fact the inspiration for the present study.

Further, we refer the reader to the paper by Feremans et al. (2003), where the
authors review several classic network design problems in a clustered perspective, but
with different side constraints on the clusters (i.e., expressed in terms of number of
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representatives for each cluster that has to belong to a feasible solution). A notable
example of this type is the group Steiner tree problem, where it is required that at least
one terminal vertex from each cluster Ri must be included in a feasible solution. This
problem is known to be approximable within O(log3 n) (Garg et al. 2000), and not
approximable within Ω(log2−ε n), for any ε > 0, unless NP admits quasipolynomial-
time Las Vegas algorithms (Halperin and Krauthgamer 2003).

Finally, we remark that the problem of decidingwhether there exists a set of clusters
that satisfies some property of interest has also been extensively studied (e.g., a typical
requirement in social networks is for clusters, which represent communities, to induce
dense connected subgraphs), as well as the dual problem of editing a graph so that it
contain a set of clusters with the sought property. We refer the interested reader to Zou
et al. (2018) and to the references therein.

1.3 Structure of the paper

For the sake of clarity, we first present, in Sect. 2, our results on CluBFS. Then, in
Sect. 3, we give our results on CluSPT, while in Sect. 4 we discuss our results on
unweighted CluSP. Finally, in Sect. 5 we conclude the paper and outline possible
future research directions.

2 CLUBFS

In this section, we present our results on the CluBFS problem. In particular, we first

prove that it is NP-hard, then we show that it can be approximated within an O(n
2
3 )-

factor in polynomial time, by providing a suitable approximation algorithm, and finally
we show it is fixed-parameter tractable. We start by proving the following result:

Theorem 1 CluBFS is NP-hard.

Proof In order to prove the statement we provide a polynomial-time reduction from
the 3–CNF–SAT problem, which is known to be NP-complete, to CluBFS.

The 3–CNF–SAT problem is a variant of the classic CNF–SAT problem. CNF–SAT
is the problem of determining whether it is satisfiable a given Boolean CNF formula,
i.e., a conjunction of clauses, where a clause is a disjunction of literals, and a literal
represents either a variable or its negation. In the 3–CNF–SAT version, the number of
literals in each clause is constrained to be exactly three.

The proof proceeds as follows: starting from a 3–CNF–SAT instance φ with η

variables, say x1, . . . , xη, and μ clauses, say c1, . . . , cμ, we first construct an instance
〈Gφ,V, s〉 of the CluBFS problem which consists of: (i) a graph Gφ ; (ii) a clustering
V of the vertices of Gφ ; (iii) a distinguished source vertex s of Gφ . We then show
that instance 〈Gφ,V, s〉 exhibits the two following properties: (i) if φ is satisfiable
then OPT ≤ 3η + 8μ; (ii) if φ is not satisfiable then OPT ≥ 3η + 8μ + 3, where
OPT denotes the cost of the optimal solution to the CluBFS problem on 〈Gφ,V, s〉.
By proving the above, we will show that finding an optimal solution to the CluBFS
problem is at least as hard as solving 3–CNF–SAT.
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Fig. 1 Graphical representation
of the reduction from
3–CNF–SAT to CluBFS used in
the proof of Theorem 1

s

v1 v1 v2 v2 v3 v3 · ·· vη vη

c1,1
c1,2

c1,3

c2,1
c2,2

c2,3

cμ,1
cμ,2

cμ,3

· ··

The graphGφ corresponding to the formula φ can be obtained from an empty graph
by proceeding as follows. First, we add to V (Gφ) a single source vertex s and for each
variable xi , we add: (i) two variable vertices vi and vi to V (Gφ); (ii) three edges,
namely (vi , s), (vi , s) and (vi , vi ), to E(Gφ). Then, for each clause c j we add: (i)
three clause vertices, c j,1, c j,2, c j,3, one for each of the three literals of c j , to V (Gφ);
(ii) three edges (c j,1, c j,2), (c j,2, c j,3), (c j,3, c j,1) to E(Gφ). Finally, for each clause
c j , and for k = 1, 2, 3, let xi be the variable associated with the kth literal 
 of c j . If
the literal is negative, i.e., 
 = xi , we add edge (c j,k, vi ) to E(Gφ), otherwise (i.e.,

 = xi ) we add (c j,k, vi ) to E(Gφ).

It is easy to see thatGφ has |V (Gφ)| = 3μ+2η+1 vertices and |E(Gφ)| = 6μ+3η
edges. A clarifying example on how to build Gφ for a 3–CNF–SAT formula φ is shown
in Fig. 1. Notice, e.g., that the first literal of clause c1 is positive and associated with
variable x1. Therefore, clause vertex c1,1 is connected to variable vertex v1 in Gφ .

Now, the final step of the construction consists in defining a clustering V over the
vertices of Gφ . In details, we define V = {Vs, V1, . . . , Vμ, Vμ+1, Vμ+η} as follows.
The source vertex is a singleton, i.e., Vs contains s only. Then, for each clause c j ,
with j = 1, . . . , μ, we set Vj = {c j,1, c j,2, c j,3}. Finally, for each variable xi we set
Vμ+i = {vi , vi }.

We now proceed with the last part of the proof. In particular, if φ is satisfiable,
we consider a satisfying assignment and we construct a solution T to CluBFS on
instance 〈Gφ,V, s〉 as follows: i) for each variable xi , if xi is true we add the edges
(s, vi ) and (vi , vi ) to T , otherwise we add the edges (s, vi ) and (vi , vi ) to T ; ii) for
each clause c j , choose k ∈ {1, 2, 3} so that the kth literal of c j is true, and let vi
be the unique variable vertex that is a neighbor of c j,k in Gφ . We add the edges in
{(c j,k, vi )} ∪ {(c j,k, c j,k′) : k′ ∈ {1, 2, 3} ∧ k′ = k} to T .

It is easy to check that exactly one of each pair of vertices vi and vi is at distance
1 from s in T while the other is at distance 2. Moreover, for each clause c j exactly
one of the vertices in {c j,1, c j,2, c j,3} is at distance 2 from s in T , while the other two
are at distance 3. Hence OPT ≤ 3η + 8μ. Suppose now that φ is not satisfiable and
let T be a solution to CluBFS. It is easy to see that, for each variable xi , solution T
must include the edge (vi , vi ) since the graph induced by the associated cluster must
be connected. This means that at least one of vi and vi must be at distance 2 from
s in T . Similarly, since for every j = 1, . . . , μ the subgraph of T induced by the
vertices in {c j,1, c j,2, c j,3} must be connected, we have that one of them, say w.l.o.g.
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c j,1, must be at a distance at least dT (s, c j,1) ≥ dGφ (s, c j,1) = 2 from s while the
other two must be at a distance of at least dT (s, c j,1) + 1 in T . Moreover, since φ is
not satisfiable, there is at least one clause c j with j ∈ {1, . . . , μ} such that the closest
vertex of c j,1, c j,2, c j,3 is at distance at least 3 from s in T . Indeed, if that were not
the case, this would imply that, for each clause c j , there would exist a vertex c j,k , for
a certain k, at distance 2 from s in T , and hence the set of vertices at distance 1 from
s would induce a satisfying truth assignment for φ. It follows that:

cost(T ) ≥ η + 2η + (μ − 1)2 + 2(μ − 1)3 + 3 + 2 · 4
= 3η + 8(μ − 1) + 11

= 3η + 8μ + 3.

Since the latter bound holds for any solution toCluBFS, we have OPT ≥ 3η+8μ+3,
which concludes the proof. ��

2.1 An approximation algorithm

In what follows, we present an approximation algorithm for CluBFS (see Algo-
rithm 1). The main idea of the algorithm is that of minimizing the number of distinct
clusters that must be traversed by any path connecting the source s to a vertex v ∈ V .
Recall that the diameter diam(G) of a graph G is the length of a longest shortest
path in G. Then, it is possible to show that: (i) if all the clusters are of low diameter,
then this leads to a good approximation for CluBFS; (ii) otherwise, i.e. if at least one
cluster has large diameter, then the optimal solution must be expensive and hence any
solutions for CluBFS will provide the sought approximation.

Given an instance 〈G,V, s〉 of CluBFS, w.l.o.g. let us assume that V1 is the cluster
containing vertex s, and that G[Vi ] is connected for each i = 1, . . . , k, as otherwise
the problem trivially admits no feasible solution. Our approximation algorithm first
considers each cluster Vi ∈ V and identifies all the vertices belonging to Vi into a
single cluster-vertex νi to obtain a graph G ′ in which: (i) each vertex corresponds to
a cluster; (ii) there is an edge (νi , ν j ) between two vertices in G ′ if and only if the set
Ei, j = {(vi , v j ) ∈ E : vi ∈ Vi ∧ v j ∈ Vj ∧ i = j} is not empty. The algorithm
proceeds then by computing a BFS tree T ′ ofG ′ rooted at ν1 and constructs the sought
approximate solution T̃ as follows: initially, T̃ contains all the vertices of G and the
edges of a BFS tree of G[V1] rooted at s. Then, for each edge (νi , ν j ) of T ′, where νi

is the parent of ν j in T ′, it adds to T̃ a single edge (vi , r j ) ∈ Ei, j along with all the
edges of a BFS tree Tj of G[Vj ] rooted at r j .

We now show that Algorithm 1 outputs a feasible solution for the CluBFS problem
which is far from the optimum by at most a factor of min{ 4nk

γ
, 4n2

γ 2 , 2γ }, where γ =
maxVi∈V diam(G[Vi ]). In particular, given an instance 〈G,V, s〉 of CluBFS, let T ∗
be an optimal clustered BFS tree. To prove the approximation ratio, we will make use
of the following lemma.

Lemma 1 cost(T̃ ) ≤ 2γ cost(T ∗).
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Algorithm 1: Approximation algorithm for CluBFS.
Input : An instance 〈G,V, s〉 of CluBFS
Output: An approximated clustered BFS tree T̃

1 Let s ∈ V1 w.l.o.g.
2 G′ ← Copy G and identify the vertices belonging to Vi into a single cluster-vertex νi
3 Let Ei, j = {(vi , v j ) ∈ E : vi ∈ Vi ∧ v j ∈ Vj }
4 T ′ ← Compute a BFS tree of G′ rooted at ν1
5 T1 ← Compute a BFS tree of G[V1] rooted at s
6 T̃ ← (V , E(T1))
7 for j = 2, . . . , k do
8 (pi , r j ) ← any edge in Ei, j where νi is the parent of ν j in T ′
9 Tj ← Compute a BFS tree of G[Vj ] rooted at r j

10 E(T̃ ) ← E(T̃ ) ∪ {(pi , r j )} ∪ E(Tj )}
11 return T̃

Proof We first prove that for every v ∈ V it holds that dT̃ (s, v) ≤ γ (dT ∗(s, v)+1). In
particular, let us assume that Vi is the cluster ofV containing v. Moreover, let T ′′ be the
tree obtained from T ∗ by identifying each cluster Vj ∈ V into a single cluster-vertex
τ j . Observe that ri is the vertex chosen by Algorithm 1 at line 8 w.r.t. the cluster Vi
containing v. Therefore, we have that:

dT̃ (s, v) = dT̃ (s, ri ) + dT̃ (ri , v) ≤ γ dT ′(s, νi ) + γ

≤ γ dT ′′(s, τi ) + γ ≤ γ dT ∗(s, v) + γ

= γ (dT ∗(s, v) + 1),

from which it follows:

cost(T̃ ) =
∑

v∈V
dT̃ (s, v) ≤

∑

v∈V
γ (dT ∗(s, v) + 1)

≤ γ
∑

v∈V
dT ∗(s, v) + γ n

and therefore cost(T̃ ) ≤ γ cost(T ∗) + γ n ≤ 2γ cost(T ∗). ��
Given the above lemma, we are now ready to prove the following theorem.

Theorem 2 Algorithm1 is a polynomial-timeρ-approximationalgorithm for CluBFS,
where ρ = min{ 4nk

γ
, 4n2

γ 2 , 2γ }.
Proof First of all, note that there is a least one cluster Vi such that diam(G[Vi ]) = γ ,

and hence it follows that cost(T ∗) ≥ γ 2

4 . Indeed, if γ is even, we have that an optimal
solution must pay at least the cost of two paths rooted at the center of a diametral path,
namely

cost(T ∗) ≥ 2
γ /2∑

i=1

i = γ 2

4
+ γ

2
.
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Similarly, if γ is odd, we have

cost(T ∗) ≥
(γ−1)/2∑

i=1

i +
(γ+1)/2∑

i=1

i = γ 2

4
+ γ

2
+ 1

4
.

Now, we observe that cost(T̃ ) is upper bounded by:

(i) γ nk, since in any feasible solution T toCluBFS, it holds that dT (s, v) ≤ γ k, ∀v ∈
V ;

(ii) n2, since dG(s, v) ≤ n, ∀v ∈ V .

Therefore, since cost(T ∗) ≥ γ 2

4 , the approximation ratio achieved by Algorithm 1 is

always upper bounded bymin{γ nk, n2}· 4
γ 2 = min{ 4nk

γ
, 4n2

γ 2 }. Moreover, by Lemma 1

we also know that cost(T̃ ) ≤ 2γ cost(T ∗). Hence, overall, Algorithm 1 always

computes a solution T̃ such that cost(T̃ )

cost(T ∗) ≤ ρ, where ρ = min{ 4nk
γ

, 4n2

γ 2 , 2γ }. Since
the time complexity is upper bounded by the cost of computing the BFS trees, the
claim follows. ��

Notice that each of the three terms in ρ can be the minimum one, depending on
the structure of a given instance of CluBFS. In particular, the first term is the unique
minimum when

√
2nk < γ < n

k , and the considered interval is not empty, i.e., when√
2nk < n

k , which implies k < 3
√
n/2. In this latter case, the second term is to

be preferred when γ > n
k , while the minimum is attained by the third term when

γ <
√
2nk. Otherwise, i.e., when k ≥ 3

√
n/2, and hence the aforementioned interval

is empty, then the second (resp., third) term is the unique minimum when γ is larger
(resp., smaller) than 3

√
2n2. Remarkably, when γ is either O(1) orΘ(n), our algorithm

thus provides an O(1)-approximation ratio. Finally, notice that if we set γ = Θ(n
2
3 )

and k = Θ(n
1
3 ), then the three terms in ρ coincide and are equal toΘ(n

2
3 ), which then

happens to be the achieved ratio of our approximation algorithm in the worst case.

2.2 Fixed-parameter tractability

In this section, we prove that CluBFS is fixed-parameter tractable (FPT) w.r.t. two
natural cluster-related parameters, by providing two different FPT algorithms, namely
CluBFS–Fpt1 andCluBFS–Fpt2. Recall that an FPT algorithm is allowed to have an
exponential running time, but only in terms of some natural parameter of the problem
instance that can be expected to be small in typical applications.

2.2.1 Algorithm CLUBFS–FPT1

In CluBFS–Fpt1 we choose as our first natural parameter the number k of clusters of
V . Notice that every feasible solution T forCluBFS induces a cluster-tree TC obtained
from T by identifying the vertices of the same cluster into a single vertex. The main
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idea underlying the algorithm is that of guessing, for each vertex of an optimal cluster-
tree TC∗, the vertices belonging to the subtrees rooted in (one of) its children and then
to iteratively reconstruct TC∗. For the sake of simplicity, in the following we will
assume that n is a power of two. However, note that this assumption can be removed
by either modifying the input graph or by tweaking the definition of the functions fv,i

and gv,i that are given later in this section.
We start with some definitions. First, given an instance 〈G,V, v〉 of CluBFS, for

any Vi ∈ V , and v ∈ Vi , we let BFSVi [v] be the cost of a BFS tree of G[Vi ] having
source vertex v, i.e.,

BFSVi [v] =
∑

u∈Vi
dG[Vi ](v, u).

Then, we define a set U = V ∪ A as the union of the set of clusters V with
a set A = {a1, . . . , alog n}, containing log n additional elements. Moreover, we let
μ : 2A → V be a bijection that maps each of the 2log n = n subsets of A to a vertex
of V .

For each H ⊆ U , we let OPTv,i [H ] be a quantity depending on the cost c∗ of
an optimal solution to an auxiliary instance 〈G ′, H ∩ V, v〉 of CluBFS, where G ′ is
the subgraph of G induced by the vertices in ∪C∈H∩VC , provided that the following
constraints are all satisfied:

(i) |H ∩ V| ≤ i (i.e., we restrict to subproblems having at most i clusters);
(ii) v ∈ ∪C∈H∩VC ;
(iii) G ′ is connected;
(iv) A ⊆ H .

Let M be a parameter whose value will be specified later. If all the above mentioned
four constraints are satisfied and c∗ < M , then we define OPTv,i [H ] = c∗. Otherwise,
if (i) is satisfied and either c∗ ≥ M or at least one of (ii)–(iv) is not satisfied, then
we allow OPTv,i [H ] to be any value larger than or equal to M . Finally, if (i) is not
satisfied, then we allow OPTv,i [H ] to be any upper bound to c∗.

Therefore, according to our definition, we have that, whenever (i), (ii), (iii), and
(iv) are satisfied, we can set:

OPTv,1[H ] = min{BFSH∩V [v], M} (1)

Otherwise we set OPTv,1[H ] = M .
Now, let η(H ∩ V) = ∑

C∈H∩V |C | be the number of vertices in the clusters of
H ∩ V . Moreover, given a vertex v ∈ V , let


(v, v′) = min
(x,v′)∈E(G)
x∈V (G[R])

{dG[R](v, x) + 1},

where R ∈ H ∩ V is the cluster containing v and 
(v, v′) is the shortest among the
paths from v to v′ that traverse only vertices in R, except for v′. If there is no such
path, then 
(v, v′) = +∞.
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Hence, for i > 1 we can write the following recursive formula:

OPTv,i [H ] = min
H ′⊆H

{
L(v, μ(H ′ ∩ A), H ′ ∩ V )

+OPTμ(H ′∩A),i−1[(H ′ ∩ V) ∪ A]
+OPTv,i−1[(H \ H ′) ∪ A

}
, (2)

where L(v, μ(H ′ ∩ A), H ′ ∩ V ) = min{
(v, v′)η(H ′ ∩ V), M} accounts for (the
lengths of) the portions of the shortest paths from v to the vertices inC ′ = ∪C∈H ′∩VC
whose edges are not in the subgraph induced by C ′.

Given the above formula, we now show that OPTv,i [H ] for i > 1 can be com-
puted efficiently by exploiting a result provided in Björklund et al. (2007), namely the
following:

Theorem 3 (Björklund et al. 2007) Given a set X and two functions f , g : 2X →
[−W , . . . ,W ], it is possible to compute in conv(W , X) := O(W · |X |3 · 2|X | ·
polylog(W , |X |)) time2 the subset convolution ( f ∗ g) of f and g over the min-sum
semiring, i.e., for every set Y ⊆ X the quantity:

( f ∗ g)(Y ) = min
Z⊆Y

{ f (Z) + g(Y \ Z)}.

In particular, the main idea here is to express the values OPTv,i [H ] as subset con-
volutions of two suitable functions f and g. In more details, notice that Eq. (2) can be
rewritten as follows:

OPTv,i [H ] = min
H ′⊆H

{ fv,i (H
′) + gv,i (H \ H ′)} = ( fv,i ∗ gv,i )(H) (3)

once we define

fv,i (X) = L(v, μ(X ∩ A), X ∩ V ) + OPTμ(X∩A),i−1[(X ∩ V) ∪ A], and

gv,i (X) = OPTv,i−1[X ∪ A].

Notice also that, if we interpret M to be an upper bound to the cost of any optimal
solution of the original CluBFS instance (e.g., by selecting M = n2), then we have
that OPTv,i [S ∪ A], for every i ≥ |S| and for any S ⊆ V , coincides with the cost of
the optimal solution to the instance 〈G ′, S, v〉 of CluBFS whenever such an instance
is feasible. Otherwise, we have that OPTv,i [S ∪ A] is at least M .

2 The runtime originally given in Björklund et al. (2007) is here restated on our (implicitly assumed) model
of computation, namely the standard unit-cost RAMwith logarithmicword size, onwhich the O(|X |2 ·2|X |)
ring operations performed in Björklund et al. (2007) cost O(W ·|X |·polylog(W , |X |)) time each. Notice that
we are explicitly stating polynomial factors in |X |, i.e., logarithmic factors in 2|X |, which are disregarded
in Björklund et al. (2007), since they will result in polynomial factors in k in the running time of our FPT
algorithm.
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Hence, the above relation can be exploited to define the following algorithmic
process. We start by choosing M = 1 and then we perform a series of rounds as
follows. In each round, we first determine all the values OPTv,1[H ] by using Eq. (1).
Then, for every i = 2, . . . , k, we compute n subset convolutions as shown in Eq. (3)
(using Theorem 3). In more details, we compute fv,i ∗ gv,i of Eq. (3) for each vertex
v ∈ V .

Finally, we set OPTv,i [H ] = min{( fv,i ∗ gv,i )(H), M} and we move to the next
iteration. Here the minimum is necessary in order to ensure that the values computed
by the subset convolutions that rely on OPTv,i [H ] will be in O(M). After the last
iteration of this round is completed, OPTs,k[V ∪ A] stores either M or a value strictly
smaller than M . On the one hand, if OPTs,k[V ∪ A] < M , we have found the cost
OPT of an optimal solution of the original instance, i.e., OPT = OPTv,k[V ∪ A]. The
optimal tree TC∗ can then be reconstructed from the values OPTv,k[S ∪ A] for any
S ⊆ V , by using, e.g., the method in Dasgupta et al. (2008). On the other hand, if
OPTs,k[V ∪ A] = M , we move to the next round: we double the value of M and repeat
the above procedure. We are now ready to give the following result.

Lemma 2 CluBFS can be solved in Õ(2kk3n4) time.

Proof First of all, notice that the cost of all the BFS trees of the clusters in C ∈ V ,
from all the vertices v ∈ V , can be computed in Õ(nm) time. Hence, it follows that
all the n · 2|U | = n · 2k+log n = n2 · 2k base cases OPTv,1[H ] can be computed in
O(n3 + n2 · 2k) time.

Now we focus on the values OPTv,i [H ] having i > 1. In particular, notice that, for
each M considered in the process, since functions fv,i and gv,i have values between
0 and 2M , we can compute all n values OPTv,i [H ] for each H ⊆ U , in

n · conv(2M,U ) = n · O(2M · |U |3 · 2|U | · polylog(2M, |U |))
= n · O(M · (k + log n)3 · 2k+log n · polylog(M, k + log n))

= n · O(M · k3 · n · 2k · polylog(n2, n + log n))

= Õ(M · 2k · k3 · n2).

time. Overall, we perform at most 1 + �logOPT� rounds, since we stop as soon as
M > OPT (i.e., when we have M > OPTs,k[V ∪ A] = OPT). Hence, the overall
time complexity of all rounds is

= Õ

⎛

⎝
∑

M=1,2,4,...,2OPT

M · 2k · k3 · n2
⎞

⎠

= Õ(OPT · 2k · k3 · n2)
= Õ(2k · k3 · n4),

since Θ(n2) is a trivial upper bound on the cost OPT of any feasible solution to
CluBFS. ��
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It is worth noting that, in realistic settings, the number of clusters depends on
various parameters, such as type of deployed devices and network density. However,
it is almost always expected to be a small fraction w.r.t. overall number of vertices
(see, e.g. Fareed et al. 2012; Sevgi and Kocyigit 2008). Thus, CluBFS–Fpt1 might
result in being truly effective in practice.

However, when this is not the case, then its running time might easily become
impractical. In particular, if we focus on the classical BFS tree problem, which can be
seen as a special instance of CluBFS where each cluster contains only one vertex, it
is easy to see that CluBFS–Fpt1 takes exponential time while the problem is known
to be trivially solvable in O(m + n) time! This suggests that, for the case in which V
consists of many singleton clusters, there must be another parametrization yielding a
better complexity. Following this intuition, in the remaining of this section we present
another FPT algorithm, namely CluBFS–Fpt2, parameterized in h = |{v ∈ V : v ∈
Vi , Vi ∈ V, |Vi | > 1}|, i.e., in the total number of vertices that belong to clusters of
size at least two.

2.2.2 Algorithm CLUBFS–FPT2

The idea underlying CluBFS–Fpt2 is as follows. Given a solution T to CluBFS we
call a cluster root for Vi ∈ V the unique vertex v ∈ Vi with the smallest distance from
s in T . The CluBFS–Fpt2 algorithm guesses the root of each cluster in an optimal
solution T ∗ and then computes the optimal way of connecting the different roots of
the clusters together.

Suppose we know a vector 〈v1, . . . , vk〉 of vertices such that vi ∈ Vi . The key
observation is that we can write the cost of any solution T having vertices v1, . . . , vk
as cluster roots as follows:

cost(T ) =
∑

Vi∈V

∑

v∈Vi
dT (s, v)

=
∑

Vi∈V

⎛

⎝|Vi |dT (s, vi ) +
∑

v∈Vi
dT (vi , v)

⎞

⎠

=
∑

Vi∈V
|Vi |dT (s, vi ) +

∑

v∈Vi
dT (vi , v).

Since dT (vi , v) ≥ dG[Vi ](vi , v), for any v ∈ Vi , the second summation isminimized
when dT (vi , v) = dG[Vi ](vi , v), i.e., when T [Vi ] is a BFS tree ofG[Vi ]. Consider now
the first summation, and focus on its generic i th term. Let V ′ be the set of clusters
traversed by the path π = πT (s, vi ). For each cluster Vj ∈ V ′, let x, y ∈ Vj be the first
and last vertex of Vj traversed by π , respectively. By the definition of CluBFS, and of
cluster root, for Vi we have that: (i) all the vertices in the subpath of π between x and
y, say π [x, y], belong to Vi and (ii) x = vi . Let Pi be the set of all the paths in G from
s to vi satisfying conditions (i) and (ii). It is easy to see that dT (s, vi ) ≥ minπ ′∈Pi |π ′|.
Hence, if T contains, for each Vi ∈ V , the shortest path in Pi then

∑
Vi∈V |Vi |dT (s, vi )

isminimized.Todetermine anypath in Pi weproceed as follows.Wedefine an auxiliary
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directed graph G ′, obtained from G by: (i) removing all the edges (x, y) ∈ E such
that neither x nor y is a root-vertex vi for some i ; (ii) directing all the edges (x, y) ∈ E
such that x or y is a root-vertex vi for some i towards vi ; if both x = vi and y = v j (for
some i, j) then we replace the undirected (x, y) by the pair of directed edges (x, y)
and (y, x); (iii) replacing, for all Vi ∈ V , all the edges in E(G[Vi ]) with the edges of
a BFS tree of G[Vi ] rooted in vi . These edges are directed from the root towards the
leaves of the tree. It is easy to see that any path in Pi is contained in G ′, and that any
BFS tree ofG ′ must contain the edges of all the BFS trees ofG[Vi ], hence minimizing
cost(T ). Therefore the optimal solution to the instance of CluBFS contains exactly
the (undirected version of) the edges of a BFS tree ofG ′. The following lemma follows
from the above discussion.

Lemma 3 CluBFS–Fpt2 solves CluBFS in O(h
h
2m) time.

Proof There are
∏

Vi∈V |Vi | ways of choosing a vector of cluster root vertices
〈v1, . . . , vk〉 for a given set V of clusters. For each of these vectors the algorithm
requires a computation of the BFS trees of G[Vi ] for i = 1, . . . , k plus an additional
BFS tree of G ′. This can be done in O(m) + ∑k

i=1 O(|E(G[Vi ])| + |Vi |) = O(m)

time. Finally, notice that
∏k

i=1 |Vi | ≤ h
h
2 as the total number of clusters of size at least

2 is at most h
2 . ��

Since it is possible to show that T ∗[Vi ]must coincidewith aBFS tree ofG[Vi ] rooted at
ri , then this property allows us to efficiently reconstruct the optimal tree T ∗, for a given
guessed set of roots. Thus, overall, by combining CluBFS–Fpt1 and CluBFS–Fpt2,
we can give the following result:

Theorem 4 CluBFS can be solved in Õ
(
min

{
2kk3n4, h

h
2m

})
time.

3 CLUSPT

In this section, we give our results on theCluSPT problem. In particular, we first show
that CluSPT cannot be approximated, in polynomial time, within a factor of n1−ε for
any constant ε ∈ (0, 1], unless P = NP. Then, we give an n-approximation algo-
rithm, thus proving that the mentioned inapproximability result is (essentially) tight.
Finally, we show that, similarly to CluBFS, CluSPT is fixed-parameter tractable.
Since CluSPT is a generalization of CluBFS, Theorem 1 immediately implies that
CluSPT is NP-hard as well. We can actually provide a stronger result, namely:

Theorem 5 CluSPT cannot be approximated, in polynomial time, within a factor of
n1−ε for any constant ε ∈ (0, 1], unless P = NP.

Proof To prove the statement we use a slight modification of the construction given in
the proof of Theorem 1. The main difference resides in the structure of the graph Gφ .
In more details, for each clause c j we do not add a triangle of vertices clustered into
Vj . Instead, we add a subgraph to Gφ which is basically made of two components,
as follows. First, we add four vertices, namely c j,1, c j,2, c j,3 and r j , to V (Gφ) and
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Fig. 2 Graphical representation
of the reduction used in the
proof of Theorem 5

s

v1 v1 v2 v2 v3 v3 ··· vη vη

r1 r2 rμ

M M M

c1,1
c1,2

c1,3

c2,1
c2,2

c2,3

cμ,1
cμ,2

cμ,3

···

connect them in order to form a star graph with center r j . Then, we create a tree of
M vertices, where M is a parameter that will be specified later, which is connected
to the above star graph through the center vertex r j only. Finally, we cluster the two
components together to form Vj . All edges have weight equal to zero, except those
that connect the two vertices associated with a variable, which are unit-weighted. An
example of the modified instance is shown in Fig. 2, where the triangle with label M
represents a generic tree of M vertices, rooted, for each clause j , at vertex r j . Now, by
using an argument similar to that proposed in the proof of Theorem 1, it is easy to see
that instance 〈Gφ,V, s〉, defined as above, exhibits the following properties: (i) if φ is
satisfiable then OPT = η (ii) if φ is not satisfiable then OPT ≥ η + M +4, where OPT
denotes the cost of the optimal solution to theCluSPT problem on instance 〈Gφ,V, s〉
and M can be chosen as an arbitrarily large integer.

We are now ready to prove the claim. Let 〈Gφ,V, s〉 be an instance of CluSPT
and let OPT be the cost of an optimal solution to such instance. Suppose by con-
tradiction that there exists a polynomial-time n1−ε-approximation algorithm A for
CluSPT for some constant ε ∈ (0, 1]. Consider a 3–CNF–SAT instance along with
the corresponding CluSPT instance. W.l.o.g., let us assume that μ = Θ(η). Note
that NP-hard instances of 3–CNF–SAT of this latter kind are known to exist. We then
set M = Θ(η2/ε) so that the number of vertices of graph Gφ is n = Θ(μ · M) =
Θ(η1+2/ε). If the 3–CNF–SAT instance is satisfiable, then A would return a solution T
to the CluSPT instance having a cost of at most: cost(T ) ≤ n1−εη = O(η

2−2ε
ε η) =

O(η
2
ε
−1) = O(Mη−1) = o(M), while if it is not satisfiable cost(T ) ≥ M . Hence

this would solve 3–CNF–SAT in polynomial time. ��

3.1 An approximation algorithm

We now show that the previous inapproximability result for CluSPT is tight by pro-
viding a simple approximation algorithm, as stated in the following.

Theorem 6 There exists a polynomial-time n-approximation algorithm for CluSPT.

Proof The algorithm works as follows: first it computes a multigraph G ′ from G by
identifying each cluster Vi ∈ V into a single vertex νi . When doing this, it associates
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each edge ofG ′ with the corresponding edge ofG. Then it computes aminimum span-
ning tree (MST from now on) T ′ of G ′, and k MSTs T1, . . . , Tk of G[V1], . . . ,G[Vk],
respectively. Finally, the algorithm returns the spanning tree T̃ of G which contains
all the edges in E ∪∪k

i=1E(Ti ), where E denotes the set of edges of G associated with
the edges of T ′.

Let us now estimate the quality of T̃ . Let T ∗ be an optimal solution to the CluSPT
instance. For a given spanning tree T of G rooted at s, let w(T ) = ∑

e∈E(T ) w(e).

Observe that clearlyw(T ) ≤ cost(T ) ≤ n·w(T ).Moreover, by construction,w(T̃ ) ≤
w(T ∗). Thus, we have: cost(T̃ ) ≤ n · w(T̃ ) ≤ n · w(T ∗) ≤ n · cost(T ∗). Since
the time complexity is upper bounded by the complexity of computing the MSTs, the
claim follows. ��

3.2 Fixed-parameter tractability results

The fixed-parameter tractability of CluSPT directly follows from the discussion of
Sect. 2 on the FPT algorithms for CluBFS. In particular, if we focus on CluBFS–
Fpt1, we observe that it can be trivially adapted to weighted graphs by considering
SPTs instead of BFS trees, thus redefining the base cases OPTv,1[H ] and the function

(v, v′). The only difference in the analysis is that it is no longer possible to use n2

as an upper bound for the value of M . However, by retracing the calculations in the
proof of Lemma 2, and by using the fact that M = O(OPT), one can easily prove the
following:

Lemma 4 CluSPT can be solved in Õ(nm + 2kk3n2 · OPT logOPT) time.

Regarding CluBFS–Fpt2, it can also be easily adapted to solve CluSPT by using
Dijkstra’s algorithm instead of the BFS algorithm, when the solution to a sub-problem
defined within each cluster has to be computed. This only slightly increases the result-
ing time complexity, which is however in the order of a logarithmic factor, as stated
in the following.

Theorem 7 CluSPT can be solved in O
(
h

h
2 (m + n log n)

)
time.

Proof We prove the claim by elaborating on the proofs of Lemma 3. In par-
ticular, it suffices to note that in Algorithm CluBFS–Fpt2, for each vector of
cluster root vertices, we need to compute the SPT trees (instead of BFS trees) of
G[Vi ] for i = 1, . . . , k plus an additional SPT tree of G ′. This can be done in
O(m) + ∑k

i=1 O(|E(G[Vi ])| + |V (G[Vi ] log V (G[Vi ])| + |Vi |) = O(m + n log n)

time. ��

To summarize, we can give the following theorem.

Theorem 8 CluSPT canbe solved in Õ
(
min

{
nm + 2kk3n2 · OPT logOPT, h

h
2m

})

time.
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4 CLUSP

To complement our results, we also studied CluSP, i.e., the problem of computing
a clustered shortest path between two given vertices of a graph. The problem was
introduced in Lin and Wu (2016), and asks for finding a minimum-cost path, in a
clustered weighted graph G, between a source and a destination vertex, with the
constraint that in a feasible path, vertices belonging to a same cluster must induce a
(connected) subpath. In this section, we extend the results of Lin and Wu (2016) by
considering the unweighted version of the problem,which to the best of our knowledge
was never considered before this work. We are then able to give the following result.

Theorem 9 Unweighted CluSP cannot be approximated, in polynomial time, within
a factor of n1−ε for any constant ε ∈ (0, 1], unless P = NP.

Proof To prove the statement we show a polynomial-time reduction from the NP-
complete problem Exact–Cover–by–3-Sets (X3C) to CluSP. In the X3C problem
we are given a set I = {x1, . . . , x3η} of 3η items, and a collection S = S1, . . . , Sμ

of μ ≥ η/3 subsets of I, each containing exactly 3 items. The problem consists
of determining whether there exists a collection S∗ ⊂ S such that |S∗| = η and
∪S∈S∗ = I (i.e., each element of I is contained in exactly one set of S∗). For the sake
of simplicity we assume that each xi ∈ I is contained in at most 3 sets.3

Let M be an integer parameter that will be specified later. Given an instance 〈I,S〉
of X3C, the corresponding instance of CluSP is constructed as follows:

– For each set S j ∈ S we add four vertices u0j , u
1
j , u

2
j , and u3j .

– For j = 1, . . . , μ − 1 we add the edge (u3j , u
0
j+1).

– For each xi ∈ I we add four vertices v1i , v
2
i , v

3
i , and vi . We connect vi to each vzi ,

for z = 1, 2, 3, using a path of length M . The vertex vi along with all the vertices
in the paths from vi to each vzi form a cluster.

– For each S j ∈ S and xi ∈ S j , if xi is the kth item in S j , and S j is the hth set to
contain xi , we add the edges (uk−1

j , vhi ) and (ukj , v
h
i ). For a given S j ∈ S, we call

the set of the edges of the form (u0j , v
h
i ) the top-path for S j .

– For each z = 1, . . . , μ−η, we add μ vertices y1z , . . . , y
μ
z and an additional vertex

yz connected to each y1z , . . . , y
μ
z with a path of length M . The vertex yz along with

all the vertices in the paths from yz to each of y1z , . . . , y
μ
z form a cluster.

– For each set S j ∈ S we add the 2(μ − η) edges {(u0j , y j
z ) : z = 1, . . . , μ −

η} ∪ {(u3j , y j
z ) : z = 1, . . . , μ − η}. For a given S j ∈ S, we call the set of edges

{(u0j , y j
z ), (u3j , y

j
z )} the z-th bottom-path for S j .

All vertices that have not explicitly been already assigned to a cluster belong to sin-
gleton clusters. Moreover we let s = u00 and t = u3μ. An example of the above
construction is shown in Fig. 3.

Now, let OPT be the cost of an optimal solution to this CluSP instance. We now
claim that (i) if there is a solution for the X3C instance then OPT ≤ 15μ, and (ii)

3 The X3C problem remains NP-complete even with this additional assumption, see e.g., problem SP2 in
Garey and Johnson (1979).
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Fig. 3 The graph used in the proof of Theorem 9. We show the reduction for the first two sets of an instance
of X3C, where we assume that S1 = {x1, x2, x4} and S2 = {x2, x3, x4}. Top-paths are shown with bold
black edges. Bottom paths are shown with bold-gray edges. Paths of length M are shown with curvy lines.
Clusters are shown with dashed lines. In the corresponding X3C instance we have S1 = {x1, x2, x4} and
S2 = {x2, x3, x4}

if there is no solution to the X3C instance then OPT ≥ M . To prove (i), let S∗ be a
solution to the X3C instance. Notice that |S∗| = η and that |S \ S∗| = μ − η. We
construct a clustered s-t-path P as follows: for each S j ∈ S, if S j ∈ S∗ we add to P
all the edges in the top-path for S j , while if S j /∈ S∗ we let z = |{S1, . . . , S j } \ S∗|
and we add to P all the edges in the zth bottom-path for S j . Finally, we add to P all
the edges in {(u3j , u0j+1) : j = 1, . . . , μ − 1}. It is easy to see that P is indeed an
s-t-path and that each cluster is traversed only once. Moreover, P contains exactly η

top-paths (of 6 edges each) and μ − η bottom paths (of 2 edges each). Therefore, it
follows that: OPT ≤ 6η + 2(μ − η) + μ − 1 ≤ 4η + 3μ ≤ 15μ.

To prove (ii) we consider the contrapositive statement, i.e., we show that if OPT <

M then there exists a solution to the X3C instance. Let P∗ be an optimal solution to
the CluSP instance and suppose OPT < M . This immediately implies that P does
not contain any of the paths from yz to y j

z or any of those from vi to vhi , since all
these paths have length M . This means that, for each S j ∈ S, P contains either the
(unique) top-path for S j or one of the bottom paths for S j . Since P can contain at
most μ − η bottom-paths and at most η top paths (as otherwise it would violate the
clustering constraints), it follows that P contains exactly η top paths. We define S∗ as
the collection of the sets S j for which a top-path has been selected. Since |S∗| = μ

and two paths corresponding to two different sets in S∗ cannot both pass through
vertices belonging to the same cluster, it follows that S∗ is indeed a solution to the
X3C instance.

We are now ready to prove the claim. Notice that the number of vertices of the

CluSP instance, say n, is upper bounded by O(μ2M). We set M = Θ(μ
3
ε
−1) so that

n = O(μ
3
ε
+1). Suppose now that there exists a polynomial-time n1−ε–approximation
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algorithm A for CluSP. This would imply that if the X3C instance admits a solution,
then the cost of the solution returned by A would be at most:

15μn1−ε = O(μμ
3
ε
−2−ε) = O(μ

3
ε
−1−ε) = O(Mμ−ε) = O(MM− ε2

3−ε ) = o(M)

while, if the X3C instance does not admit a solution, then A would return a solution
to the CluSP instance having a cost of at least M . It follows that we would be able to
solve X3C in polynomial time. ��

5 Conclusion and future work

In this paper,motivated bykeymodern networked applications,wehave studied several
clustered variants of shortest-path related problems, namely CluBFS, CluSPT and
unweighted CluSP. We have provided a comprehensive set of results which allow to
shed light on the complexity of such problems.

There are several directions that may be pursued for future work. Themain research
question thatwe leave open is that of establishing a lower bound on the approximability
of CluBFS, and, in case of a gap w.r.t. the approximation factor provided by Algo-
rithm 1, that of devising a better approximation algorithm (by, e.g., exploring some
other natural heuristic). Besides that, also studying clustered shortest-path problems
on restricted but meaningful classes of graphs, like, e.g., euclidean or planar graphs,
might deserve investigation. Another interesting issue is surely that of studying how
other practically relevant network structures, such as spanners and highly-connected
spanning subgraphs, behave in a clustered setting [incidentally, clusterization is one
of the most used techniques to build this kind of structures, see e.g. Bilò et al. (2015)].
Finally, it would be also interesting to conduct an experimental study for assessing the
practical performance of all proposed algorithms.
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