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Abstract
The FJSP is an extension of the classical job shop problem which has been proven to
be among the hardest combinatorial optimization problems, by allowing an operation
to be operated on more than one machine from a machine set, with possibility of
variable performances. In this work, we have designed a co-evolutionary algorithm
that applies adaptively multiple crossover and mutation operators. In the evolution
process, all new generated individuals are improved by local search. Combined with a
new leader tree guided optimization search, the hybrid algorithm has discovered 2 new
optimal solutions for instances of Hurink et al. (Oper Res Spektrum 15(4):205–215,
1994). In general, the outcomes of simulation results and comparisons demonstrate
comparable results. The leader guided optimization has shown its effectiveness for
minimizing the makespan in a FJSP, but it is not limited to this environment.
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1 Introduction

This paper deals with the flexible job shop problem (FJSP) which is a generalisation
of the job shop problem (JSP) by assuming that an operation may be processed by
more than one type of machines, with possibility of variable performances inside the
set of machines.

In the FJSP, there are n independent jobs J � {1, …, j, …, n} and a set of K
machines M � {mk, 1≤k≤m} available at time t0. Each job j is composed of a
predefined sequence of nj operations Oij, where Oij denotes the ith operation of the
job j. To each operation Oij is associated a pool of machines mij. Given a machine mk
from mij than the execution time of Oij on mk is eijk. A scheduling is a definition for
each operation Oij of a machine mk from its pool, a starting date sij and a completion
time cij of Oij on that machine. The most considered objective is the minimization of
the maximum completion time (makespan). The FJSP has a strongly NP-hard nature
since it includes two sub-problems: operation’s assignment problem and classical job
shop scheduling problem.

A feasible schedule of the FJSP can be modelled by a disjunctive graph where the
set of nodes is the set of operations to which are added dummy starting and terminating
nodes. Two types of arcs join the nodes. The conjunctive arcs connect two successive
operations according to the job execution order. The disjunctive arcs connect two
adjacent operations processed on the same machine. The makespan is the length of
the longest path in the disjunctive graph. This path is said to be the critical path and a
graph may admits more than one critical path. Critical operations are those belonging
to a critical path.

Much research has addressed the FJSP and most are based on metaheuristics and
heuristics. The efficiency of population based metaheuristic is always enhanced with
local search algorithms (Gao et al. 2008; Gen et al. 2009; Zhang et al. 2011; Singh and
Mahapatra 2016). Several neighbourhood structures, mainly based on the disjunctive
graph model, were designed for the FJSP. Particularly, those based on the critical path
have demonstrated their performance to converge to good optima (Hurink et al. 1994;
Mastrolilli and Gambardella 2000). Given the literature of the FJSP, none approach
has established its superiority among the others and the work of Mastrolilli and Gam-
bardella (2000) still realises among the best results.

Actually, much research literature addresses evolutionary algorithms (EAs) to solve
the FJSP because of their ability to perform global search and provide good solutions
in a short computation time. However, evolutionary algorithms suffer from stagnation
of the search after several genetic iterations due to the domination of few even one high
efficient individual. To deal with, we have developed a new leader guided optimization
(LGO) search technique. The main idea is to run independently many evolutionary
instances where each one is guided by a leader. A leader is a powerful solution dis-
covered in the previous evolution process. We have combined the LGO with a new
designed co-evolutionary algorithm (CEA) to solve the FJP. The CEA applies adap-
tively multiple crossover and mutation operators so as to ensure the effect of multiple
evolution schemes into the same algorithm. The hybrid algorithm has shown its per-
formance in the resolution of the FJSP comparing to the literature results. Two new
optimal solutions are found in rdata instances of Hurink et al. (1994).
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The remainder of the paper is organized as follows: Sect. 2 presents the leader
guided optimization. Section 3 describes the co-evolutionary algorithm. Section 4
presents the hybridization scheme and the results.

2 Leader guided optimization

The main idea is to guide the search process by a leader. The leader has a good
performance or it contains some promising characteristics. The leader is declared as a
winner of a race. In each race, a group of individuals are guided by the leader. These
individuals evolve during a race. They can whether exchange experience or adopt
evolution and diversification strategies. The winner of a race is saved as a leader.
Later, it will initiate another race with a new generated group of individuals. One
individual has a limited extreme performance period during his life. Thus, he has a
limited number of races to run. The winners of the races are stored in the memory.
They form a bank of leaders.

When a leader reaches its performance limit, which is a number of races that it
performs during its life, a new leader is selected in the bank of leaders to become the
new race leader. The race’s leader enters the race with the sole purpose of guiding
the other individuals and not to win the race. During the race, the individuals evolve
by combination and diversification operators through a population based search tech-
nique. A race may be an independent run of population based search technique guided
by the leader.

The leader guided optimization uses the following mechanisms:

• Initiation of the bank of leaders. These leaders may be generated by different ways.
They can be randomly generated than locally optimized or obtained by using some
rapid heuristics.

• Leader selection: this mechanism selects from the bank of leader the one that will
guide the next races. This individual may be themost performing or selected accord-
ing to a priority rule such as LIFO or FIFO.

• Population initialization: the initial population of the race is composed of a set
of new generated solutions added to the race’s leader. These solutions are created
independently of the leader whether randomly or by constructive heuristics.

• A race: a race is a population based metaheuristic which allow the combination of
the leader’s features with other individuals.

The global functioning of the leader guided optimization is described in the Algo-
rithm 1.
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Algorithm 1: leader guided optimization 

Step 1: bank_leaders := Initiate the bank of leaders 

Step 2: E_current := select an unlocked leader from the bank 

Step 3: while E_current is a race leader do 

                    E_new :=perform a race guided by E_current and returns the race’s winner. 

                    if E_new is best then  E_current 
                            Then insert E_new in the bank of leaders 
             End while 
             E_current is locked 
Step 4: if the stopping condition is reached returns the best leader, otherwise go to step 2. 

The leaders are stored in a k array tree data structure where k is a parameter of
the algorithm. The root of the tree is a null node. Each node of the tree has at most
k children. For a given node of the tree, its children are leaders that have won a race
guided by their parent node. In fact, a leader performs at most k races in its life. Only
the winners of the races are stored as leaders. It is obvious that the child’s efficiency
is higher than that of its parent. The children of a node are stored from right to left
by decreasing order of performances. The children of the root node are generated
independently by an initiation mechanism of the bank of leaders. The leaders that
have accomplished their races are locked and the others are unlocked. The new leader
is selected from the unlocked ones. This data structure injures depth and width search.
One can whether starts by a node and performs the races on his children first or on the
next node in the same level of the tree.

Let suppose we have a minimization problem and we have generated three initial
leaders (x1, 100), (x2, 107) and (x3, 108). The winners of three independent races
guided by x1are: (x11, 94), (x12, 90) and (x13, 93). Only two races guided by x2 have
discovered new leaders: (x21, 94) and (x22, 96). The races guided by x3 have generated
the leader (x31, 85). The obtained tree is given in Fig. 1.

We have applied the leader guided search to mathematical optimization functions.
These functions are used to evaluate optimization algorithms.

Fig. 1 The bank of leader

x1,2 90

x1 100 x2 107 x3 108

x1,3 93 x1,2 98 x2,1 94 x2,2 96 x3,1 85
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We have considered the following known minimization functions:

Rosenbrock function:
d−1∑

i�1

(
1 − x2i

)2
+ 100

(
xi+1 − x2i

)2
, − 2.048 ≤ xi ≤ 2.048

The global optimum is fmin � 0 for the point (1, 1) in 2D dimension. The parameter
d fixes the number of dimensions.

Eggcrate function:

g(x, y) � x2 + y2 + 25
(
sin2 x + sin2 y

)
, (x, y) ∈ [−2π, 2π] × [−2π, 2π]

The eggcrate function ismultimodal. The globalminimum is gmin � 0 at point (0, 0).

Michalewicz function:

f(x) � −
d∑

i�1

sin(xi)

[
sin

(
ix2i
π

)]2m

, (m � 10)

This function admits d! local optima in the interval 0≤xi≤� for i � 1, …, d. The
global minimum in 2D dimension is fmin � − 1.801.

We have considered a standard genetic algorithm with binary encoding, one
crossover and one point mutation and wheel selection. A race in the leader-guided
optimization is a genetic algorithm of 100 individuals with the probabilities respec-
tively of crossover 0.65 and mutations 0.1.

We run 18,000 generations of the standard genetic algorithm. For the LGO we run
6 races of 3000 generations of the GA. Every leader runs two races in its life. The
results are given in the following table.

For the Rosenbrock function the bank of leader is initiated with the individuals (s1;
11.2) and (s2; 1.28). s2 is better than s1. Thus s2 guides two races that are winned
by (s21; 10.07) and (s22; 1.17). The solution s22 is the best child. So, it guides the
following two races that were won by the solutions (s221; 0.6) and (s222; 7.1).

By comparison to the standard genetic algorithm, the LGO has performed better for
the 3 problems (Table 1). For the eggarte function, the LGA reaches an optimum equal
to 0.03 (global optimum� 0)while theGA returns the value 4.29. For theMichalewicz
function, the optimal value is − 1.801. The LGO (− 1.71) is nearest to the optimum
than theGA (− 1.61). For the Rosenbrock, both algorithms returns the same value. The
LGO has proved its efficiency when applied to well knownmathematical optimization
functions. In the next section, we demonstrate its efficiency in the resolution of a
combinatorial optimization problem, which is the flexible job shop problem.

3 A co-evolutionary algorithm for the FJSP

The adaptation of the evolutionary algorithm to the FJSP is mentioned as co-
evolutionary because multiple crossover and mutation operators are used to obtain
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Table 1 Results for the test
functions

Function LGO GA

Rosenbrockk 0.6 0.6

Eggcrate 0.03 4.29

Michalewicz − 1.71 − 1.61

a diversified set of combination and diversification schemes. These genetic operators
are applied with adapted frequency that depends on their performance to generate new
efficient solutions. Each new generated solution is optimized locally by local search.

The overall structure of the co-evolutionary process can be described by the Algo-
rithm 2.

Coding the coding is similar to the parallel machine encoding proposed inMesghouni
et al. (2004). A solution is coded as a table of K lists. The kth list is the sequence of
the machine mk. This encoding is direct since it gives directly the assignment and the
sequencing of the operations. To obtain the final scheduling, each operation receives
the earliest possible starting time.

Scheduling heuristics the solutions are constructed through the application of schedul-
ing and assignment rules. Two priority rules are used for operation selection:

• Select randomly one operation from the queue list.
• Select the operation that has the least available time.
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The machine selection is based on three assignment rules:

• Assign the operation to a random machine from its pool
• Assign the operation to the machine that can start it earlier
• Assign the operation to the least loaded machine from its pool

Six combined heuristics are then used to generate the initial solutions where two
of them are deterministic and the others are stochastic. The obtained solutions are
improved by local search before their insertion in the initial population.

Selection the tournament selection is appliedwith variable size of the tournament. The
selection incorporates the elite model since the best solution is always transferred to
the next generation. A high pressure of selection is authorized in the start of the search
to accelerate the convergence then binary tournament selection is performed to avoid
search stagnation. The pressure of selection is decreased by one every T generations
(λ(t) � max(λ(t − 1) − 1, 1) if t modulo T � 0), where T is a parameter of the CEA.

Local search local search is performed on every new generated solution to improve
locally the solution generation process. The genetic evolution gives promising starting
points to the local search to intensify the search in many directions.

The local search is based on the disjunctive graph model of Roy and Sussmann
(1964) and the neighbourhood of Nowicki and Smutnicki (1996). It starts by decom-
posing the critical path intomaximal blocks of adjacent critical operations being treated
by the same machine. A neighbouring solution is obtained by a swap of the last two
and first two block operations.

Stop criterion the algorithm is stopped if a maximum number of iterations is reached
or the best solution is not changed for a fixed number of iterations.

Multiple crossover evolution the combination of the chromosomes is performed via
distinct crossover operators. The crossovers exchange sequences between parents to
formnewencodings in differentways. The generated encodings are feasible but incom-
plete. To preserve feasibility, operations that violate the scheduling constraints, are
inserted into a waiting list to be re-inserted later by the scheduling heuristic. The
generation of partial encoding by combination of the parent’s encoding avoids the
use of the reparation techniques which may modify the assignment or the operation’s
sequencing of their parents. Some good features may be omitted by reparation and
lost. Four crossover operators are proposed.

One Point Crossover with Priority List (OPCPL) Let P1 and P2 be a couple of mates and
k be a cut point on the set of machines (1<k<K). The cut point divides the mate P1
into two blocks of machine sequences A and B (respectively P2 into C and D). The
child E1 inherits from the parent P1 the block A and from the parent P2 (respectively
the parent P1), a part D’ of the block D. Operations in D that violates the scheduling
constraints if they are copied to the encoding of the child E1 are inserted into a waiting
list. In addition, omitted operations are added to the waiting list. If the waiting list L
is not empty (L ���), the formation of the complete encoding and the computation of
the scheduling are performed by the scheduling heuristic. The child E2 is formed in
the same way as E1 while inverting the role of P1 and P2 in the combination process.
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Two Points Crossover with Priority List (TPCPL) Let P1 and P2 be a couple of mates and
two cut points k1 and k2 (1<k1 <k2 <K) to delimitate the crossover zone. The parent
is cut into three blocks of machines. The block A of the machines mi i∈<1, k1>,
block B of machines mi k1 < i≤k2, and the block C of machines mi, k2 < i≤K. By
the same way, the parent P2 is divided into three blocks D, E and F. The child E1
receives from P1 the same sequences on the machines inside the crossover zone and
from P2, those outside the crossover zone without violating the scheduling constraints.
The obtained child is an incomplete encoding finalized by the scheduling heuristic. In
fact, only feasible operations are copied from parent P2 to child E1. By the same way,
the encoding of the child E2 is composed of the block E from P2 and feasible parts of
blocks B and C from P1.

SelectiveMachine Sequences Crossover (SMSC) Only one offspring is produced by the
SMSC operator. This child inherits, for each machine, the sequence satisfying one of
the following criteria: the minimum completion time, the least loaded machine or one
randomly chosen machine amongst the two parents. The obtained encoding is partial
since there are omitted and not feasible operations which are stored in a waiting list
and after that rescheduled by the scheduling heuristics.

Multi-ParentCrossover (MPC) To guarantee a high level of diversification the MPC try
to join sequences from three parents to construct a child. Once, a crossover zone is
created by randomly generating two positions k1 and k2 (1≤k1 <k2 <K), the child
E1 receives from P1 the same sequences inside the crossover zone, from P2 the k1 first
sequences and from P3 the last sequences. This step is achieved by setting up a list L
of un-rooted operations. The MPC takes end when all pending operations are inserted
into their appropriate machines by the scheduling heuristics.

Multiple mutation evolution The proposed mutation operators are trivial heuristics
that can guide the search to new promising directions. We have designed multiple
mutation operators to conjugate their effect on the evolutionary process. All the muta-
tion operators are designed for multipurpose operations except the swap mutation on
one machine and the rescheduling of the last finishing job, they don’t modify the
operation’s assignments to the machines. Six mutation operators are designed.

Mutation of operation reschedule a multi-purpose operation on another machine from
its pool.

Mutation of the loadedmachine reschedule a multipurpose operation from the
sequence of the most loaded machine on another machine from its pool.

Mutation of the last finishing job if the most loaded machine executes a multipurpose
operation of the last finishing job then reschedule it if possible.

Mutation by job rescheduling extract all the operations of the last finishing job and
reschedule without assignment modification.

Swapmutation on onemachine swap two operations on a machine sequence.
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Swapmutation on twomachines swap two multipurpose operations each one from a
machine.

All the mutation operators proceed by removing one or many operations from a
given scheduling than by rescheduling the removed operations. A candidate operation
is inserted in the first available position in the sequence of the machine. Let Oij be an
operation to be inserted in the sequence of the machine mk.We start by seeking the last
job predecessor of Oij executed by the machine mk. Let Oi′j be that job predecessor if
it exists. Oij can’t be inserted before Oi’j.

By the same way, the operation Oij can’t be processed after one of its job successor
on the machine mk. Let Oi′′j be the first job successor of Oij on the machine mk.

We look know for the operations comprised between Oi′j and Oi′′j. Let O be one of
these operations. If a job predecessor of O is placed after a job successor of Oij in the
sequence of another machine mk′ , the insertion of Oij after O generates a cycle and
this insertion is forbidden. The operation Oij can be inserted before the first operation
outside its job that hasn’t one of its job predecessors executed after a job successor of
job Oij. Let O′ be that operation.

The operation Oij is inserted in the first possible feasible position: after both Oi’j
and O′ and before Oi′′j.

Adaptive operator selection a dynamic probability of application is assigned to each
evolutionary operator (mutation, crossover). The operator that performs well during
the previous iterationswill havemore chance to be applied.When anoperator generates
an offspring better than its parents, the probability of that operator is increased. During
the searchweaker operators are penalized and stronger ones are encouraged for a given
problem instance. The probability of application of a given operator is reinforced if
the later performs well otherwise it will be decreased. The operators aren’t allowed to
die and neither operator directs alone the search. The probabilities are maintained in
a pre-fixed interval. To do so we have adapted the principle of the Adaptive Pursuit
Algorithm (APA) as described in Thierens (2007).

Given A operators i � 1 … A. We associate to the operator i, a count ti that equals
the number of times the operator i was applied. The operator i has also a probability
of application Pi such that (0≤Pi(t)≤1;

∑A
i�1 Pi(t) = 1. Every time an operator i is

applied, its quality estimator is updated as follows:

Qi(ti + 1) � Qi(ti) + α
[
Ri(ti)−Qi(ti)

]
(1)

where

{
Ri [ti ] := RFix +

(
Cp
Cc

)
− 1, if the operator i improves the solution quality

Ri [ti ] := 0, otherwise
where the quantity Ri(ti) is a reward received by the operator i when its application
improves the results. This reward depends on the objective function. The terms Cp
and Cc are respectively the makespan of the parent and the descendent after the
application of the operator i. In case of a mutation operator, the child is the mutated
individual. The parameter α is an adaptation rate: 0<α≤1.

Initially, all the operators have equal probabilities to be applied (Pi(0)� 1/A,∀ i∈ [1,
A]).
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When a given operator has been applied a number of times multiple of max Q, the
probability vector is updated.

i∗ � arg max
i∈1...A(Qi(ti + 1)) (2)

Pi∗[ti∗ + 1] :� Pi∗[ti∗] + β ∗ (Pmax − Pi∗[ti∗] (3)

For i �� i∗, Pi[ti + 1] :� Pi[ti] + β ∗ (
Pmin − Pi[ti]

)
(4)

The parameters of the adaptive pursuit are fixed after fine-tuning with: α � 0.85, β �
0.85, RFix � 0.9. The parameters Pmax is set as follow: Pmax � 1− (A− 1)*Pmin with
0<Pmin <1. This setting ensures that the best operator is applied with a probability
near to 0.5 and that the others are equally probability applied. So, neither operator is
neglected or dominates the evolution process.

4 Experimental results and discussion

The proposed method was implemented in C++ language on an i5 processor running
at 2.4 GHz. The parameters of the EAwere fixed after carrying out multiple fine tuning
as follow: crossover probability� 0.71, mutation probability� 0.6, population size�
50, 100, 200 and 300 and generation number � 10,000). We have varied the mutation
and crossover operators from 0 to 1 by step of 0.1. For each, combination we run
the algorithm 5 times for a population of 50 individuals. The algorithm performs
well for high rate of mutation and crossover. But it converges rapidly since each
generated solution is improved by local search. A rate of reproduction comprised
between 0.6 and 0.8 realizes a good compromise between exploration and exploitation
in the evolutionary process.

Three FJSP different sets of instances are used: the instances “mt06”, “mt10”, and
“mt20” are taken fromFisher andThompson (1963). The three data sets of 40 instances
“la01” to “la40” which are “edata” with the least amount of flexibility, “rdata” where
the average size of mij is equal to 2 and “vdata” where the average reach m/2 (Hurink
et al. 1994). We compare five algorithms: the evolutionary algorithm (EA), the co-
evolutionary algorithm (CEA), the hybridization of the leader guided optimization
with the CEA (LGO_CEA) and the tabu search TS of Mastrolilli and Gambardella
(2000). The LGO_CEAruns multiple races guided by dominant solutions discovered
in the previous search. Each race is a population of individuals that evolve according
to the CEA.

To illustrate the behavior of the leader guided optimization when applied to the
flexible job shop problem we give in Fig. 2 a branch of the leader tree for the problem
la38 vdata from Hurink et al. (1994).

The initial leader has a makespan of 997. He has leaded 7 independent races. Its
most left child is the best one among its 7 children. This later leads also 7 races but
he was dominated only in 3 of them. Thus, the node x1 has only three children where
the best of them is x11. This individual will guide the next races. At this step of the
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x1,1 941

x1 945

x1,2 943 x1,3 944

x2 949 x3 956 x4 964 x5 969 x6 976 x7 978

x1,1,1 935 x1,1,2 937 x1,1,3 938

x1,1,1,1 931 x1,1,1,2 932 x1,1,1,3 944

x1,1,1,2,1 929 x1,1,1,2,2 931

x1..2,1,1 925 x1..2,1,1,1 923 x1..2,1,111 922

997

Fig. 2 Leader tree for the instance la38 vdata

Table 2 Comparison of the MRE
of algorithms EA, CEA,
LGO_CEA, GA and TS for
solving FJS

MRE EA CEA LGO_CEA GA TS

HurinkEdata 6.84 4.09 2.82 6 1.99

HurinkRdata 4.28 2.9 1.87 4.42 1.16

HurinkVdata 1.1 0.64 0.21 2.04 0.1

algorithm, the bank of leaders contains 11 leaders where 2 of them are locked since
they have still compete their races.

InTable 2,we compute themean of relative error to the optimum for the 4 algorithms
and for each test instances set. In Table 3, we give the number of found solutions for
a given deviation from the optimum and we give the number of optima found.

The algorithm EA is a multiple crossover and mutation genetic algorithm. The EA
selects randomly the reproduction operator to apply for crossover or mutation. It uses
the same operators as those implemented in the CEA. The algorithm CEA imple-
ments the guided selection strategy that favours the application of the best performant
operators during the search.
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The CEA discovers more optima than the EA for the three test instances. The
mean deviation to lower bounds is also minimised. Among 129 instances, the CEA
outperforms the EA on 78 instances, realizes the same performance on 47 and it is
less performant only on 3 instances. This result confirms the efficiency of the adaptive
selection strategy of the genetic operators.

The CEA performs better when the flexibility increases. This result is expected. The
heuristics and the operators that consider the assignment sub-problem will have no
effect and a lack of diversity will slow down the convergence. The CEA realised near
results to those of TS for the vdata instances. The mean error deviation is comprised
between 0 and 1 for 18 instances among 43. The CEA is near the optimal performances
on a large set of instances.

We combine the CEA with the LGO to escape local optima by re-starting the
search while guiding the population by a dominant individual discovered in previ-
ous searches. The hybrid algorithm LGO_CEA outperforms the CEA on all the test
instances. LGO_CEA succeeds to characterise 65 optimal solutions where 31 among
themwere found by the CEA. For the remaining instances, LGO_CEA is nearest to the
optimal than the CEA. Tables 2 and 3 show that the new Leader Guided Optimisation
when combined with the CEA has brought remarkable ameliorations in the obtained
results due to the enhanced exploration of the search space. The leader tree guided
optimization has allowed a deep oriented exploration of the search space and thus has
discovered always more efficient solution then the CEA if applied alone.

As for the CEA, the LGO_CEA realizes better performance when the flexibility
increases. The number of optimal solutions found is higher for the test instances vdata
by comparison to edata and rdata. Themean relative error decreaseswhen theflexibility
increases, it is lower for the vdata test instances. The scheduling heuristics and the
genetic operators that consider both the scheduling and the assignment problem have
a lower diversification effect as the flexibility decreases.

By comparison to the TS results, the LGO_CEA discovers two new optimal solu-
tions for the problem LA01 and LA15 (Fig. 3) in rdata set. We can also notice that in
term of number of optimal solutions, LGO_CEA is very close to TS of Mastrolilli and
Gambardella (2000) in Edata and Vdata instances but exceeds it in Rdata. Addition-
ally, our proposed method outperforms GA of Pezzella et al. (2008) for all types of
instances. It is interesting to note that our approach finds two new optimal solutions:
La01 and La15 in Hurinkrdata as mentioned.

In Table 4, we give the five number summary of the makespan and the relative
standard deviation. This statistics measures are obtained from 20 independent runs of
the LGO_CEA on four test instances la25 from edata and la22, la28 and la30 from
vdata.

For the problem la25 the standard deviation is 2.03% of the mean so the obtained
performances are tightly clustered around the mean. For the problems la28 and la30,
the RSD is less than 1% so the values are around the mean. For the la22, the RSD is
also low. The LGO_CEA realizes near performances when launched independently
many times on the same test instances. We conclude that the algorithm is robust.

The table below shows the execution time of LGO_CEA and CEA. The LGO_CEA
runs races guided by the leaders until the bank of leaders becomes empty. Each race
is an independent execution of the CEA where a leader from the bank joins the initial
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The optimal solution for the problem LA01 in rdata problem
machine 1: 1 5 0 83 83**2 1 83 136 53**2 8 136 196 60**2 4 196 251 55**4 6 251 343 92**
4 2 343 369 26**3 9 369 394 25**4 9 394 438 44**5 3 438 450 12**4 8 450 474 24**5 10 474 570 96**
machine 2: 1 6 0 54 54**1 1 54 75 21**2 3 75 173 98**3 3 173 215 42**2 9 215 264 49**
3 7 264 351 87**3 8 351 392 41**4 10 392 467 75**4 5 467 486 19**5 8 486 569 83**
machine 3: 1 2 0 21 21**1 8 21 59 38**2 6 59 102 43**2 7 102 179 77**2 5 179 213 34**
3 5 213 277 64**4 3 277 308 31**3 10 308 351 43**4 7 351 438 87**5 1 438 472 34**
5 9 472 570 98**
machine 4: 1 9 0 17 17**1 7 17 86 69**1 4 86 163 77**2 2 163 215 52**2 10 215 294 79**3 2 294 310 16**4 
1 310 365 55**5 6 365 427 62**4 4 427 493 66**5 4 493 570 77**
machine 5: 1 3 0 39 39**1 10 39 116 77**3 6 116 195 79**3 1 195 290 95**3 4 290 369 79**
5 2 369 440 71**5 7 440 533 93**5 5 533 570 37**

The optimal solution of the problem LA15 in rdata problem
machine 1: 1 13 0 28 28**1 11 28 73 45**1 8 73 153 80**1 1 153 159 6**3 2 159 214 55**
2 12 214 268 54**2 20 268 301 33**2 8 301 357 56**2 15 357 416 59**3 6 416 499 83**2 10 499 587 88**2 5 
587 627 40**4 11 627 704 77**4 16 704 756 52**4 18 756 805 49**
4 20 805 904 99**4 1 904 941 37**4 9 941 1012 71**5 3 1012 1089 77**
machine 2: 1 16 0 81 81**1 17 81 88 7**1 15 88 183 95**2 19 183 267 84**1 10 267 307 40**
1 3 307 353 46**2 13 353 426 73**3 13 426 524 98**2 9 524 615 91**3 10 615 674 59**4 17 674 762 88**3 8 
762 839 77**3 7 839 919 80**3 5 919 963 44**5 18 963 990 27**4 5 990 1014 24**
5 9 1014 1031 17**5 11 1031 1089 58**
machine 3: 1 2 0 40 40**1 4 40 61 21**1 20 61 143 82**1 12 143 179 36**1 5 179 264 85**
3 11 264 272 8**2 1 272 312 40**3 1 312 393 81**3 17 393 405 12**4 4 405 430 25**
3 18 430 499 69**3 19 499 560 61**4 6 560 591 31**3 12 591 687 96**4 12 687 696 9**
3 3 696 766 70**3 14 766 793 27**4 10 793 800 7**4 3 800 855 55**4 14 855 954 99**
5 14 954 1050 96**4 7 1050 1080 30**5 2 1080 1089 9**
machine 4: 1 18 0 45 45**2 2 45 77 32**2 4 77 142 65**2 17 142 164 22**3 4 164 228 64*
*4 2 228 309 81**2 6 309 338 29**2 16 338 430 92**2 14 430 516 86**4 15 516 601 85**
4 19 601 669 68**4 13 669 761 92**5 16 761 800 39**5 10 800 880 80**5 17 880 940 60**
5 20 940 984 44**5 8 984 1081 97**5 7 1081 1089 8**
machine 5: 1 19 0 21 21**1 9 21 77 56**1 14 77 147 70**2 11 147 176 29**1 6 176 265 89**
2 18 265 358 93**1 7 358 417 59**2 7 417 455 38**3 15 455 511 56**2 3 511 576 65**
3 20 576 647 71**3 16 647 679 32**5 15 679 720 41**5 4 720 735 15**3 9 735 785 50**
5 6 785 869 84**5 12 869 879 10**4 8 879 920 41**5 13 920 1007 87**5 19 1007 1033 26**
5 1 1033 1052 19**5 5 1052 1089 37**

Fig. 3 LA01 and LA15 optimal solutions

Table 4 Study of the robustness
of the LGO_CEA

la25 edata la22 vdata la28 vdata la30 vdata

Min 984 761 1078 1086

Max 1054 792 1107 1119

Mean 1015.4 778.55 1090.05 1100.7

Std 20.62 8.81 8.24 9.49

RSD 2.03 1.13 0.75 0.86

population of the evolutionary algorithm. As seen in Table 5, the hybrid algorithm is
from 3 to 22 times slower than the CEA. The LGO_CEA realizes higher performances
according to the objective function and succeeds to solve the stagnation of the search
in population based metaheurists in despite of an increase in the execution time.

The hybridization of theLGOwith theCEAhas shown its efficiency since the results
are improved for almost all the test instances. TheCEAalone converges to local optima
and the evolutionary search is blocked due to the presence of a dominant solution.
When a dominant solution is inserted in a new generated population, the evolutionary
search evolves toward better performances since it takes advantages both from the
leader’s characteristics and from the diversity of the population. The LGO_CEA is
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Table 5 Study of execution time LGO_CEA and CEA

Execution time Makespan

Instance CEA LGO_CEA LGO_CEA/CEA CEA LGO_CEA

la21 edata 478.6 1302.57 2.72 1106 1059

la25 edata 78.1 1785.05 22.85 1052 965

la22 vdata 1359.3 10,733.85 7.89 782 755

la28 vdata 978.32 3402.57 3.47 1099 1076

la30 vdata 554.96 11,660.5 21.01 1101 1076

robust. While executing the algorithm many times on the same problem it realises
near performances. The main drawback of the LGO_CEA is its execution time. The
algorithm launches many times the population based metaheuristic so its execution
time is higher. By comparison to the best results found in the literature, the LGO_CEA
succeeds to characterise new optimal solutions and to realize whether the same or very
close performances.

5 Conclusion

In this paper, a new co-evolutionary approach based on the combination of genetic
algorithm with local search algorithm for solving FJSP with minimization of the
makespan, is presented. TheCEAappliesmultiple crossovers andmutations, as also as,
many constructive scheduling heuristics. The algorithm selects adaptively the genetic
operator to apply by favoring dynamically those realizing the best performance. The
use ofmultiple genetic operators enhance the performance of the evolutionary process.
The CEA performs better than random choice of operators. To escape local optima the
CEA is combinedwith the leader guided optimizationmetheuristic.A leader is injected
at the beginning of each simulation to guide the research process to a better solution.
The performance of the new approach are evaluated and compared with the results
obtained from other works in the literature. The effectiveness of the developed method
is proved by reaching two new optimal solutions. The LGO is a generic algorithm.
As a future work, it can be combined with other population based metaheuristics
and evaluated on other optimization problems. Another direction is to distribute the
algorithm to deal with the problem of execution time.
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