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Abstract The patient scheduling presents a number of operations management chal-
lenges in hemodialysis service center. The homogeneity of the break time between
treatments, satisfying the patients preferences on time, space and equipment and the
multi-function dialysis devices make for an interesting and complex scheduling prob-
lem that could benefit from computerized decision support. In this paper, patient
scheduling problem in hemodialysis service is formulated as a synthetic-objective
optimization model combined with several criteria on minimizing the gross utilization
cost of devices, the number of night treatment, satisfying the patients preferences and
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the equilibrium of the devices. A basic heuristics and a rollout algorithm based on
the heuristics are developed for solving the problem where three levels of treatment
schedule sets are constructed one by one. The performances of the rollout algorithm
and the basic heuristics are compared on the real cases. Computational results show
that significant improvement of patients degree of satisfaction can be achieved with
the rollout algorithm while simultaneously considering to reduce the number of night
shifts.

Keywords Patient scheduling · Hemodialysis service · Synthetic-objective optimiza-
tion · Heuristics · Rollout algorithm

1 Introduction

Medical service is an important part of the social security system and the modern
service industry. Currently, with the increasing demands of medical services and the
extensive use of advanced medical equipment, patient scheduling problems in medical
services with the aid of medical equipment have received more and more concerns
(Meskens et al. 2013; Petrovic et al. 2006; Riff et al. 2016; Zhang et al. 2015; Zhong
et al. 2014).

In recent years, a survey shows that the overall prevalence of chronic kidney disease
is estimated to be 8–16% worldwide (Jha et al. 2013). Hemodialysis service, which
targets the maintenance of the amount and composition of body fluid within a range
that is close to normal, is an important way to treat chronic kidney disease (Tomoyuki
et al. 2015). As a relative shortage of organs limits transplantation rates, the number of
patients on dialysis is increasing (Power et al. 2009). Therefore, the patient scheduling
in hemodialysis service is of great practical significance.

Hemodialysis service centers provide services for patients on dialysis by using
hemodialysis equipment. After some examination and diagnosison of the patients,
doctors develop hemodialysis treatment plans for them in which several treatments
have to be done in a week or 2weeks. Then, a treatment schedule will be made for all
the patients according to these plans and the availability of devices. Patient scheduling
in hemodialysis service is a mapping of patients to devices, shifts and spaces in these
centers in a planning period. In patient scheduling, managers usually have to consider
the homogeneity of the break time between two treatments for every patient. In these
centers, dialysis devicesmay have a variety of functions, which could provide different
types of dialysis treatment and are usually located in multiple rooms. In a treatment
plan, a patient should be served for various types of dialysis treatment. A service for a
patient on one shift is provided by only one device and one device can only serve for
one patient on a shift. Additionally, the patients often have the preferences on time,
device and spacewhich often have to be satisfied asmuch as possible. The relationships
among patients, devices, rooms and shifts are complicated which are different from
other patient scheduling problems and timetabling problems on which surveys can be
found in Ahmadi-Javid et al. (2017), Hulshof et al. (2012) and Hadidi (2015). These
characteristics make patient scheduling in hemodialysis service very challenging.
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Motivated by real needs from a hemodialysis service center in Wuhan China, this
study aims to develop an optimization model for patient scheduling in hemodialysis
service and propose some effective approaches with a synthetic objective on minimiz-
ing the gross cost for utilizing devices, the number of night treatments, satisfying the
patients preference as much as possible and balancing devices utilization.

The remainder of the paper is organized as follows. Section 2 is a discussion of
relatedwork. Problem description and formulation of Patient Scheduling inHemodial-
ysis Service are in Sect. 3. In Sect. 4, hemodialysis service schedules in several levels
are defined. A heuristic algorithm and a rollout algorithm are developed to solve the
problem. The numerical experiments are presented in Sect. 5. The conclusions are
summarized in Sect. 6.

2 Related work

As mentioned before, patient scheduling in hemodialysis service is a patient schedul-
ing problem, and is also a timetabling problem. So, patient scheduling problems,
timetabling problems and their approaches are briefly reviewed in the following. Prior
research work on multi-function resource scheduling is also reviewed. Finally, com-
parison of this problem with the past is conducted.

As for hemodialysis scheduling problem, Holland (1994) compared two schedul-
ing models of a hemodialysis service center considering device utilization, length of
service and the capability of the dialysis unit. He pointed out that it was better to have
flexible start time instead of fixed start time in daily schedule. Ogulata et al. (2009)
indicated that physical therapies, hemodialysis and radiation oncology departments in
which patients go through lengthy and periodic treatments need to utilize their limited
and expensive equipment and human resources efficiently. Peña et al. (2013) studied
inpatients dialysis scheduling problem for patients with end-stage renal disease. In
the problem, each patient requires a different number of time slots to be treated and
the dialysis devices are partitioned into blocks according to the needs of the patients.
Yao et al. (2012) designed a heuristic algorithm focusing on the dialysis machines.
The algorithm obtained schedule for each machine assuming uniform treatment break
time to improve efficiency.

Patient scheduling is conducted to assign patients to the scarce hospital resources
optimally with objectives on patients waiting time, satisfaction, completion time of
clinics etc., in which outpatient scheduling has been paid most attention. In the latest
literature review on outpatient scheduling, Ahmadi-Javid et al. (2017) discussed mod-
eling approaches, solution methods and environmental factors (patient unpunctuality,
physician lateness, interruption, patient no-show and cancellation, patient preference,
random service time, patient heterogeneity, and type of appointment required by
patients) in decisions of various levels of strategy, tactic and operation. The survey of
Cayirli andVeral (2003) andGupta andDenton (2008) can be also referred. In thework
of recent years on patient scheduling, Saremi et al. (2015) addressed the challenges of
scheduling patients with stochastic service times and heterogeneous service sequences
in multi-stage facilities by proposing an optimization method termed multi-agent tabu
search (MATS). Riise et al. (2016) considered a class of multi-mode appointment
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scheduling problems, with variable resource availability and resource setup times, and
presented a novel exact method based on a recursive version of logic-based Benders
decomposition. Azadeh et al. (2015) addressed a semi-online patient scheduling prob-
lem in a pathology laboratory and proposed amixed integer linear programmingmodel
to maximize the level of patient satisfaction. Yan et al. (2015) proposed a sequential
appointment scheduling method to balance the benefits of clinic and patients satis-
faction considering patient choice and service fairness simultaneously. Condotta and
Shakhlevich (2014) studied a multi-criteria optimization problem in the context of
booking chemotherapy appointments, and proposed an integer linear programs based
on the concept of a multi-level template schedule. Wu et al. (2014) studied a patient
scheduling problemwith periodic deterioratingmaintenance that aims tominimize the
number of tardy medical treatment of all the patients. Ogulata et al. (2009) applied a
simulation approach to a patient scheduling for a university radiation oncology depart-
ment that aims to minimize delays in treatments and to maintain efficient use of the
daily treatment capacity.

From theproblemstructure point of view, patient scheduling in hemodialysis service
scheduling problem is also similar to the well-studied educational timetabling prob-
lems which includes university course timetabling problem, examination timetabling
problem and school timetabling problem (Hadidi 2015; Pillay 2016). The timetabling
aims at the allocation of events to timetable periods to satisfy a set of hard con-
straints and minimizing a set of soft constraints (Qu et al. 2009; Mccollum et al.
2010), in which the events are exams, meetings between groups of students and teach-
ers and meetings between classes and teachers. The solution approaches for these
timetabling problems include graph coloring method, constraint satisfaction, meta-
heuristics, hyper-heuristics and so on.

An important feature of patient scheduling in hemodialysis service to be consid-
ered is the multi-function of the resources used in the service. The allocation of
the multi-function resources can increase the flexibility of assigning tasks to over-
come bottlenecks. In addition, utilizing multi-function resources instead of adding
resources during peak demand period can lead to reduced total costs and improved
production efficiency. Multi-function resource scheduling is usually witnessed in
job/flow shop scheduling problem where the machines possess multiple functions
(Pinedo 2012) and various scheduling problem in services industry (Uyar et al. 2013).
Multi-skilled employee assignment problem is also similar to multi-function resource
scheduling in which researchers usually classified it as scheduling problems of hier-
archical skilled employees or non-hierarchical skilled employees (Bruecker et al.
2015).

Patient scheduling in this work differs from past research mainly on optimiza-
tion objective and characteristics of multi-function resource scheduling. For the
optimization objective, the scheduling of patients on hemodialysis aims to a syn-
thetic criteria combined with minimizing the cost of hemodialysis equipment and
the number of night shift, taking the life span of the devices into account and
especially satisfying patients preferences on time, device and space. In this case,
each patient requires to be treated in different number of time slots according to
specific treatment plan. In this context, an optimization model to assist patient
scheduling is formulated. A basic heuristics and an effective algorithm based on roll-
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out framework are proposed and verified with computational experiments on real
cases.

3 Problem description and formulation

Generally, patients in hemodialysis service centers can be classified into three types:
conventional, hepatitis B and hepatitis C. For each type of patients, the treatment
modality can be high-flux hemodialysis (HD) or hemodiafiltration (HDF). An HDF
device can be used for HD treatment. However, it is often not advocated using a device
in accordance with downward compatible mode. Therefore, there are six categories
of hemodialysis services in total: the conventional HD and HDF, HD and HDF for
hepatitis B patients, HD and HDF for hepatitis C patients which are abbreviated as
HD, HDF, BHD, BHDF, CHD, CHDF, respectively.

Hemodialysis service centers usually schedule their services in 2-week cycles.
There are three shifts (morning, afternoon, and evening shifts) in a workday and
each device can provide dialysis treatment to only one patient on a shift. Due to
equipment failure, maintenance, repair, reservation or other reasons, the device may
not be available in some shifts.

Before treatment, the doctor will give the patient a dialysis plan according to his/her
physical condition. For example, one patientwith a severe disease needs five treatments
including four conventionalHDand one conventionalHDF in 2weeks. In general, each
patient receives at most one treatment per day. According to medical requirements, the
distribution of the number of patients treated in a service cycle should be as uniform
as possible.

The task of managers in hemodialysis service center is to arrange treatment time of
patients and the corresponding dialysis device according to the functions of devices,
the patients preferences (shifts, devices and type of rooms etc.). They usually take the
following factors in scheduling.

1. For multi-functional devices, due to the varying cost associated with different
functions, higher quality function should be used whenever it is possible. For
example, when the device has the function of HD and HDF, it should be given
priority to assign an HDF treatment.

2. The evening shifts should be as few as possible.
3. Patients preferences should be satisfied whenever it is possible.
4. Taking the life span of the devices into account, each device should not be overused

during a cycle.

Based on the problem description above, some notation is given firstly.
Res is he set of dialysis devices or resources, r ∈ Res for scheduling. It is assumed

that there are M devices, namely Res = {r1, . . . , rM }. s ∈ Sk is the set of dialysis
service categories. Here Sk = {1, . . . , 6} represent respectively six kinds of dialysis
services (HD, HDF, BHD, BHDF, CHD, CHDF).

E is the set of patients. There are N patients, E = {e1, . . . , eN }. e ∈ E is the index
of patient.

T indicates scheduling period (day), usually T = 14. d is the time serial number,
and d ∈ {1, . . . , T }.
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h denotes shifts, h ∈ {morning, a f ternoon, evening} represents shift A, P and N.
p indicates space partition (room) number. There are B partitions. p ∈ {1, . . . , B}.
krs is device-function coefficient, krs ∈ {0, 1}. krs = 1 means that device r is able

to provide service s, otherwise krs = 0.
ardh is device availability coefficient, ardh ∈ {0, 1}. ardh = 1 means that device r

is available on shift h of day d, otherwise ardh = 0. From this, the availability matrix
of device r , Ār can be established:

Ār =
⎛
⎝
ar11 . . . arT 1
. . . . . . . . .

ar13 . . . arT 3

⎞
⎠

T

grp is device-partition coefficient, grp ∈ {0, 1}. grp = 1 shows that device r is
located in partition p, otherwise grp = 0.

qes is the coefficient of patient treatment prescription and is set as the number of
treatments patient e need for each type s.

ptedh is the coefficient of patient time preference, ptedh ∈ {0, 1}. ptedh = 1 if
patient e prefers to receive treatment on shift h of day d, otherwise ptedh = 0.

peer is the coefficient of patient time preference, peer ∈ {0, 1}. peer = 1 if patient
e prefer to receive treatment using device r , otherwise peer = 0.

ppep is the coefficient of space preference, ppep ∈ {0, 1}. ppep = 1 if patient e
prefer to receive treatment at partition p, otherwise ppep = 0.

To ensure that patients are treated as uniformly in time as possible (equal number of
days between treatments), the candidate treatment patterns (in which days the patient
will be treated) can be constructed in advance (as shown in Appendix A). For example,
a 2-week treatment pattern (1, 0, 0, 1, 0, 0, 0 , 1, 0, 0, 1, 0, 0, 0)means that the patient
is treated on the first, fourth, eighth and eleventh day. The pattern is relatively uniform
in time. Let l be the index of treatment patterns and s̄ld be the treatment pattern
coefficient, s̄ld = 1 when the patient is scheduled to be treated with pattern l on day d.

The decision variables in hemodialysis service scheduling are:

θel =
{
1 patient e is treated wi th pattern l
0 otherwise

Xrdhs =
{
1 device r provides sevice s on shi f t h o f day d
0 otherwise

Yedhs =
{
1 patient e recieves service s on shi f t h of day d
0 otherwise

Zedhr =
{
1 patient e is treated wi th device r on shi f t h of day d
0 otherwise

The dialysis service scheduling must satisfy the following constraints:

Xrdhs ≤ krsardh, ∀r, d, h, s (1)∑
r∈Res

Xrdhs ≥
∑
e∈E

Yedhs, ∀d, h, s (2)
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∑
l

θel = 1, ∀e (3)

∑
l

∑
d

s̄ldθel =
∑
s∈Sk

qes, ∀e (4)

∑
d

∑
h

Yedhs = qes, ∀e, s (5)

∑
l

s̄ldθel =
∑
h

∑
s∈Sk

Yedhs, ∀e, d (6)

∑
s∈Sk

Xrdhs ≤ 1, ∀r, d, h (7)

∑
s∈Sk

Yedhs ≤ 1, ∀e, d, h (8)

∑
s∈Sk

Xrdhs =
∑
e∈E

Zedhr , ∀r, d, h (9)

∑
s∈Sk

Yedhs =
∑
r∈Res

Zedhr , ∀e, d, h (10)

θel , Xrdhs,Yedhs, Zedhr ∈ {0, 1} (11)

Equation (1) guarantees that device r can be used to provide service s on shift
h of day d. Equation (2) denotes that there should be sufficient number of devices
to serve the patients. Equation (3) enforces that each patient can choose only one
treatment mode and Eq. (4) ensures the number of treatments in the chosen mode
equal the requirement for that patient. Equation (5) shows that the requested type of
treatment for the patient must be satisfied. Equation (6) uses the treatment mode to
ensure each patient only receives one treatment per day and is treated uniformly in
time. Equation (7) forces each device to provide only a single type of service on a
shift. Equation (8) indicates that each patient can only receive one kind of dialysis
treatment on a shift. Equation (9) is that the number of services provided by one
device on shift h of day d is equal to the number of people receiving treatment on
shift h of day d. Together with Eq. (7), a device can only provide treatment to one
patient on a shift. Equation (10) shows the corresponding relation between Yedhs and
Zedhr .

Let Crs be the cost coefficient for devices providing services. The priority measure
is used for the coefficient. For example, a device with conventional HDF function has a
higher priority (lower cost coefficient) to be used for conventional HDF than to be used
for conventional HD, and cannot be used to treat hepatitis B and C patients. Therefore,
its cost coefficient can be expressed as (2, 1,∞,∞,∞,∞) (corresponding to HD,
HDF, BHD, BHDF, CHD, CHDF, respectively).

There are usually six criteria in patient scheduling in hemodialysis service:
Criterion 1: To minimize the gross utilization cost of devices.

CO =
∑
r

∑
d

∑
h

∑
s

Crs Xrdhs (12)
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Criterion 2: To minimize the number of night treatments.

NS =
∑
e

∑
r

∑
d

∑
h=3

Zedhr (13)

Criterion 3–5: To maximize the preference matching (time, device, and space pref-
erences).

PMT =
∑
e

∑
d

∑
h

(
ptedh

∑
r

Zedhr

)
(14)

PME =
∑
e

∑
r

(
peer

∑
d

∑
h

Zedhr

)
(15)

PMP =
∑
e

∑
p

(
ppep

∑
d

∑
h

∑
r

grp Zedhr

)
(16)

Criterion 6: To balance the usage among all devices.

ED =
⎧⎨
⎩

√√√√1

r

∑
r

(∑
e

∑
d

∑
h

Zedhr −
∑
e

∑
d

∑
h

Zedhr

)2
⎫⎬
⎭ (17)

Motivated by real needs, the priorities from Criterion 1 to Criterion 6 are from
high to low. Taking this motivation into consideration, a synthetic objective can be
constructed in this type of patient scheduling:

max ValR = β1 ∗ α(CO) + β2 ∗ α(NS) + β3 ∗ α(PM) + β4 ∗ α(ED) (18)

where PM = PMT + PME + PMP and α(∗) denotes data normalization, which
maps the values to [0,1] by using standard min-max normalization. (β1, β2, β3, β4 are
the weights of CO , NS, PM , ED, β1 � β2 � β3 � β4 > 0 and

∑4
i=1 βi = 1)

4 Algorithms

University courses timetabling problem (UCTP) has been proven to be NP-hard
(Hadidi 2015). If mapping patients to courses, devices to classrooms and assuming
that all the devices located in a room, patient scheduling in hemodialysis service can
be regarded as a UCTP. Therefore, patient scheduling in hemodialysis service is also
a NP-hard problem. In this section, a basic heuristic algorithm and a Rollout based
heuristic algorithm are proposed. The main idea of these two algorithms is to schedule
the patients one by one. A feasible schedule set is generated for each patient first. Then
the algorithm identifies a feasible solution from the set for each patient.
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4.1 Definitions related to patients hemodialysis service schedule

In order to facilitate the description of the algorithm, definitions of the patients treat-
ment schedule in three levels are given in the following.

Definition 1 Ŝ1e ndicates the first level treatment schedule for a patient, which deter-
mines the treatment patterns (on which days a patient will be treated). For example,
the first level schedule for a patient being treated on day 1, 6 and 11 is shown in Fig. 1.

To ensure that patients are treated as uniformly in time as possible (equal number
of days between treatments), the feasible number of treatment patterns is small, which
is summarized in Table 1 and detailed in Appendix A.

Definition 2 Ŝ2e indicates schedule set in the second level for a patient. Besides which
day the patient is treated, each schedule of Ŝ2e also determines the kinds of service
that is received. As shown in Fig. 2, the patient is treated on day 1, 6 and 11 with the
conventional HD, HDF and HDF respectively.

Each schedule of Ŝ1e can be converted to one of Ŝ
2
e by adding the specific hemodial-

ysis treatment and it can also be done by enumeration method. Since each schedule
of Ŝ1e corresponds to multiple schedules of Ŝ2e , the maximum possible size of Ŝ2e is
shown in Table 2.

Fig. 1 The first level treatment schedule for a patient

Table 1 The scale of the
schedule library in the first level

Treatment times in 2weeks 2 3 4 5 6

Number of patterns 7 14 7 14 7

Fig. 2 Treatment schedule in the second level for a patient

Table 2 The scale of the schedule library in the first level

Hemodialysis demand 2 time in 3 time in 4 time in 5 time in 6 time in
2weeks 2weeks 2weeks 2weeks 2weeks
(1 HDF) (1 HDF) (2 HDF) (2 HDF) (3 HDF)

Schedule scale 7 ∗ C1
2 14 ∗ C1

3 7 ∗ C2
4 14 ∗ C2

5 7 ∗ C3
6
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Fig. 3 Treatment schedule in the third level for a patient

Definition 3 Ŝ3e indicates schedule set in the third level for a patient. Each schedule of
Ŝ3e not only determines in which day the patient is treated and which kinds of service,
but also determines the device and shift.

As shown in Fig. 3, the patient is treated with conventional HD with device r1
during the morning shift of the first day, with conventional HDF with device r5 during
the afternoon shift of the sixth day and with conventional HDF with device r2 during
the morning shift of the eleventh day.

According to the definitions above, Ŝ1e and Ŝ2e are transition schedule libraries,
which indicate someconstraints of patients schedules.However, Ŝ3e is thefinal schedule
library of patient hemodialysis service.

4.2 Basic heuristic algorithm

The basic heuristic algorithm is shown in Fig. 4.
The specific algorithm steps are as follows:

Step 1: Initialization. Define the set of patients E demand of patients qes , the
coefficients of krs , ardh , ptedh , peer , ppep and other parameters.
Step 2: Based on total number of treatments the patients needed

(∑
s∈Sk qes

)
,

transform the set of patients E to a new set of patients E ′ with the order from high
to low. If the total number is the same, the order from low to high based on patients
IDs.
Step 3: Check whether E ′ is empty. If E ′ = ∅, the procedure will end. If not, go
to the next step.
Step 4: Choose the first patient e in E ′ and generate a feasible treatment schedule
set Ŝ3e of e (The details are in Sect. 4.3). Check whether Ŝ3e is empty. If Ŝ3e = ∅,
the patient fails to be scheduled and add e to the set of patients that are unable to
schedule, then go to Step 6. If not, go to the next step.
Step 5: Calculate the priority of each schedule in Ŝ3e . Choose the optimal solution
as the final hemodialysis schedule for patient e. Set decision variables Xrdhs , Yedhs
and Zedhr as 1 according to the treatment time, type of dialysis services, shifts and
devices.
Step 6: Delete patient e from E ′. Go to Step 3.

In this basic heuristic, the patient with highest total number of treatments is scheduled
first. The reason is that these patients demand more resources and involve complex
preferences, and it is difficult to find a feasible schedule for these patients.

The priority value in Step 5 can be calculated according to Eq. (18).
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Fig. 4 The flow chart of the basic heuristic method

4.3 Generation of feasible schedule set

In the previous section, the algorithm needs to quickly generate a feasible solution
for a patient in Step 4. Since the number of the feasible schedules is very large, in
order to improve the efficiency of the algorithm, the feasible schedule based on the
patients preference is selected. The flow chart for generating the feasible schedule set
is shown in Fig. 5.
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Fig. 5 Generate feasible schedules set

Definition 4 R̄dhs denotes a candidate device that can be used for service s during
shift h on day d.

R̄dhs =
{
r |ardhkrs = 1,

∑
e∈E

Zedhr = 0, r ∈ Res

}
(19)
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Definition 5 f1(e, d, h, s) quantifies the degree of satisfaction.

f1(e, d, h, s) = 3w1 + 2w2 + w3 (20)

w1 denotes the degree of satisfying the time preference, while ptedhYedhs = 1,
w1 = 1, otherwise w1 = 0. w2 denotes the degree of satisfying the device preference,
while

∑
r∈R̄dhs

peer Zedhr > 0, w2 = 1, otherwise w2 = 0. w3 denotes the degree of
satisfying the space preference, while

∑
r∈R̄dhs

grp ppep Zedhr > 0,w3 = 1, otherwise
w3 = 0.

The specific algorithm steps are as follows:

Step 4.1: Initialize. Obtain qes and coefficients krs , Ardh , ptedh , peer , ppep. Set
Ŝ1e = ∅, Ŝ2e = ∅, Ŝ3e = ∅.
Step 4.2: Generate the first level treatment schedule set Ŝ1e for the patient via
Definition 1

(∑
s∈Sk qes

)
.

Step 4.3: Generate the second level treatment schedule set Ŝ2e for the patient via
Definition 2 for each schedule in Ŝ1e according to the hemodialysis demand (qes ,
s ∈ Sk).
Step 4.4: Check whether Ŝ2e is empty. If Ŝ2e = ∅, go to Step 4.9; otherwise go to
the next step.
Step 4.5: Select schedule l randomly from Ŝ2e , and determine the shift for each
service in schedule l. Choose shift A or shift P preferentially when determining
the service shift. If no device is available during shift A or shift P, choose shift N;
otherwise calculate the value of f1(e, d, h, s) on shift A and shift P, then choose
the one with the higher value.
Step 4.6: Check whether all the shifts has been determined. If there is a service
whose shift cannot be determined, go to step 4.8; otherwise go to the next step.
Step 4.7 Determine the device for each service in schedule l. Add schedule l and
the corresponding device into Ŝ3e as a new schedule.

First, define the set of candidate device (R̄dhs assume that patient receive service s on
shift h of day d). Then choose the device with the minimum cost coefficient Crs from
R̄dhs . If there are several devices with the sameCrs , then choose the device from R̄dhs

by patients device preference and space preference.

Step 4.8: Delete schedule l from Ŝ2e . Then go to step 4.4.
Step 4.9: Return Ŝ3e to the main algorithm.

Because the generation of Ŝ1e and Ŝ2e is an enumeration process, and the generation of
Ŝ3e is based on the patients preference, the schedule set Ŝ3e is a subset of all feasible
solutions. For Step 4.9, when it is impossible to provide dialysis service for the patient
because of the resource limitation, an empty schedule set is returned.

4.4 Rollout algorithm

In Sect. 4.2, feasible schedule is selected by the priority rules from the feasible schedule
library. In order to improve the quality of the solution, a rollout algorithm is presented
to solve the hemodialysis service scheduling problem.
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4.4.1 A brief introduction of rollout algorithm

Rollout algorithm has been proposed to solve discrete optimization problems by Bert-
sekas et al. (1997). It usually embeds a basic approach to the Rollout iterative process.
It uses a basic strategy as the starting point, and gets a new strategy through rollout to
approach optimal strategy step by step based on the new strategy. Rollout algorithm
converges quickly, and it can obtain the preferable solution on the basis of the full
inheritance of the basic solution algorithm (Bertazzi 2012). Based on these advan-
tages, Rollout algorithm has successfully been used to tackle various optimization
problems (Guerriero 2008; Guerriero et al. 2002; Guerriero and Mancini 2005; Xu
et al. 2008; Guerriero et al. 2015).

4.4.2 Rollout algorithm for patient scheduling in hemodialysis service

In the Rollout algorithm, the cost-to-go function is constructed to evaluate each
schedule in the feasible schedule library to determine thefinal schedule of hemodialysis
service. With a single step forward iterative computation, the algorithm has the ability
to make decisions in advance, which achieves the purpose of improving the quality
of the solution from the basic heuristic approach. The rollout algorithm framework is
shown in Fig. 6.

As shown in Fig. 6, the Rollout algorithm is consistent with the basic heuristic
approach in Sect. 4.2. The calculation of the cost-to-go function is through deter-
mining the hemodialysis service schedule of the patient that has not been scheduled
(other patients have been scheduled through the basic heuristic) to build a complete
hemodialysis service schedule for all patients.

In this process, there are two key points:

1. The cost-to-go function is used to evaluate the rationality of a patient to be treated
by a feasible schedule. Therefore, it is assumed that the patient will eventually
adopt the plan.

2. The Cost-to-go function is used for schedule evaluation, not for the final schedule
selection. Therefore, the values of Xrdhs , Yedhs and Zedhr are not changed (they
are replaced by X ′

rdhs , Y
′
edhs and Z ′

edhr in this step).

For the generation of the complete scheduling plan, the computational rules of the
cost-to-go function values are also defined as Eq. (18).

Further analysis of theRollout algorithm shows that, the algorithmcalculate cost-to-
go function value for each feasible schedule. The size of the feasible solution can reach
140 in Sect. 4.2. Its efficiency will be very low. Therefore, the scale of Ŝ3e will be set in
a certain size SC (SC ∈ [1, 140]), then the optimal schedule is selected by using cost-
to-go. The algorithm is named as Rollout-SC. Obviously, the effect of Rollout-1 and
the basic heuristic algorithm is the same, and Rollout-140 do not limit the size of Ŝ3e .

5 Numerical experiments

This section is to evaluate the performances of the proposed algorithms. Firstly, a new
definition is given as follows:
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Fig. 6 The flow chart of the rollout algorithm

PMS: treatment times that meet all of a patient preference on time, device and
partition.

The algorithms are coded in Java programming language, JDK 1.7 and run in
Windows 7, CPU 3.20GHz, 4.00GB memory.
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Table 3 The number of devices in hemodialysis service center

Preferred function HD HDF BHD BHDF CHD CHDF Total

Number 23 5 4 1 1 0 34

5.1 Test cases

In order to test and compare the performance of the algorithms, practical cases are
collected from Hemodialysis Service Center P in Wuhan, China and extend them to
adapt to various characteristics of the problem.

5.1.1 Data source

Actual dialysis schedules are selected from the hemodialysis service center in two
periods, 12.31 2014 to 1.13 2015, and 3.16 2015 to 3.29 2015, as basic data for
computational experiments. The first period is a peak of hemodialysis treatment, when
174 patientswere scheduled for treatments, and the second period is common, ofwhich
118 patients were scheduled. There are 5 space partitions in the center, P = 5. The
number of device is given in Table 3.

It is assumed that there is no failure or other reason which causes the unavailability
of devices. According to the timetable of the hemodialysis service center, nights and
Sunday afternoon are not work time expect Wednesday. Therefore, the availability
matrix of every device is shown in Formula (21).

Ār =
⎛
⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0

⎞
⎠

T

(21)

5.1.2 Adjustment of case scale

Taking into account the case on 2015.3.16 to 2015.3.29 is a peak of dialysis treatment,
the experiments are conducted on the basis of the periodic data. The problem solving
ability of algorithm on different device scale and patient scale should be verified in
the experiments, therefore two strategies are utilized to adjust case scale as follows:

1. Add or remove some conventional HD devices or conventional HDF devices ran-
domly to adjust device scale based on the data from 2015.3.16 to 2015.3.29. This
strategy takes into account the maximum number of the conventional HD or HDF
devices shown in Table 3, which is suitable for a certain decrease on device num-
bers.

2. Remove some conventional patients randomly to reduce the patient scale based
on the data from 2015.3.16 to 2015.3.29, and select some conventional patients
from 2014.12.31–2015.1.13 to join the period from 2015.3.16 to 2015.3.29 to
increase the patient scale. The strategy takes into account the maximum number
of conventional patients and themaximumnumber of the conventionalHDdevices.
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Table 4 Treatment schedule of
e1

Treatment time Shift Device Partitionl

2015.3.16 A 01 1

2015.3.21 A 06 1

2015.3.26 p 24 3

5.1.3 Adjustment of patients preferences

In reality, hospital manager usually arranges patients manually without considering
patient preferences. To reflect the actual requirements, the patients preferences on
time, device and partition will be replenished according to patient treatment plan. An
example treatment schedule e1 is shown as Table 4:

(1) Add preferences on time
Without loss of generality, time preference of a patient can be either shift A or shift

P . In the generation of time preference, add all the shift A preference if the majority
of the patients in the treatment is in the morning, otherwise add P class preference.

(2) Add preferences on device
Scheduling system sets that a patient can choose 5 kinds of device preferences.

Set preferences on device according to the data obtained from the patient’s treatment
device. When the number of treatment device is more than 5, then choose 5 devices
from this.

(3) Add preferences on partition
The preferences on partition are the preferences of treatment room and this pref-

erence constraint is loose. Thus, there is only one preference for each patient. It will
treat patient with the first treatment room as the patient’s preference for the partition.

5.2 Parameter setting of SC in the RA

In this section, rule ValR can be used to limit patients size to SC , which can improve
the computation speed. In order to analyze the possible influence of SC on the algo-
rithm, the data of the 2014.12.31–2015.1.13 is used to conduct experiments under
different SCs, and the results are shown in Fig. 7 (β1 = 10 ∗ β2 = 100 ∗ β3 =
1000 ∗ β4 = 1000/1111).

Figure 7a shows that: when SC ≤ 10, the increase of SC increases the number of
preference satisfaction (PM) and the use deviation ratio of device (ED) significantly;
when 10 < SC ≤ 40, both PM and ED have a fluctuation process, especially for
ED; when SC > 40, PM and ED tend to be stable. Figure 7b shows that: when
SC ≤ 10, the total target value (ValR) increases with the increasing of SC because
of the influence of PM and ED; when 10 < SC ≤ 30, the ValR slow growth;
when SC > 30, ValR tends to be stable. The possible reason of ValR reaches
its maximum when SC = 40, is that the preliminary plans of Rollout algorithm is
randomly generated, therefore, the best solution is not guaranteed. Figure 7c indicates
that the increase of SC leads to a fast increasing on the algorithm solution speed,
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Fig. 7 Experimental results when SC changes. a The trend of PM and ED. b The trend of ValR. c The
trend of runtime
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Table 5 Patient need from 2015.3.16 to 2015.3.29

Function HD HDF BHD BHDF CHD CHDF Treatment
Times

Patients
Number

Number 510 107 81 18 20 0 736 174

Table 6 Results for various scheduling methods

Manual scheduling Heuristic approach Rollout-40

NS 0 2 0

ED 2.35 1.05 0.97

Maximum of service times of devices 26 24 24

Minimum of service times of devices 15 19 19

Average deviation of treatment plan 0.818 0.437 0.437

ValR 0.99969 0.99948 0.99987

Runtime – 0.32s 7.7min

which then slows down. (All patients are scheduled successfully in this experiment,
and CO = NS = 0).

Hence it can be concluded that: 1) To satisfy the patient’s preferences and the
balanced use of device is a pair of conflicting goals; 2) Compared with the basic
heuristic approach (Rollout-1), Rollout can improve the quality of the solution, and
increasing the value of SC can improve the probability of obtaining a better solution
of, not necessarily to improve the quality of the solution; 3) Considering the effect
of the algorithm and solving the problem in 10min, it will be set SC = 40 in the
following experiments.

5.3 A case study: compared with manual scheduling

In this section, the results of the algorithms are compared with manual scheduling
for the same case. There is no general way to arrange patients manually which is
based on management’s experience and habits. So the data of manual scheduling is
obtained from the real data of cases from 2015.3.16 to 2015.3.29 without adjusting
and considering patients preference. The patient needs are shown as Table 5.

Without considering the patient preference, the preference satisfied percent is 100%.
Set β1 = 10 ∗ β2 = 100 ∗ β3 = 1000 ∗ β4 = 1000/1111 (the setting of β will be
analyzed in details in Sect. 5.5.2). The experiment results are shown in Table 6. All
patients can be successfully scheduled using the primary function of devices in the
results of three kinds of scheduling plan. So, CO = 0.

The second and fourth column of Table 6 shows that: when not considering the
patient preference, the uniformity of patient treatment time using Rollout algorithm
is better compared to manual scheduling; Rollout algorithm makes balanced device
use; and Rollout algorithm has a better ValR.
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Table 7 Results on different scales taking into account the patient preference

Function M = 19, N = 100 M = 28, N = 150 M = 34, N = 180 M = 50, N = 200

Heuristic Rollout Heuristic Rollout Heuristic Rollout Heuristic Rollout

CO 27 27 0 0 0 0 0 0

NS 16 16 1 0 0 0 0 0

PMS 91 99 181 191 297 308 278 290

PMT 307 317 607 622 736 753 820 825

PME 133 151 311 321 410 425 382 391

PMP 299 300 398 401 598 596 700 704

ED 5.64 5.81 3.40 3.61 3.38 3.56 5.22 5.36

ValR 0.86095 0.86481 0.97868 0.98133 0.99082 0.99302 0.98963 0.99082

Runtime 0.11s 1.3min 0.59s 5.5min 0.32s 7.7min 0.79s 14.1min

When using the RA solving speed is significantly slower than that using the basic
heuristic approach.However, the result calculated byRollout approachhas not arrange-
ment for evening shift, heuristic approach is scheduled for the evening, and the former
balance device is slightly better than basic heuristic approach.

5.4 Multi-case study: compared with heuristic approach

Comparative computational experiments are conducted on different scales with tak-
ing into account the patients preference in this section, and Rollout-40 and heuristic
approach are compared and analyzed. The results are shown as Table 7 (β1 = 10∗β2 =
100 ∗ β3 = 1000 ∗ β4 = 1000/1111).

Through the comparison of results, it can be found that Rollout-40 performs better
than heuristic approach in the time, device and partition preference satisfaction of
scheduling. Nevertheless, variance of device use time and ValR for the former are
greater than the latter, and computing time is greatly lengthened. All cases in Table 7
satisfy this law.

In some cases algorithm begins to schedule night shift, even use HDF device as HD
(that is to sayCO �= 0) when there are toomany patients and lacking of corresponding
device, such as case M = 19, N = 100. However, as the case M = 28, N = 150
shows, the RA results at taking fewer night shifts.

In conclusion, Rollout performs better in satisfying patients preference and arrang-
ing fewer night shifts compared to heuristic approach in these cases.

To further analyze the influence when using two algorithm on different scales, the
experiment is conducted in the situationwhereM = 34 and patient number is different,
the result is shown as Fig. 8. The vertical ordinate in Fig. 8 represents percentage of
that the results using Rollout-40 compared with heuristic approach, and horizontal
ordinate is the number of patients, shown as follows:

Percent (index) = Rollout (index) − Heuristics(index)

Heuristics(index)
∗ 100% (22)
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Fig. 8 Comparison of the RA-40 and the Heuristics. a The trend of PM , PMT , PME , PMP and ED.
b the trend of ValR

Of which, index are PM , ED etc. Rollout (index) is the result using the RA about
index; Heuristics(index) is the result using heuristic approach about index.

Figure 8a shows that number PM of treatment satisfying patient preference
increases from 1.38 to 2.22% when using the RA compared with using heuristic
approach, and the patient scale does not affect the improvement. In Fig. 8, PME
curve is above PM , whereas PMP curve is always below the PM and even negative,
and PMT curve is close to PM . It indicates that the scheduling schedule generated by
Rollout method performs better in satisfying patient preference compared to heuris-
tic approach, and the improvement is mainly to improve the satisfaction of patients’
device preferences.

On the other hand, ED curve shows that the device using variance generated by
the Rollout algorithm is more than 5% of the basic heuristics, it can reach as high as
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Table 8 Results on different scales of conventional HD devices

M = 19 M = 20 M = 21 M = 22 M = 23 M = 24 M = 25 M = 26

CO 0 0 0 0 0 0 0 0

NS 2 0 0 0 0 0 0 0

PMS 213 216 240 273 295 297 300 299

PMT 675 700 719 730 733 736 735 734

PME 366 366 390 399 421 411 424 418

PMP 472 505 526 556 572 593 590 597

ED 3.50 3.37 3.42 3.70 3.97 4.71 4.46 4.39

ValR 0.97698 0.98181 0.98669 0.99048 0.99358 0.99455 0.99527 0.99528

Runtime 5.9min 6.4min 6.7min 7.1min 7.4min 7.4min 7.9min 8.2min

20.15%. Rollout focuses more on satisfying the patients preference, while the patients
preference, in particular, the device preference often breaks the balanced use of device.
With the increase of the number of patients, the ED curve has a high trend, which
indicates that with more and more patients with preference joining, the imbalance in
the use of device will gradually appear.

Figure 8b shows that that the scheduling results obtained by the Rollout algorithm
can increase the total target value (ValR) compared with the basic heuristic.

In short, the Rollout algorithm has a stable improvement comparing with the basic
heuristic approach on satisfying the patients preferences.

5.5 Sensitivity analysis of parameters in the problem

The patient scheduling in hemodialysis service in which validity and rationality of
scheduling results are not only related to the quality of scheduling algorithm, but also
limited by the parameters of the problem such as scale of devices, coefficients of each
criterion.

5.5.1 Scales of devices

Asa common sense, the scale of hemodialysis devices in the problemcanmakeobvious
impact on the scheduling results. With a settled patient scale (the data of cases from
2015.3.16 to 2015.3.29), theRollout-40 algorithm is used to conduct the computational
experiment with different scale of conventional HD devices or conventional HDF
devices. The results are shown in the Tables 8 and 9 ( β1 = 10 ∗ β2 = 100 ∗ β3 =
1000 ∗ β4 = 1000/1111).

Case M = 23 in Table 8 is the original case from 2015.3.16 to 2015.3.29. With
the comparison of results, it can be concluded that: with the increase in scale of
conventional HD devices, the number of treatment times that meet the preference of
time, device and partition increased, there is some similar conclusion on the total target
value (ValR). The runtime also has a gradual tendency to increase.
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Table 9 Results on different scales of conventional HDF devices

Function M = 4 M = 5 M = 6 M = 7

Heuristic Rollout Heuristic Rollout Heuristic Rollout Heuristic Rollout

CO 0 0 0 0 0 0 0 0

NS 0 0 0 0 0 0 0 0

PMS 278 295 278 295 285 294 286 293

PMT 718 733 718 733 726 734 724 732

PME 402 421 402 421 399 418 398 411

PMP 573 572 573 572 579 579 584 583

ED 3.72 3.97 3.72 3.97 3.80 4.20 4.32 4.52

ValR 0.99109 0.99358 0.99109 0.99358 0.99192 0.99393 0.99200 0.99351

Runtime 0.58s 7.7min 0.33s 7.6min 0.34s 7.9min 0.36s 8.2min

Table 10 Results of different β values

k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 50

CO 31 32 27 27 27 27 27 27

NS 12 13 16 16 16 16 16 16

PMS 98 99 99 99 99 99 99 99

PMT 318 318 315 316 316 316 316 316

PME 148 151 150 149 149 149 149 149

PMP 302 304 302 303 303 303 303 303

ED 5.38 5.26 5.81 5.85 5.85 5.85 5.85 5.85

ValR 0.66909 0.82228 0.86957 0.88459 0.89078 0.89625 0.89559 0.89418

Runtime 77.7s 73.5s 72.7s 72.7s 73.8s 73.0s 71.3s 72.6s

Case M = 5 in Table 9 is the original case from 2015.3.16 to 2015.3.29. Due to
the small number of HDF devices, it can be concluded that the experiments using the
Rollout algorithm to ensure the accuracy of the conclusion. With the comparison of
results, the conclusions are roughly similar to those of the Table 8, the only difference
is that when the scales of conventional HDF is greater than 6 pieces, the ED will
increase because of the demand of HDF is relatively small and ValR also decrease.
On the other hand, it is obvious that Rollout-40 focusesmore on satisfying the patient’s
preference, while the patients preference often breaks the balanced use of device.

In conclusion, relatively small devices scale will make scheduling results unsat-
isfactory, and an excessive one will increase the amount of calculation, resulting in
increased computation time.

5.5.2 Parameters β1 to β4

RA-40 is also taken in this experiment. According to the description of β values
in Sect. 4.2 (β1 � β2 � β3 � β4 > 0 and

∑4
i=1 βi = 1), consider of the
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convenience for experimental manipulation, it is assumed that β1 = k ∗ β2 =
k ∗ k ∗ β3 = k ∗ k ∗ k ∗ β4 and change the value of k, instead of changing the
values of each β to analyze the influence of different β values on the experimental
results. Part of the data of the 2014.12.31–2015.1.13 (19 devices and 100 patients, by
the strategies in Sect. 5.1.2) is used in these experiments, and the results are shown in
Table 10.

Table 10 shows that: as long as k ≥ 4 is established, no matter how large the value
of k is, it does not affect the final scheduling scheme and the runtime. When k ≤ 10,
the value of ValR increases with the increase of k. When k > 10, ValR decreases
with the increase of k.

In conclusion, too small k cannot reasonably reflect the precedence relationship
among the different objectives. However, a too large one can keenly lead to different
impacts of various criteria on the synthetic objective to be revealed.

6 Conclusion

Apatient scheduling problem faced by hemodialysis service centers inChina is studied
in this paper. This problem considers a synthetic objective combined with the gross
utilization cost of devices, the number of night treatments, patients preferences on time,
device, space, and equilibrium of the devices. A 0–1 integer programming model is
formulated for this problem and the basic heuristic method is developed in which
three levels of treatment schedules set are constructed one by one. Based on these,
a Rollout framework for solving the problem is presented and the algorithm selects
schedules through the evaluation of the cost-to-go function to improve the quality of
solution. Finally, with real cases of a hemodialysis service center in Wuhan China,
comparison tests using the rollout algorithm are conducted to the manual scheduling,
and the basic heuristic method. Compared with the basic heuristic method, the Rollout
algorithmcaneffectively improvepatients degreeof satisfaction and reduce thenumber
of night shifts and HDF devices used to do the HD. Sensitivity analyses on scales of
devices and coefficients of various criteria are carried out to reach some interesting
conclusion.

In this paper, the patient scheduling problem is formulated as a model with a syn-
thetic objective combined with 6 criteria. The coefficients of these criteria are set by
managers according to their experience in this work. It is more reasonable if some
multi-criteria decision making methods such as AHP, ANP etc. are taken in setting
these coefficients. It will be a meaningful work in practice in the future. Develop-
ing meta-heuristics or hyper-heuristics for solving the synthetic objective problem is
another direction.Additionally, themultiple criteria can be described asmultiple objec-
tives and then the problem can be formulated as multi-objective or many-objective
programmingmodels.Designingmulti-objective ormany-objective evolutionary algo-
rithm is worthy of paying more attention.
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Appendix A Schedules set in the first level

The number of Schedules in the first level The number of Schedules in the first level
dialysis dialysis

2 in 2weeks 1 0 0 0 0 0 0 1 0 0 0 0 0 0 4 in 2weeks 1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1

3 in 2weeks 1 0 0 0 1 0 0 0 0 1 0 0 0 0 5 in 2weeks 1 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1

6 in 2weeks 1 0 1 0 1 0 0 1 0 1 0 1 0 0 6 in 2weeks 0 1 0 1 0 0 1 0 1 0 1 0 0 1
1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 0 0 1 0 1 0 1 0
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