
J Comb Optim (2018) 35:941–954
https://doi.org/10.1007/s10878-017-0227-9

Online covering salesman problem

Huili Zhang1,2 · Yinfeng Xu1,2

Published online: 12 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Given a graphG = (V, E, D,W), the generalized covering salesman prob-
lem (CSP) is to find a shortest tour in G such that each vertex i ∈ D is either on the
tour or within a predetermined distance L to an arbitrary vertex j ∈ W on the tour,
where D ⊂ V ,W ⊂ V . In this paper, we propose the online CSP, where the salesman
will encounter at most k blocked edges during the traversal. The edge blockages are
real-time, meaning that the salesman knows about a blocked edge when it occurs. We
present a lower bound 1

1+(k+2)L k + 1 and a CoverTreeTraversal algorithm for online

CSP which is proved to be k + α-competitive, where α = 0.5 + (4k+2)L
OPT + 2γρ, γ

is the approximation ratio for Steiner tree problem and ρ is the maximal number of
locations that a customer can be served. When L

OPT → 0, our algorithm is near opti-
mal. The problem is also extended to the version with service cost, and similar results
are derived.

Keywords Covering salesman problem · Realtime blockage · Competitive analysis ·
Service cost

1 Introduction

The Covering salesman problem(CSP) was firstly proposed by Current and Schilling
(1989). It can be stated as follows: identify the minimum cost tour of a subset of n

B Huili Zhang
zhang.huilims@xjtu.edu.cn

Yinfeng Xu
yfxu@xjtu.edu.cn

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China

2 State Key Lab of Manufacturing and System Engineering, Xi’an 710049, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0227-9&domain=pdf

942 J Comb Optim (2018) 35:941–954

given cities such that every city not on the tour is within some predetermined covering
distance standard, Li , of a city that is on the tour. The CSP can be viewed as a
generalization of the traveling salesman problem (Garey and Johnson 1990). If Li = 0
or Li < min j pi j , where pi j denotes the shortest distance between vertices i and j ,
the CSP reduces to a TSP (thus, it is NP-hard).

Current and Schilling (1989) referred to several real world examples, such as the
routing of rural health care delivery teams, where not all the cities are required to be
visited. The application also includes the humanitarian aid, police patrolling, sensor
location and so on (Hachicha et al. 2000; Ha et al. 2013; Flores-Garza et al. 2015;
Naji-Azimi et al. 2012; Yang et al. 2014)

Recently, it has some new applications as the blooming of online shopping. Due to
the promotion of e-commerce company, the amount of orders will increase dramati-
cally, which usually leads to delay of delivery. In order to speed up the delivery, the
salesman usually visits part of the customers and visit one of the several third-party
convenient stores nearby in order to complete the deliverywithin some promised dead-
line, say two or three hours, as some express company Shunfeng and DHL do. In the
above practical case, the salesman only visit a subset of vertices to cover the remainder
customer vertices.

Traveling on the urban traffic network, the salesman suffers a lot from the uncertain
travel time. It is usually induced by the uncertain traffic blockages which may be
from the the traffic accident, rush hour or bad weather. Taking the uncertain traffic
blockages into account, we propose the online covering salesman problem. Assuming
that a blockage can be known when it occurs, we try to design a robust online routing
algorithm for the salesman to complete the delivery as soon as possible.

1.1 Literature review

AfterCurrent andSchilling, some extensions of theCSPhave appeared in the literature.
Considering the application in concert tour planning, Golden et al. (2012) defined a
generalized version of CSP, where each vertex i needs to be covered ki times, and
there is a cost associated with each visited vertex. The cost may come from the fixed
cost associated with a concert.

Current and Schilling (1994) introduced two bi-criterion routing problems: the
median tour problem(MTP) and the maximal covering tour problem(MCTP). In both
problems the tourmust visit only p of the n vertices on the network, and they both have
one goal to minimize the total tour length. In MTP, the other goal is the minimization
of the total distance from each demand at the vertices to their nearest stop on the
tour. In MCTP, the other goal is to maximize the total demand within some given
distance. Another generalization and closely related problem discussed in Gendreau
et al. (1997) is the covering tour problem (CTP). Here, given an undirected graph
G = (V ∪ W, E), the vertices in V can be on the tour, the vertices in T ⊂ V must be
visited while the vertices in W must be covered. Like the CSP, a vertex i not on the
tour must be within a predefined covering distance Li of a vertex on the tour. When
T ∪ W = φ, the CTP reduces to a CSP, and when the subset of vertices that must be
on the tour consists of the entire vertex set T = V ∪ W , the CTP reduces to the TSP.

123

J Comb Optim (2018) 35:941–954 943

After these fundamental works, there are also some variations considering multiple
vehicles (Hachicha et al. 2000; Ha et al. 2013; Flores-Garza et al. 2015), capacity con-
straints (Naji-Azimi et al. 2012), disk covering constraint (Yang et al. 2014), random
demands (Tricoire et al. 2012). The application includes the humanitarian aid, police
patrolling, sensor location and so on. CSP is also related to several famous routing
problems, such as the prize collecting TSP(PCTSP) (Bienstock et al. 1993), selec-
tive TSP (Laporte and Martello 1990), clustered TSP (Chisman 1975). The interested
readers could refer the survey by Gutin and Punnen (2002).

Most of the above works gave an exact solution or a heuristic solution for the
problems. As to the approximation algorithm, Slavik (1997) focused on the tree cover
problem and covering tour problem, where all the vertices in the graph are visited
or covered. The algorithm was based on LP relaxation rounding operations, and the
algorithm is proved to be 3

2ρ-approximation where ρ is maximum of locations from
which a customer can be served. Safra and Schwartz (2006) proved various geometric
covering problems related to the TSP cannot be efficiently approximated to within any
constant factor unless P = N P . It includes the TSP with neighborhood, group steiner
tree, the minimum watchman problem and so on. All the problems are defined in the
Euclidean plane. For the version considering the penalty of the unvisited cites, which
is actually the PCTSP. Based on Christofides’ algorithm (Christofides 1976) for TSP
as well as a method of rounding of linear programming(LP) relaxation to integers,
PCTSP was proved to be 2.5-approximation (Bienstock et al. 1993) and the ratio was
improved to be 2 − 1

n by Goemans et al. (1992).
For the previous research, the online TSP with online edge blockages may be the

most related. Liao and Huang (2014) studied the online TSP in complete weighted
graphs, called covering Canadian traveler problem (cCTP). An algorithm with com-
petitive ratio as O(

√
k) was proposed, where k is also the upper bound of number

of blockages. If the salesman only visits a subset of vertices, the problem is called
Steiner TSP(sTSP). In our own paper (Zhang et al. 2015), we studied the sTSP with
online edge blockages, and proposed a near optimal polynomial strategy with com-
petitive ratio k + 4 while the lower bound was proved to be k + 1. The version with
advance information was also studied (Zhang et al. 2016), where the traveler can get
the information a time units in advance.

The original version of cCTP(or sTSP) is the Canadian traveler problem(CTP),
which is the Shoretest path problem with online edge blockages. It is introduced
by Papadimitriou and Yannakakis (1991). It is PSPACE-complete to find an online
algorithm with a constant competitive ratio for CTP (Papadimitriou and Yannakakis
1991). When the number of blocked edges is at most k, the variation is denoted as k-
CTP. The best competitive ratio for k-CTP is 2k+1 by Zhu et al. (2003) andWestphal
(2008) independently. Zhang et al. (2013) also extended k-CTP to the case of multiple
travelers.

1.2 Our results

Motivated by delivery in urban traffic network, we studied the covering salesman
problemwith online edge blockages,which has awide application in operations society

123

944 J Comb Optim (2018) 35:941–954

nowdays. For the versionwithout service cost,we present a lower bound 1
1+(k+2)L k+1,

the online algorithm is proved to be k + α competitive, α = 0.5+ 4kL
OPT + 2γρ. When

L
OPT → 0, our algorithm is near optimal. We also extend the analysis to the version
with service cost.

The remainder of the paper is organized as follows. Section 2 gives the problem
formulation and some fundamental assumptions. In Sect. 3, we present a lower bound
for online covering salesman problem. In Sect. 4, the CoverTreeTraversal algorithm
is proposed and the competitive ratio is proved. Sect. 5 extends the analysis to online
covering salesman problem with service cost, where the service fee is charged by the
third-party for the service per parcel. We summarizes the main conclusions of this
work and proposes some future research problems in Sect. 6.

2 Preliminary

Given an edge-weighed graph G = (V, E, D,W), where |V | = n and |E | = m
and D ⊂ V is the collection of customer vertices, W ⊂ V is the collection of the
convenient stores vertices. The edge weight w(u, v) represents the traversal time, or
the distance, between the two vertices for edge (u, v) ∈ E . In the paper, we assume
there are at most k edge blockages, and let δ =< e1, e2, . . . , ek > denote the sequence
of these online blocked edges. Each of the blocked edge is revealed to the salesman
once it occurs. We try to find a tour with minimum travel time to guarantee each vertex
v ∈ D is either on the tour or within a distance L to some vertex in W on the tour.
Starting from a depot s, we seek a minimum cost closed tour that vertex i ∈ D is either
on the tour or within a distance L to an arbitrary vertex j ∈ E on the tour. We call this
problem online Covering Salesman Problem(online CSP) with edge blockages.

This way, the instance of the online can be denoted as a quintuple I =
(V, E, D,W, δ) (or simplified as a couple I = (G, δ)). For an algorithm A, the
competitive ratio is cA = supI

A(I)
OPT (I) , where A(I) is the total travel time derived

by algorithm A for instance I , and OPT (I) is the corresponding optimal value. The
lower bound of this problem is β = infA cA. Note that β ≥ 1 for our problem.

Our discussion is based on the assumptions that the remainder graph is connected
after deleting the blocked edge and the traversed edge will not be blocked later.

3 Lower bound

Recall that δ denotes the sequence of online blocked edges that will be revealed to the
salesman during the traversal. Due to the oblivious adversary, the realtime information
is equivalents to the case that every blockage e = (u, v) is revealed exactly when the
salesman is at u or v.

Theorem 1 For online CSP, β ≥ 1
1+(k+2)L k + 1 .

Proof We prove this lower bound of k + 1 by showing that for any online algorithm,
there is an instance I = (V, E, D,W, δ) of online CSP, such that the competitive
ratio of the algorithm on the instance I is almost k + 1. In the instance I , the graph

123

J Comb Optim (2018) 35:941–954 945

Fig. 1 Special unweighted graph

G = (V, E, D) is shown in Fig. 1, with D = {s, vk+2, vk+3, . . . , v2k+2}, V \D =
{v1, v2, . . . , vk+1}, W = V , and E = {{s, vi }, {vi , vk+1+i }, {vk+1+i , v2k+3}|1 ≤ i ≤
k + 1}. The edge weights are, for 1 ≤ i ≤ k + 1.

⎧
⎨

⎩

w(s, vi) = 1
w(vi , vk+1+i) = ε

w(vk+1+i , v2k+3) = ε

(3.1)

where ε is an arbitrary small positive number.
For any online algorithmA, from depot s, if the salesman chooses to traverse edge

(s, vi), for some i such that 1 ≤ i ≤ k + 1, then edge (vi , vk+1+i) is blocked by the
adversary when the salesman arrives at vertex vi . Clearly the salesman has to go back
to depot s afterward, and uses A to choose another edge (s, v j) to traverse, for some
j such that 1 ≤ j ≤ k + 1; if j = i , then edge (v j , vk+1+ j) is blocked when the
salesman arrives at vertex v j . And so on for the first k distinct attempts by the salesman
to traverse exactly k out of the k + 1 edges of form (s, vi), i = 1, 2, ..., k + 1, the
corresponding k edges of form (vi , vk+1+i) are blocked in sequence, denoted as δ.

1) If ε > L , the salesman will succeed to arrive at v2k+3 in his (k + 1)st try. Then
he will visit every vertex with demand and return to s, resulting a closed tour. Due to
Eq.3.1, the cost of algorithm A is

A(G, δ) = 2k + 1 + ε + 2(k + 1)ε + ε + 1

= 2k + 2 + 2(k + 2)ε

The optimal closed tour for adversary on the G = (V, E − δ, D) is

OPT(G, δ) = 1 + ε + 2(k + 1)ε + ε + 1

= 2 + 2(k + 2)ε

From all above,

A(G, δ)

OPT(G, δ)
= 2k + 2 + 2(k + 2)ε

2 + 2(k + 2)ε
≤ 1 + k

1 + (k + 2)L
= cA

Hence, cA ≥ 1
1+(k+2)L k + 1 holds for all A.

123

946 J Comb Optim (2018) 35:941–954

2) If ε ≤ L , the salesman visit vertex vi means that vk+1+i has been covered. The
salesman will go to s instantly, and the travel time is

A(G, δ) = 2k + 2;

The offline salesman will visit v2k+3 to cover D, and the optimal offline traversal
time is

OPT(G, δ) = 1 + ε + 2ε + ε + 1 = 2 + 4ε.

For this scenario,

A(G, δ)

OPT(G, δ)
≤ 2k + 2

2 + 4ε
≤ k + 1 = cA,

where ε ≥ 0. Hence, cA ≥ k + 1 holds for all A.

Hence, we have β ≥ min
{

1
1+(k+2)L k + 1, k + 1

}
= 1

1+(k+2)L k + 1. This proves

the theorem. 	

4 CoverTreeTraversal algorithm

In this section, we will introduce the CoverTreeTraversal algorithm for the online
Covering Salesman Problem (online CSP). The algorithm includes two parts. The first
part is to get an approximation solution of Covering Steiner Tree(CST) w.r.t. D via the
linear programming relaxation. The second part is to execute Deep-First-Search(DFS)
traversal to visit all the customer vertices on the CST or the subtrees induced by the
blockages.

4.1 LP relaxation for CST

In this section, we compute a tree by the LP relaxation of CST. The Steiner Tree is a
special case of Covering Steiner tree with covering distance L = 0. Since the Steiner
tree problem is NP-hard, CST is also NP-hard.

For the initial solution, we define the covering matrix A as follows: A = (ai j),

where(ai j)i, j∈V =
⎧
⎨

⎩

1 0 ≤ l(i, j) < L , i ∈ D, j ∈ W
1 i = j, i ∈ D
0 otherwise

, where l(i, j) is the travel

time between i and j . Vertex i can be served at set a[i], where a[i] = { j ∈
W

∣
∣ai j = 1 } ∪ {i}. We also define that ρ = max

i∈D {|a[i]|}, i.e. one customer can be

served on at most ρ vertices. In most of practical cases, ρ is at most two or three. Now
we give the integer programming of CSP, with the depot as vertex 0.

123

J Comb Optim (2018) 35:941–954 947

I P1: CSP

Z1 = min
∑

i∈V
∑

j∈V ci j xi j

s.t. (a)
∑

i∈V xi j −
∑

k∈V x jk = 0, ∀ j ∈ V

(b)
∑

i∈V/S
xi j ≥ y j , ∀ j ∈ V, S ⊂ V, |S ∩ { j, 0}| = 1

(c)
∑

j∈a[i] ai j y j ≥ 1, ∀i ∈ D

(d) y j ∈ {0, 1}, ∀ j ∈ V

(e) xi j ∈ {0, 1}, ∀i, j ∈ V (4.1)

Remove the constraint (a) of Eq.4.1, the remainder forms the integer programming of
CST we call it I P2, i.e.

I P2 :
{
Z2 = min

∑

i∈V
∑

j∈V ci j xi j |(b) − (e)
}

(4.2)

Clearly, Z2 ≤ Z1 since the lack of (a).
LP2 is the linear programming relaxation of I P2 as follows:

LP2 :
{
Z∗
2 = min

∑

i∈V
∑

j∈V ci j xi j |(b), (c), 0 ≤ yi ≤ 1, 0 ≤ xi j ≤ 1
}

(4.3)

We give an approximation algorithm, say LP-CST, for CST. The idea is to select
a subset of vertices in D ∪ W to satisfy the covering constraint, and connect all the
selected vertices as a tree.

Algorithm 1 LP-CST

Output: Covering Steiner Tree (CST).

Step 1: solve LP2 to get (y, x, Z∗
2) = ((y∗

j) j∈D∪W , (x∗
i j)i, j∈V , Z∗

2);

Step 2: define xi j = ρx∗
i j , y j =

{
1 y∗

j ≥ 1
ρ

0 otherwise
, T =

{
j ∈ D ∪ W

∣
∣
∣y∗

j ≥ 1/ρ
}
;

Step 3: compute the Steiner tree w.r.t. T .

Lemma 1 ∀i ∈ D, there is at least one vertex in T covering it.

Proof Due to |a[i]| ≤ ρ and
∑n

j=1 ai j y
∗
j = ∑

j∈a[i] y∗
j ≥ 1 due to constraint (c).

Then there is at least one vertex, say j0, that y∗
j0

≥ 1/ρ, then y j0 = 1, j0 ∈ T . It
proves that at least one vertex, j0, covers vertex i . 	

Let T ⊂ V , define y j as follows: y j = 1 if j ∈ T ; otherwise, y j = 0. Consider the
following problem,

123

948 J Comb Optim (2018) 35:941–954

I P3 : Z3(T) = min
∑

i∈V
∑

j∈V ci j xi j

s.t. (b)
∑

i∈V/S
xi j ≥ y j , ∀S ⊂ V,∀ j ∈ S

(e) xi j ∈ N+, ∀i, j ∈ V

(4.4)

LP3 :
{
Z∗
3(T) = min

∑

i∈V
∑

j∈V ci j xi j |(b), xi j ≥ 0
}

(4.5)

Lemma 2 Z∗
3(T) ≤ ∑

i, j∈V
ci j xi j .

Proof ∀i, j ∈ V , xi j = ρx∗
i j ≥ 0 holds. Due to this, constraint (e) is satisfied.

For the definition of xi j , we have
∑

i∈V/S xi j = ρ
∑

i∈V/S x
∗
i j ≥ ρy∗

j ≥ ρ 1
ρ

= 1.
Hence, constraint (b) is satisfied and (xi j)i, j∈V is a feasible solution to LP3, and
Z∗
3(T) ≤ ∑

i, j∈V
ci j xi j . This proves the theorem. 	

Theorem 2 Algorithm LP-CST is γρ approximation, where γ is the approximation
ratio of Steiner tree problem.

Proof According to Theorem 2 ofWolsey (1980), there is an approximation algorithm
Z with Z

Z∗
3 (T)

≤ γ if Z
Z3(T)

≤ γ holds. Thus, from l(T) ≤ γ Z3(T), we get l(T) ≤
γ Z∗

3(T) holds.

l(T) ≤ γ Z∗
3(T) ≤ γ

∑

i, j∈V
ci j xi j = γρZ∗

2 ≤ γρZ2 ≤ γρZ1 (4.6)

This proves the theorem. 	

From all above, we get a covering Steiner tree, with the approximation ratio as γρ,

where γ is at least 1.39 in general graph (Byrka et al. 2010). We can also approximate
CSTby solving LP1 directly to select a subset of vertices, computing a tour to cover the
selected vertices by Christiofides’ algorithm for TSP (Christofides 1976), and deleting
the redundant copy of edges in the TSP tour to get a tree. Similar as the analysis of
LP-CST algorithm, we can derive that l(T) ≤ 3

2 Z
∗
3(T) ≤ 3

2

∑

i, j∈V
ci j xi j = 3

2ρZ
∗
1 ≤

3
2ρZ1.

4.2 CoverTreeTraversal

For the algorithm CoverTreeTraversal, we first get a CST from LP-CST, called T .
Then, the salesman will try to execute a DFS traversal to visit all the customer vertices
on the CST. During the traversal, the salesman will encounter at most k blockages
which will cut the original CST into at most k + 1 subtrees. Let 	 be the collection
of subtrees which are not visited. Initially 	 = {T }. The salesman will try to execute
DFS traversal on each subtree, and connect each subtree via a shortest path chain,
which we call a jump. We treat the traversal between two jumps as an iteration.

123

J Comb Optim (2018) 35:941–954 949

(a) (b)

Fig. 2 LB-SubtreeTraversal 1. The salesman’s trace in Case 1 in blue line. e1 = (u1, v1) cuts the Ti into
two subtrees. The part connected to u1 is the new Ti on which the salesman continues the DFS traversal. and
the other part T 1

i is added into 	 after chopping the leaves which are not customer vertex, where v1 /∈ D

are chopped. After e2 = (u2, v2) ∈ Ti is encountered, add subtree T 2
i in 	 and return to x ∈ Ti , which is

new d0 in the next iteration. The trace in Case 2.1.1 (blue line) includes no customer vertex on Tj , and the
salesman returns to d0 and starts a new iteration (Color figure online)

Let Q denote all the customer vertex unvisited. We remark that the service depot
is always considered unvisited to force the salesman to return to the service depot,
s ∈ Q.

In one typical iteration of the algorithm, the salesman stands at d0, and computes
the shortest paths from all vertices in a[d0] to all the vertices in a[d1], where d1 ∈ Q
and in some subtree Ti ∈ 	, i.e. d1 ∈ Q ∩ Ti . Denote a shortest one of all the above
shortest paths as P(d ′

0, d
′
1), where d

′
0 ∈ a[d0] and d ′

1 ∈ a[d1]. Please note that d ′
0 and

d ′
1 may not be on any subtree in 	 and they may already be served. We define the
shortest path chain as P= P1 : P2 : P3, where P1(d0, d ′

0), P2(d
′
0, d

′
1) and P3(d ′

1, d1).
Please note that l(P1), l(P3) ≤ L .

During the traversal, once the salesman visits a customer in Q, called v, update
Q = Q − a[v], ∀v ∈ Q. If the salesman arrives at d1, then executes the DFS traversal
on the subtree Ti ; otherwise if the salesman is blocked on P, the salesman travels
depending on the location of the blockage on P.

The details are listed as follows:

Case 1 A new edge blockage e1 = (u1, v1) is revealed after the salesman reaches d1
(Fig. 2a, and the salesman is considered reaching d1. Note that d0 = d1 = s in the first
iteration. If e1 ∈ Ti , then Ti is broken down into two smaller subtrees by removing
the edge and subsequently updated to be one of the two smaller subtrees that contains
d1. The other subtree, say T 1

i is added into 	 after chopping the leaves not in D. The
salesman continues his DFS traversal on the subtree Ti until all the customer vertex
in Ti has been visited, and he stands on some vertex in D, say x . Note that during the
DFS traversal, new edge blockages can be revealed. When a new blocked edge is in
Ti , it is processed in the same manner repeatedly. The iteration ends with the salesman
standing at x .

Case 2 A new edge blockage e1 = (u1, v1) is revealed on P.

Case 2.1 If e1 is on another subtree Tj ∈ 	 , update Tj as the small subtree that contains
u1, and add the other subtree T 1

j that contains v1 into 	. The salesman executes DFS

123

950 J Comb Optim (2018) 35:941–954

(a) (b)

Fig. 3 LB-SubtreeTraversal 2. The salesman does DFS traversal on Tj from u1, and the trace in Case 2.1.2
(blue line) includes one customer vertex x on Tj . x is the d0 in the new iteration. In Case 2.2, the salesman
retraces to d0 and starts a new iteration (Color figure online)

traversal on Tj from u1 and returns to u1 at the end of traversal. Note that during
the DFS traversal, new edge blockages can be revealed. When a new blocked edge
e2 = (u2, v2) is in Tj , it is processed in the same manner repeatedly as in Case 1.

Case 2.1.1 If Tj includes no destination at the end of DFS traversal (see Fig. 2b), the
salesman returns to d0, the iteration terminates.

Case 2.1.2 When the salesman visited the last destination on Tj (see Fig. 3a), called
x , update x as d0, the iteration terminates.

Case 2.2 If e is not in any subtree in	 (see Fig. 3b), the salesman returns to d0, update
a[d0], the iteration terminates.

Lemma 3 In each iteration, l(P2) ≤ 0.5OPT, where P2 = P(d ′
0, d

′
1).

Proof For an arbitrary vertex d0 ∈ D, according to the definition of a[d0], the offline
salesman has to visit one of the vertex in a[d0]. Similarly, for d1 ∈ Q, the offline
salesman has to visit one of the vertex in a[d1]. Since P2 is the shortest path connected
a[d0] and a[d1], l(P2) = l(P(d ′

0, d
′
1)) = min{l(P(i, j))|i ∈ a[d0], j ∈ a[d1]} ≤

0.5OPT. This proves the lemma. 	

Recall that P is a shortest path chain including P1, P2 and P3, where l(P1), l(P3) ≤

L and l(P2) ≤ 0.5OPT. Hence, l(P) ≤ 0.5OPT + 2L .
The travel time of the salesman including two parts, one is the traversal time on the

subtrees, the other is the jumping time on P.

Lemma 4 In an iteration , the jumping time of a salesman is

⎧
⎪⎪⎨

⎪⎪⎩

l(P) Case 1
2l(P) Case 2.1.1
l(P) Case 2.1.2
2l(P) Case 2.2

123

J Comb Optim (2018) 35:941–954 951

Proof The salesman travels along P and arrives at d ′
1 in Case 1, it is clear that the

jumping time is l(P). In Case 2.1.1, the salesman encounters a blockage on some
other subtree Tj , and there is no unvisited vertex in Tj , the salesman returns to d0, the
jumping time is at most 2l(P). In Case 2.1.2, the salesman encounters a blockage
on some other subtree Tj , and there is some vertex in Q, called x ∈ Tj ∩ Q, the
salesman stop at x , the jumping time is at most l(P). The salesman also returns to d0
in Case 2.2, the jumping time is at most 2l(P).

This proves the lemma. 	

Theorem 3 For online CSP, CoverTreeTraversal is polynomial time and the compet-
itive ratio is k + α, where α = 0.5 + 4kL

OPT + 2γρ.

Proof Solving the linear programming to get the steiner vertex set is proved polyno-
mial. The approximation algorithm for Steiner tree is based on linear programing, and
it is also polynomial. Computing the shortest path between every pair of vertex in Q is
at most O(|V |3), and computing P in each iteration needs O(k|V |3), the entire DFT
traversal is O(|V |2). Hence, algorithm CoverTreeTraversal is polynomial time.

The traveling includes two parts, one is the DFS traversal in T and the other is
the jumping on P. From the two cases in algorithm CoverTreeTraversal, the salesman
travels on every edge in Ti ∈ 	 at most twice, td ≤ 2l(T) ≤ 2γρOPT. Due to Lemma
4, the jumping time per subtree is at most 2l(P). Note that there will be at most k times
jumping for encountering blockages and one more to go back to s. The last jumping
costs at most l(P). Hence, the total jumping time is t j ≤ 2kl(P) + l(P).

The total cost of CoverTreeTraversal algorithm is t = td + t j ≤ 2l(T) + k(4L +
OPT) + 0.5OPT ≤ (k + 0.5 + 2γρ)OPT + 4kL .

Hence, the competitive ratio is

cA = t

OPT
≤ (k + 0.5 + 2γρ)OPT + 4kL

OPT
= k + 0.5 + 4kL

OPT
+ 2γρ = k + α,

(4.7)
where α = 0.5 + 4kL

OPT + 2γρ and γ ≥ 1.39. This proves the theorem. 	

When L
OPT → 0, our algorithm is near optimal.

5 Online CSP with service cost

In this section, we will study a more practical scenario considering the service cost for
the covered customers. The service cost may be charged by the third-party convenient
store per parcel, or comes from the waiting time for customers who are not on the tour.
Hence, the total online delivery time is the sum of the travel time and the service cost.

The service cost can be seen as the penalty charged. Once a vertex in D is visited,
there is no penalty; if it is covered, it is charged wi depends on weight(number) of
orders on the vertex. It comes to prize collecting TSP that has to follow the covering
constraint.

123

952 J Comb Optim (2018) 35:941–954

5.1 Lower bound

Theorem 4 For online CSP with service cost, β ≥ min
{

1
1+(k+2)L k + 1,

1
1+0.5(k+2)w k + 1

}
.

Proof The proof is similar to Theorem 1. Consider the instance in Fig. 1. Suppose that
all the vertices in D has the same amount of orders, then the penalty w is uniform.
If ε > L , the salesman has to visit every customer in D. cA ≥ 1

1+(k+2)L k + 1 holds
for an arbitrary algorithm A. If ε ≤ L , for 2ε < w, it is cheaper to visit the vertice
in D, and the online delivery time is A(I) ≤ 2k + 2 + 2ε + 2ε + 2(k + 1)ε while
OPT = 2+ 2ε + 2(k + 1)ε, and derive cA > k + 1 as ε → 0; for 2ε ≥ w, the choice
is to cover the vertices in D, and the online delivery time is A(I) ≤ 2k + 2 while
OPT = 2 + 4ε + (k + 1)w, and derive cA > 1

1+0.5(k+2)w k + 1.

Hence, β ≥ min{ 1
1+(k+2)L k + 1, 1

1+0.5(k+2)w k + 1}. This proves the theorem. 	

Please note that β ≥ 1
1+(k+2)L k+1 forw = 0, which is same with the case without

service cost.
In the following subsection, we will show LP-CST also woks when the service cost

is considered, and then apply the CoverTreeTraversal algorithm in Sect. 4.2 to solve
the problem with service cost.

5.2 Competitive analysis

For the problem with service cost, we give the integer programming formulation and
do the linear programming relaxation to lead to the approximate initial solution. For
each vertex i ∈ D, the penalty wi is charged if it is covered without visiting.

Recall the covering matrix A in Sect. 4.1 with covering range L . Again let ρ =
max
i∈D {|a[i]|}, s = 0 as the depot. The service cost for vertex i ∈ D is (1− yi)wi , where

yi = 1 means this vertex is visited, and the total service cost is ts = ∑
i∈D (1 − yi)wi .

I P0 (Eq.5.1) is the integer programming of CSP with service cost. Omitting the
constraint (a) leads to integer programming of CST with service cost I P

′
1(Eq.5.2).

The linear relaxation of I P
′
1 induces LP

′
1. We get LP2 (Eq.4.3) from LP

′
1 by leaving

the service cost. Then we can use the LP-CST in Sect. 4.1 to get a CST.

I P0 :
{

Z0 = min
∑

i∈V
∑

j∈V ci j xi j +
∑

i∈D
(1 − yi)wi |(a) − (e)

}

(5.1)

I P
′
1 :

{

Z
′
1 = min

∑

i∈V
∑

j∈V ci j xi j +
∑

i∈D
(1 − yi)wi |(b) − (e)

}

(5.2)

LP ′
1 :

⎧
⎨

⎩
Z∗′
1 =min

∑

i∈V

∑

j∈V
ci j xi j +

∑

i∈D
(1−yi)wi |(b)−(c), 0≤ yi ≤1, 0≤ xi j

⎫
⎬

⎭
(5.3)

123

J Comb Optim (2018) 35:941–954 953

Clearly, Z
′
1 ≤ Z0 for the lack of (a). Z∗

1 < Z
′
1 since LP

′
1 is the linear programming

relaxation of I P
′
1. Omitting the service cost, we get LP2 in Eq.4.3, with Z∗′

2 = Z∗
2 =

min
∑

i∈V
∑

j∈V ci j xi j .
LP-CST algorithm will select a subset of vertices, say T , to construct a Steiner tree

by a γ−approximation algorithm. Recalling LP3 and I P3 (Eq.4.4 and 4.5), the total
cost of the CST is at most γ Z∗

3(T) + α
∑

i∈D (1 − yi)wi .

Theorem 5 TheLP-CSTalgorithm is γρ approximation, where γ is an approximation
ratio of Steiner tree.

Proof Recall Eq. 4.6, we have

t ≤ γ Z∗
3(T) +

∑

i∈D (1 − yi)wi

≤ γ
∑

i, j∈V
ci j xi j +

∑

i∈D (1 − yi)wi

≤ γ
∑

i, j∈V
ρci j x

∗
i j + ρ

ρ − 1

∑

i∈D (1 − y∗
i)wi

≤ γρZ∗′
1 ≤ γρZ1 ≤ γρZ0

This proves the theorem. 	

We apply the CoverTreeTraversal algorithm to the online CSP with service cost.

With similar analysis, we can get the following theorem.

Theorem 6 For Covering sTSP with service cost, the CoverTreeTraversal algorithm
is polynomial time and k + α-competitive, where α = 4L

OPT + 2γρ .

6 Conclusion

We studied the covering salesman problem with online edge blockages, which a good
match to the instant delivery routing problem in urban traffic network. For the version
without service cost, we present a lower bound 1

1+(k+2)L k + 1, the online algorithm

is proved to be k + α competitive, where α = 0.5 + 4kL
OPT + 2γρ. We also extend the

analysis to the versionwith service cost. The competitive ratio is still at most k+α, and

the lower bound is min
{

1
1+(k+2)L k + 1, 1

1+0.5(k+2)w k + 1
}
, where w is the uniform

penalty for each vertex in D. When L
OPT → 0, our algorithm is near optimal.

A more careful analysis for the competitive ratio of CovereTreeTraversal can con-
sidered in the future research.We can also assume that there is no blockage between the
costumer vertex and the third-party vertex since they are always in a small neighbor-
hood. With these assumption, the algorithm will have a better performance. Another
interesting work is to consider a more general service cost function, which includes
two parts. One part is that the fixed cost to active a third-party service site and the
other part is the changeable cost charged per parcel. In this case, the service cost is
the sub modular function, which may be more interesting.

123

954 J Comb Optim (2018) 35:941–954

Acknowledgements Zhang and Xu would like to acknowledge the financial support of NSFC Grants Nos.
71601152 and 71732006. Zhang is also supported by Grant Nos. 2016M592811 and 2015T81040 from
China Postdoctoral Science Foundation.

References

Bienstock D, Goemans MX, Simchi-Levi D, Williamson D (1993) A note on the prize collecting traveling
salesman problem. Math Program 59(1–3):413–420

Byrka J, Grandoni F, Rothvo T, Sanit L (2010) An improved ip-based approximation for steiner tree. In:
ACM Symposium on theory of computing, pp 583–592

Chisman JA (1975) The clustered traveling salesman problem. Comput Oper Res 2(2):115–119
Christofides N (1976)Worst-case analysis of a new heuristic for the travelling salesman problem. Technical

report, DTIC Document
Current JR, Schilling DA (1989) The covering salesman problem. Transp Sci 23(3):208–213
Current JR, Schilling DA (1994) The median tour and maximal covering tour problems: formulations and

heuristics. Eur J Oper Res 73(94):114–126
Flores-Garza DA, Salazar-Aguilar MA, Ngueveu SU, Laporte G (2015) The multi-vehicle cumulative

covering tour problem. Ann Oper Res 258:1–20
Garey MR, Johnson DS (1990) Computers and intractability; a guide to the theory of NP-completeness. W.

H. Freeman & Co., New York
Gendreau M, Laporte G, Semet F (1997) The covering tour problem. Oper Res 45(4):568–576
Goemans X, Williamson Michel, David P (1992) A general approximation technique for constrained forest

problems. SIAM J Comput 24(2):296–317
Golden B, Naji-Azimi Z, Raghavan S, Salari M, Toth P (2012) The generalized covering salesman problem.

Inf J Comput 24(4):534–553
Gutin G, Punnen AP (eds) (2002) The traveling salesman problem and its variations, volume 2 of Combi-

natorial optimization. Kluwer Academic Publishers, Dordrecht
Ha MH, Bostel N, Langevin A, Rousseau LM (2013) An exact algorithm and a metaheuristic for the

multi-vehicle covering tour problem with a constraint on the number of vertices. Eur J Oper Res
226(2):211–220

Hachicha M, Hodgson MJ, Laporte G, Semet F (2000) Heuristics for the multi-vehicle covering tour
problem. Comput Oper Res 27(1):29–42

Laporte G, Martello S (1990) The selective traveling salesman problem. Discret Appl Math 26(2–3):193–
207

Liao C-S, Huang Y (2014) The covering canadian traveller problem. Theor Comput Sci 530:80–88
Naji-Azimi Z, Renaud J, Ruizbc A (2012) A covering tour approach to the location of satellite distribution

centers to supply humanitarian aid. Eur J Oper Res 222(3):596–605
Papadimitriou CH, Yannakakis M (1991) Shortest paths without a map. Theor Comput Sci 84(1):127–150
Safra S, Schwartz O (2006) On the complexity of approximating tsp with neighborhoods and related

problems. Comput Complex 14(4):281–307
Slavik P (1997) The errand scheduling problem. CSE technical report 97-02
Tricoire F, Graf A, Gutjahr WJ (2012) The bi-objective stochastic covering tour problem. Comput Oper

Res 39(7):1582–1592
Westphal S (2008) A note on the k-canadian traveller problem. Inf Process Lett 106(3):87–89
Wolsey LA (1980) Heuristic analysis, linear programming and branch and bound. Math Program Study

13(13):121–134
Yang JJ, Jiang JR, Lai YL (2014) A decreasing k-means algorithm for the disk covering tour problem in

wireless sensor networks. In: IEEE international conference on parallel and distributed systems, pp
906–910

Zhang H, Tong W, Xu Y, Lin G (2015) The steiner traveling salesman problem with online edge blockages.
Eur J Oper Res 243(1):30–40

Zhang H, Tong W, Xu Y, Lin G (2016) The steiner traveling salesman problem with online advanced edge
blockages. Comput Oper Res 70:26–38

Zhang H, Xu Y, Qin L (2013) The k-canadian travelers problem with communication. J Comb Optim
26(2):251–265

Zhu Z, Xu Y, Liu C (2003) The covering canadian traveller problem. J Syst Eng 18:261–270 (in Chinese)

123

	Online covering salesman problem
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Our results

	2 Preliminary
	3 Lower bound
	4 CoverTreeTraversal algorithm
	4.1 LP relaxation for CST
	4.2 CoverTreeTraversal

	5 Online CSP with service cost
	5.1 Lower bound
	5.2 Competitive analysis

	6 Conclusion
	Acknowledgements
	References

