
J Comb Optim (2018) 36:1221–1242
https://doi.org/10.1007/s10878-017-0205-2

Safe sets in graphs: Graph classes and structural
parameters

Raquel Águeda1 · Nathann Cohen2 · Shinya Fujita3 · Sylvain Legay2 ·
Yannis Manoussakis2 · Yasuko Matsui4 · Leandro Montero2 ·
Reza Naserasr5 · Hirotaka Ono6 · Yota Otachi7 · Tadashi Sakuma8 ·
Zsolt Tuza9,10 · Renyu Xu11

Published online: 17 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract A safe set of a graphG = (V, E) is a non-empty subset S of V such that for
every component A of G[S] and every component B of G[V \S], we have |A| ≥ |B|
whenever there exists an edge of G between A and B. In this paper, we show that a
minimum safe set can be found in polynomial time for trees. We then further extend

Partially supported by NKFIH Grant Number 116095 (to ZsT), and MEXT/JSPS KAKENHI Grant
Numbers 15K04979 (to SF), 16K05260 (to TS), 24106004 (to HO and YO), 24220003 (to HO),
26400185 (to TS), 26540005 (to HO).

B Yota Otachi
otachi@cs.kumamoto-u.ac.jp

Raquel Águeda
Raquel.Agueda@uclm.es

Nathann Cohen
nathann.cohen@gmail.com

Shinya Fujita
fujita@yokohama-cu.ac.jp

Sylvain Legay
sylvain.legay@lri.fr

Yannis Manoussakis
Yannis.Manoussakis@lri.fr

Yasuko Matsui
yasuko@tokai-u.jp

Leandro Montero
lmontero@lri.fr

Reza Naserasr
Reza.Naserasr@liafa.univ-paris-diderot.fr

Hirotaka Ono
ono@i.nagoya-u.ac.jp

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0205-2&domain=pdf
http://orcid.org/0000-0002-0087-853X

1222 J Comb Optim (2018) 36:1221–1242

the result and present polynomial-time algorithms for graphs of bounded treewidth,
and also for interval graphs. We also study the parameterized complexity. We show
that the problem is fixed-parameter tractable when parameterized by the solution size.
Furthermore, we show that this parameter lies between the tree-depth and the vertex
cover number. We then conclude the paper by showing hardness for split graphs and
planar graphs.

Keywords Safe set · Graph algorithm · Graph class · Parameterized complexity

1 Introduction

In this paper, we only consider finite and simple graphs. The subgraph of a graph G
induced by S ⊆ V (G) is denoted by G[S]. A component of G is a connected induced
subgraph ofG with an inclusionwisemaximal vertex set. For vertex-disjoint subgraphs
A and B of G, if there is an edge between A and B, then A and B are adjacent.

In a graph G = (V, E), a non-empty set S ⊆ V of vertices is a safe set if, for every
component A of G[S] and every component B of G[V \S] adjacent to A, it holds that
|A| ≥ |B|. If a safe set induces a connected subgraph, then it is a connected safe set.
The safe number s(G) of G is the size of a minimum safe set of G, and the connected
safe number cs(G) of G is the size of a minimum connected safe set of G. It is known
that s(G) ≤ cs(G) ≤ 2 · s(G) − 1 (Fujita et al. 2016).

The concept of (connected) safe number was introduced by Fujita et al. (2016).
Their motivation came from a variant of facility location problems, where the goal is
to find a “safe” subset of nodes in a network that can be used for safe evacuation. See

Tadashi Sakuma
sakuma@e.yamagata-u.ac.jp

Zsolt Tuza
tuza@dcs.uni-pannon.hu

Renyu Xu
renyu.xu@lri.fr

1 Universidad de Castilla-La Mancha, Ciudad Real, Spain

2 LRI, University Paris-Sud, Orsay, France

3 Yokohama City University, Yokohama, Japan

4 Tokai University, Tokyo, Japan

5 LIAFA, University Paris-Diderot, Paris, France

6 Nagoya University, Nagoya, Japan

7 Kumamoto University, Kumamoto, Japan

8 Yamagata University, Yamagata, Japan

9 MTA Rényi Institute, Budapest, Hungary

10 University of Pannonia, Veszprém, Hungary

11 Shandong University, Jinan, China

123

J Comb Optim (2018) 36:1221–1242 1223

Bapat et al. (2016) also for further discussions about themotivation. Fujita et al. (2016)
showed that the problems of finding a minimum safe set and a minimum connected
safe set are NP-hard in general. They also showed that a minimum connected safe set
in a tree can be found in linear time.

Themain contributionof this paper is to give polynomial-time algorithms for finding
a minimum safe set on trees, graphs of bounded treewidth, and interval graphs. We
also show that the problems are fixed-parameter tractable when parameterized by the
solution size. These positive results are complemented by a few hardness results.

The rest of the paper is organized as follows. In Sect. 2, we present an O(n5)-
time algorithm for finding a minimum safe set on trees. In Sect. 3, we generalize the
algorithm to make it work on graphs of bounded treewidth. In Sect. 4, we show that
the problem can be solved in O(n8) time for interval graphs. In Sect. 5, we show the
fixed-parameter tractability of the problem when the parameter is the solution size.
We also discuss the relationship of safe number to other important and well-studied
graph parameters. In Sect. 6, we show that the problems are NP-complete for split
graphs and planar graphs.

2 Safe sets in trees

Recall that a tree is a connected graph with no cycles. In this section, we prove the
following theorem.

Theorem 2.1 For an n-vertex tree, a safe set of minimum size can be found in time
O(n5).

We only show that the size of a minimum safe set can be computed in O(n5) time.
It is straightforward to modify the dynamic program below for computing an actual
safe set in the same running time.

In the following, we assume that a tree T = (V, E) has a root and that the children
of each vertex are ordered. For a vertex u ∈ V , we denote the set of children of u by
CT (u). By Vu we denote the vertex set that consists of u and its descendants, where
a vertex v �= u is a descendant of u if u is on the path from v to the root. We define
some subtrees induced by special sets of vertices as follows (see Fig. 1):

– For a vertex u ∈ V , let T (u) = T [Vu].
– For an edge {u, v} ∈ E where v is the parent of u, let T (u → v) = T [{v} ∪ Vu].
– For u ∈ V with children w1, . . . , wd , let T (u, i) = T

[
{u} ∪ ⋃

1≤ j≤i Vw j

]
.

Note that T (u, 1) = T (w1 → u) if w1 is the first child of u, T (u) = T (u, |CT (u)|)
if u is not a leaf, and T = T (ρ) if ρ is the root of T .

Fragments For a subtree T ′ of T and S ⊆ V (T ′), a fragment in T ′ with respect to
S is the vertex set of a component in T ′[S] or T ′[V (T ′)\S]. We denote the set of
fragments in T ′ with respect to S by F(T ′, S).The fragment that contains the root
of T ′ is active, and the other fragments are inactive. Two fragments in F(T ′, S) are
adjacent if there is an edge of T ′ between them. A fragment F ∈ F(T ′, S) is bad if
it is inactive, F ⊆ S, and there is another inactive fragment F ′ ∈ F(T ′, S) adjacent
to F with |F | < |F ′|.

123

1224 J Comb Optim (2018) 36:1221–1242

u v

w x

ρ

T (u)

T (v → w) T (x, 2)

Fig. 1 Subtrees T (u), T (v → w), and T (x, 2)

(T ′,b, s, a)-feasible sets For b ∈ {in,out}, s ∈ {0, . . . , n}, and a ∈ {1, . . . , n}, we
say S ⊆ V (T ′) is (T ′,b, s, a)-feasible if |S| = s, the size of the active fragment in
F(T ′, S) is a, there is no bad fragment in F(T ′, S), and b = in if and only if the root
of T ′ is in S.

Intuitively, a (T ′,b, s, a)-feasible set S is “almost safe.” If A is the active fragment
in F(T ′, S), then S\A is a safe set of T ′[V (T ′)\A].

For S ⊆ V (T ′), we set ∂max
T ′ (S) and ∂min

T ′ (S) to be the sizes of maximum and
minimum fragments, respectively, adjacent to the active fragment inF(T ′, S). If there
is no adjacent fragment, then we set ∂max

T ′ (S) = −∞ and ∂min
T ′ (S) = +∞.

DP table We construct a table with values ps(T ′,b, s, a) ∈ {0, . . . , n}∪ {+∞,−∞}
for storing information of partial solutions, where b ∈ {in,out}, s ∈ {0, . . . , n},
and a ∈ {1, . . . , n}, and T ′ is a subtree of T such that either T ′ = T (u) for some
u ∈ V , T ′ = T (u → v) for some {u, v} ∈ E , or T ′ = T (u, i) for some u ∈ V and
1 ≤ i ≤ |CT (u)|. The table entries will have the following values:

ps(T ′, in, s, a) =
⎧⎨
⎩

+∞ if no (T ′, in, s, a)-feasible set exists,

min
(T ′,in,s,a)-feasible S

∂max
T ′ (S) otherwise,

ps(T ′, out, s, a) =
⎧
⎨
⎩

−∞ if no (T ′,out, s, a)-feasible set exists,

max
(T ′,out,s,a)-feasible S

∂min
T ′ (S) otherwise.

The definition of the table ps implies the following fact.

Lemma 2.2 s(T) is the smallest s such that there is a ∈ {1, . . . , n} with
ps(T, in, s, a) ≤ a or ps(T,out, s, a) ≥ a.

Proof Assume that S is a safe set of T such that |S| = s and the root is contained in
S. Let A be the active fragment in F(T, S). Then, S is (T, in, s, |A|)-feasible. Since
A cannot be smaller than any adjacent fragment, we have ∂max

T (S) ≤ |A|. Hence
ps(T, in, s, |A|) ≤ |A| holds. By a similar argument, we can show that if the root is
not in S, then ps(T,out, s, |A|) ≥ |A|.

123

J Comb Optim (2018) 36:1221–1242 1225

Conversely, assume that ps(T, in, s, a) ≤ a for some a ∈ {1, . . . , n}. (The proof
for the other case, where ps(T,out, s, a) ≥ a, is similar.) Let S be a (T, in, s, a)-
feasible set with ∂max

T (S) = ps(T, in, s, a). Since there is no bad fragment inF(T, S)

and the active fragment (of size a) is not smaller than the adjacent fragments (of size
at most ∂max

T (S) = ps(T, in, s, a) ≤ a), all fragments included in S are not smaller
than their adjacent fragments. This implies that S is a safe set of size s. ��

By Lemma 2.2, after computing all entries ps(T ′,b, s, a), we can compute s(T)

in time O(n2). There are O(n3) tuples (T ′,b, s, a), and thus to prove the theorem,
it suffices to show that each entry ps(T ′,b, s, a) can be computed in time O(n2)
assuming that the entries for all subtrees of T ′ are already computed.

We compute all entries ps(T ′,b, s, a) in a bottom-up manner:We first compute the
entries for T (u) for each leaf u. We then repeat the following steps until none of them
can be applied. (1) For each u such that the entries for T (u) are already computed, we
compute the entries for T (u → v), where v is the parent of u. (2) For each u such that
the entries for T (u, i − 1) and T (wi → u) are already computed, where wi is the i th
child of u, we compute the entries for T (u, i).

Lemma 2.3 For a leaf u of T , each table entry ps(T (u),b, s, a) can be computed in
constant time.

Proof The set {u} is the unique (T (u), in, 1, 1)-feasible set. Since F(T (u), {u}) con-
tains no inactive fragment, we set ps(T (u), in, 1, 1) = −∞. Similarly, the empty set
is the unique (T (u),out, 0, 1)-feasible set. We set ps(T (u),out, 0, 1) = +∞. For
the other tuples, there are no feasible sets. We set the values accordingly for them.
Clearly, each entry can be computed in constant time. ��
Lemma 2.4 For a vertex u and its parent v in T , each table entry ps(T (u →
v),b, s, a) can be computed in O(n) time, using the table entries for the subtree
T (u).

Proof We separate the proof into two cases: a ≥ 2 and a = 1. If a ≥ 2, then we can
compute the table entry in constant time. If a = 1, we need O(n) time.

Case 1 a ≥ 2. In this case, for every (T (u → v),b, s, a)-feasible set S, u and v are in
the active fragment of F(T (u → v), S) since the root v of T (u → v) has the unique
neighbor u.

Case 1-1: b = in. Let S be a (T (u → v), in, s, a)-feasible set that mini-
mizes ∂max

T (u→v)(S). Observe that S\{v} is (T (u), in, s − 1, a − 1)-feasible and that
∂max
T (u→v)(S) = ∂max

T (u)(S\{v}). We claim that ∂max
T (u)(S\{v}) = ps(T (u), in, s−1, a−1),

and thus

ps(T (u → v), in, s, a) = ps(T (u), in, s − 1, a − 1).

Suppose that some (T (u), in, s − 1, a − 1)-feasible set Q satisfies ∂max
T (u)(Q) <

∂max
T (u)(S\{v}). Now Q ∪ {v} is (T (u → v), in, s, a)-feasible. However, it holds that

∂max
T (u→v)(Q ∪ {v}) = ∂max

T (u)(Q) < ∂max
T (u)(S\{v}) = ∂max

T (u→v)(S).

123

1226 J Comb Optim (2018) 36:1221–1242

This contradicts the optimality of S.
Case 1-2 b = out. Let S be a (T (u → v),out, s, a)-feasible set that maximizes

∂min
T (u→v)(S). The set S is also (T (u),out, s, a−1)-feasible and satisfies ∂min

T (u→v)(S) =
∂min
T (u)(S). We claim that ∂min

T (u)(S) = ps(T (u), in, s, a − 1), and thus

ps(T (u → v),out, s, a) = ps(T (u),out, s, a − 1).

Suppose that there is a (T (u), in, s, a − 1)-feasible set Q with ∂min
T (u)(Q) > ∂min

T (u)(S).
Since Q is also (T (u → v),out, s, a)-feasible, it holds that

∂min
T (u→v)(Q) = ∂min

T (u)(Q) > ∂min
T (u)(S) = ∂min

T (u→v)(S).

This contradicts the optimality of S.

Case 2 a = 1. For every (T (u → v),b, s, 1)-feasible set S, the set {v} is the active
fragment, and the vertex u is in the unique fragment adjacent to the active fragment.

Case 2-1 b = in. Let S be a (T (u → v), in, s, 1)-feasible set. Then S\{v} is
a (T (u),out, s − 1, a′)-feasible set for some a′. Moreover, since F(T (u → v), S)

does not contain any bad fragment, ∂min
T (u)(S\{v}) ≥ a′. Thus we can set ps(T (u →

v), in, s, 1) as follows:

ps(T (u → v), in, s, 1) =
{
min{a′ : ps(T (u),out, s − 1, a′) ≥ a′} if such a′ exists,
+∞ otherwise.

Case 2-2: b = out. Let S be a (T (u → v),out, s, 1)-feasible set. The set S is a
(T (u), in, s, a′)-feasible set for some a′. SinceF(T (u → v), S) does not contain any
bad fragment, ∂max

T (u)(S) ≤ a′. Thus we can set ps(T (u → v),out, s, 1) as follows:

ps(T (u → v),out, s, 1) =
{
max{a′ : ps(T (u), in, s, a′) ≤ a′} if there is such an a′,
−∞ otherwise.

In both Cases 2-1 and 2-2, we can compute the entry ps(T (u → v),b, s, 1) in
O(n) time by looking up at most n table entries for the subtree T (u). ��
Lemma 2.5 For a non-leaf vertex u with the children w1, . . . , wd and an integer i
with 2 ≤ i ≤ d, each table entry ps(T (u, i),b, s, a) can be computed in O(n2) time,
using the table entries for the subtrees T (u, i − 1) and T (wi → u).

Proof For the sake of simplicity, let T1 = T (u, i − 1) and T2 = T (wi → u). Let
S be a (T (u, i),b, s, a)-feasible set and A be the active fragment in F(T (u, i), S).
For j ∈ {1, 2}, let S j = S ∩ V (Tj) and A j = A ∩ V (Tj). Observe that S j is a
(Tj ,b, |S j |, |A j |)-feasible set. If b = in, then S1 ∩ S2 = {u}; otherwise S1 ∩ S2 = ∅.
Thus |S1| + |S2| = |S| + 1 if b = in, and |S1| + |S2| = |S| otherwise. Similarly, since
A1 ∩ A2 = {u}, it holds that |A1| + |A2| = |A| + 1. Therefore, we can set the table

123

J Comb Optim (2018) 36:1221–1242 1227

entries as follows:

ps(T (u, i), in, s, a) = min
s1+s2=s+1
a1+a2=a+1

max{ps(T1, in, s1, a1),ps(T2, in, s2, a2)},

ps(T (u, i),out, s, a) = max
s1+s2=s

a1+a2=a+1

min{ps(T1,out, s1, a1),ps(T2,out, s2, a2)}.

In both cases, we can compute the entry ps(T (u, i),b, s, a) in O(n2) time since there
are O(n) possibilities for each (s1, s2) and (a1, a2). ��

3 Safe sets in graphs of bounded treewidth

In this section, we show that for any fixed constant k, a minimum safe set and a
minimumconnected safe set of a graph of treewidth atmost k can be found in O(n5k+8)

time.
Basically, the algorithm in this section is a generalization of the one in the previous

section. The most crucial difference is that here we may have many active fragments,
and each active fragmentmay havemany vertices adjacent to the “outside.” Thismakes
the algorithm much more complicated and slow.

A tree decomposition of a graph G = (V, E) is a pair ({X p : p ∈ I }, T) such that
each X p, called a bag, is a subset of V , and T is a tree with V (T) = I such that

– for each v ∈ V , there is p ∈ I with v ∈ X p;
– for each {u, v} ∈ E , there is p ∈ I with u, v ∈ X p;
– for p, q, r ∈ I , if q is on the p–r path in T , then X p ∩ Xr ⊆ Xq .

The width of a tree decomposition is the size of a largest bag minus 1. The treewidth
of a graph, denoted by tw(G), is the minimum width over all tree decompositions of
G.

A tree decomposition ({X p : p ∈ I }, T) is nice if

– T is a rooted tree in which every node has at most two children;
– if a node p has two children q, r , then X p = Xq = Xr (such a node p is a join
node);

– if a node p has only one child q, then either
– X p = Xq ∪ {v} for some v /∈ Xq (p is a introduce node), or
– X p = Xq\{v} for some v ∈ Xq (q is a forget node);

– if a node p is a leaf, then X p = {v} for some v ∈ V (p is a leaf node).

Theorem 3.1 Let k be a fixed constant. For an n-vertex graph of treewidth at most k,
a (connected) safe set of minimum size can be found in time O(n5k+8).

Proof We only show that s(G) and cs(G) can be computed in the claimed running
time. It is straightforward to modify the dynamic program below for computing an
actual set in the same running time.

Let G = (V, E) be a graph of treewidth at most k. We compute a nice tree
decomposition ({X p : p ∈ I }, T) with at most 4n nodes. It can be done in O(n)

123

1228 J Comb Optim (2018) 36:1221–1242

time (Bodlaender 1996; Kloks 1994). For each p ∈ I , let Vp = X p ∪ ⋃
q Xq , where

q runs through all descendants of p in T .

Fragments For a node p and a vertex set S ⊆ Vp, a fragment is a component in G[S]
or G[Vp\S]. We denote the set of fragments with respect to p and S by F(p, S). A
fragment F ∈ F(p, S) is active if F ∩ X p �= ∅, and it is inactive otherwise. Two
fragments in F(p, S) are adjacent if there is an edge of G[Vp] between them. A
fragment F is bad if it is inactive, F ⊆ S, and there is another inactive fragment F ′
adjacent to F with |F | < |F ′|.

DP table For storing information of partial solutions, we construct a table with values
ps(p, s,A, β, γ, φ,ψ) ∈ {t, f} with indices p ∈ I , s ∈ {0, . . . , n}, a partition A of
X p, β : A → {1, . . . , n}, γ : A → {1, . . . , n}∪{±∞}, φ : A → {t, f}, andψ : (A

2

) →
{t, f}. We set

ps(p, s,A, β, γ, φ,ψ) = t

if and only if there exists a set S ⊆ Vp of size s with the following conditions:

– there is no bad fragment in F(p, S),
– for each active fragment F in F(p, S),

– there is a unique element AF ∈ A such that AF = F ∩ X p,
– β(AF) = |F |,
– φ(AF) = t if and only if F ⊆ S,
– if F ⊆ S, then γ (AF) is the size of a maximum inactive fragment adjacent to

F (if no such fragment exists, we set γ (Ai) = −∞),
– if F � S, then γ (AF) is the size of a minimum inactive fragment adjacent to

F (if no such fragment exists, we set γ (Ai) = +∞),
– for two active fragments F, F ′ inF(p, S), ψ({AF , AF ′ }) = t if and only if F and

F ′ are adjacent, where AF = F ∩ X p and AF ′ = F ′ ∩ X p.1

Let ρ be the root of T . The definition of the table ps implies the following fact.

Observation 3.2 s(G) is the smallest s with ps(ρ, s,A, β, γ, φ,ψ) = t for someA,
β, γ , φ, and ψ such that β(A) ≥ γ (A) for each A ∈ A with φ(A) = t, β(A) ≤ γ (A)

for each A ∈ A with φ(A) = f, and β(A) ≥ β(A′) for any A, A′ ∈ A with φ(A) = t
and ψ(A, A′) = t.

For computing cs(G), we need to compute additional information for each tuple
(p, s,A, β, γ, φ,ψ). For A ∈ A, let β ′(A) be the size of the fragment in F(ρ, S)

that is a superset of the fragment FA ⊇ A in F(p, S). If A ⊆ S, then β ′(A) = β(A);
otherwise β ′(A) = |CA\X p| + ∑

A′∈A, A′⊆CA
β(A′), where CA is the component in

G[(V \Vp) ∪ (X p\S)] that includes A. We can compute β ′(A) for all A ∈ A in time
O(n) by running a breadth-first search from X p\S.

1 In the following, we (ab)use simpler notation ψ(AF , AF ′) instead of ψ({AF , AF ′ }).

123

J Comb Optim (2018) 36:1221–1242 1229

Fig. 2 Introducing a vertex v.
Fragments are colored in such a
way that the fragments in S are
colored with one color and the
fragments not in S are colored
with the other color (Color
figure online)

v

Xp = Xq ∪ {v}

Vp \ Xp = Vq \ Xq

Observation 3.3 cs(G) is the smallest s with ps(p, s,A, β, γ, φ,ψ) = t for some
p, A, β, γ , φ, and ψ such that β(A) ≥ γ (A) for each A ∈ A with φ(A) = t,
β(A) ≤ γ (A) for each A ∈ A with φ(A) = f, and β(A) ≥ β ′(A′) for any A, A′ ∈ A
with φ(A) = t and ψ(A, A′) = t.

By Observations 3.2 and 3.3, provided that all entries ps(p, s,A, β, γ, φ,ψ) are
computed in advance, we can compute s(G) and cs(G) by spending time O(1) and
O(n), respectively, for each tuple. We compute all entries ps(p, s,A, β, γ, φ,ψ) by
a bottom-up dynamic program.

There are at most 4n · (n + 1) · (k + 1)k+1 · nk+1 · (n + 2)k+1 · 2k+1 · 2(k+1)k/2 =
O(n2k+4) tuples (p, s,A, β, γ, φ,ψ). Now, to prove the theorem, it suffices to show
that each entry ps(p, s,A, β, γ, φ,ψ) can be computed in time O(n3k+4) assuming
that the entries for the children of p are already computed.

Leaf nodes For a leaf node p with X p = {v}, ps(p, s,A, β, γ, φ,ψ) = t if and only
if the following conditions are satisfied: A = {{v}}; s = 1 if φ({v}) = t, s = 0
otherwise; β({v}) = 1; γ ({v}) = −∞ if φ({v}) = t, γ ({v}) = +∞ otherwise; and
ψ is the empty function. The conditions can be checked in O(1) time.

Introduce nodes Let p be an introduce node with the child q and X p = Xq ∪ {v}.
Observe from the definition of tree decompositions that v has no neighbor in Vp\X p.
Let S ⊆ Vp and S′ = S∩Vq . If v ∈ S, then |S′| = |S|−1; otherwise, |S′| = |S|. Now
F(p, S) andF(q, S′) have the same set of the inactive fragments, and thusF(p, S) has
a bad fragment if and only if so does F(q, S′).Let J (v) be the set of active fragments
in F(q, S′) that contain a neighbor of v and are contained in S′ if v ∈ S and in Vq\S′
otherwise. By introducing v, we merge the fragments in J (v) with v into a single
active fragment in F(p, S). (See Fig. 2.) Thus, if we set Fv = {v} ∪ ⋃

F∈J (v) F ,
thenF(p, S) = {Fv}∪ (F(q, S′)\J (v)) and |Fv| = 1+| ⋃F∈J (v) F |. The fragment
Fv is adjacent to an inactive fragment F if and only at least one fragment in J (v) is
adjacent to F . Other active fragments have the same adjacent inactive fragments in
F(p, S) and F(q, S′). The fragment Fv is adjacent to another active fragment F in
F(p, S) if and only if either there is an edge between v and F or F is adjacent to an
active fragment F ′ in F(q, S′) that is a subset of Fv .

The next proposition follows.

123

1230 J Comb Optim (2018) 36:1221–1242

Proposition 3.4 For an introduce node p with the child q and X p = Xq ∪ {v}, the
entry ps(p, s,A, β, γ, φ,ψ) = t if and only if ps(q, s′,A′, β ′, γ ′, φ′, ψ ′) = t for
some s′,A′, β ′, γ ′, φ′, and ψ ′ with the following conditions satisfied, where Av is the
element of A that contains v and A′

v = {A ∈ A′ : A ⊆ Av}:
– s = s′ + 1 if φ(Av) = t, s = s′ otherwise;
– A\{Av} = A′\A′

v;
– for each A ∈ A′\A′

v , it holds that β(A) = β ′(A), γ (A) = γ ′(A), and φ(A) =
φ′(A);

– β(Av) = 1 + ∑
A∈A′

v
β ′(A);

– γ (Av) = maxA∈A′
v
γ ′(A) if φ(Av) = t, γ (Av) = minA∈A′

v
γ ′(A) otherwise;

– φ(Av) = φ′(A) for each A ∈ A′
v;

– ψ(A, A′) = ψ ′(A, A′) for A, A′ ∈ A′\A′
v , ψ(Av, A′) = (∃u ∈ A′, {u, v} ∈

E) ∨ ∨
A∈A′

v
ψ ′(A, A′) for A′ ∈ A′\A′

v;

There are at most |Av||Av | = O(1) candidates forA′, at most n|Av | = O(nk+1) for β ′,
at most (n+2)|Av | = O(nk+1) for γ ′, and at most 2|A′

v |·|A′\A′
v | = O(1) for γ ′. Hence

there are only O(n2k+2) candidates of tuples (q, s′,A′, β ′, γ ′, φ′, ψ ′) satisfying the
conditions in Proposition 3.4.We can check in O(1) time whether a candidate satisfies
the conditions, and thuswe can compute the entryps(p, s,A, β, γ, φ,ψ) in O(n2k+2)

time.

Forget nodes Let p be a forget node with the child q and X p = Xq\{v}. First note
that Vp = Vq , and thus for any S ⊆ Vp, the sets of fragments F(p, S) and F(q, S)

are the same. For a set S ⊆ Vp, let Fv be the fragment containing v. Since v ∈ Xq ,
Fv is active in F(q, S). On the other hand, Fv is inactive in F(p, S) if and only if
Fv ∩ Xq = {v}, that is, Fv becomes inactive by forgetting v.

If Fv is active also in F(p, S), then the sets of active fragments in F(p, S) and
F(q, S) are the same. In such a case, we do not have to update any information about
the fragments.

If Fv ∩ Xq = {v}, then Fv is inactive in F(p, S), see Fig. 3. For an active fragment
F in F(p, S), Fv may be a largest or smallest inactive fragment adjacent to it. In such
a case, we may have to update the γ value of AF = F ∩ X p. Let F be an inactive
fragment in F(p, S) that is adjacent to Fv . If Fv ⊆ S and |Fv| < |F |, then Fv is bad.
If Fv � S and |Fv| > |F |, then F is bad.

From the observations above, we can conclude the following rule for updating the
table for forget nodes.

Proposition 3.5 For a forget node p with the child q and X p = Xq\{v}, the table
entry ps(p, s,A, β, γ, φ,ψ) = t if and only if either (1) ps(q, s,A\{A} ∪ {A ∪
{v}}, β, γ, φ,ψ) = t for some A ∈ A, or (2) ps(q, s,A ∪ {{v}}, β ′, γ ′, φ′, ψ ′) = t
for some β ′, γ ′, φ′, and ψ ′ with the following conditions satisfied:

– β ′({v}) ≥ γ ′({v}) if φ′({v}) = t; β ′({v}) ≤ γ ′({v}) if φ′({v}) = f;
– β = β ′|A, φ = φ′|A, ψ = ψ ′|

(A2)
– if ψ ′(A, {v}) = f for A ∈ A, then γ (A) = γ ′(A);
– if ψ ′(A, {v}) = t for A ∈ A, then γ (A) = max{γ ′(A), β ′({v})} if φ(A) = t and

γ (A) = min{γ ′(A), β ′({v})} if φ(A) = f.

123

J Comb Optim (2018) 36:1221–1242 1231

v

Xp = Xq \ {v}

Vp \ Xp = (Vq \ Xq) ∪ {v}
Fv

Fig. 3 Forgetting a vertex v

For the first case in Proposition 3.5, there are only |A| = O(1) candidates of
tuples. For the second case, there are options of function values only for the arguments
involving {v}. Thus there are only O(n2) candidates of tuples. The conditions of
each candidate can be checked in O(1) time, and thus we can compute the entry
ps(p, s, α, β, γ, φ,ψ) in O(n2) time.

Join nodes Let p be a join node with the children q and r with X p = Xq = Xr . From
the definition of tree decompositions, we can see that Vq ∩ Vr = X p and there is no
edge between Vq\X p and Vr\X p. Let S ⊆ Vp, S′ = S ∩ Vq , and S′′ = S ∩ Vr .

Observe that an inactive fragment in F(p, S) is an inactive fragment in exactly
one of F(q, S′) and F(r, S′′), and there is no other inactive fragment in F(q, S′) or
F(r, S′′). On the other hand, an active fragment in F(p, S) may be split into several
active fragments in F(q, S′) and F(r, S′′), see Fig. 4. Let H = (F ′,F ′′; E) be the
bipartite graph such that F ′ is the set of active fragments in F(q, S′), F ′′ is the set of
active fragments in F(r, S′′), and {F ′, F ′′} ∈ E for F ′ ∈ F ′ and F ′′ ∈ F ′′ if and only
if F ′ ∩ F ′′ �= ∅. Then, each active fragment F in F(p, S) corresponds to a unique
component C of H . That is, F = ⋃

F ′∈C F ′.
By considering the sizes and adjacency among the merged active fragments and the

unmodified inactive fragments, we can update a table entry for a join node as follows.

Proposition 3.6 For a join node p with the children q and r, the table entry
ps(p, s,A, β, γ, φ,ψ) = t if and only if ps(q, s′,A′, β ′, γ ′, φ′, ψ ′) = t and
ps(r, s′′,A′′, β ′′, γ ′′, φ′′, ψ ′′) = t for some s′, s′′, A′, A′′, β ′, β ′′, γ ′′, φ′, φ′′, ψ ′,
and ψ ′′ with the following conditions satisfied, where A′

A = {A′ ∈ A′ : A′ ⊆ A} and
A′′

A = {A′′ ∈ A′′ : A′′ ⊆ A}:
– s = s′ + s′′ − ∑

A∈A, φ(A)=t |A|;
– A′ and A′′ are refinements of A;
– for any A ∈ A, any A′ ∈ A′

A, and any A′′ ∈ A′′
A, there is a family {A1, . . . , At } ⊆

A′
A ∪ A′′

A such that A1 = A′, At = A′′, and Ai ∩ Ai+1 �= ∅ for 1 ≤ i < t;
– for A ∈ A, β(A) = ∑

A′∈A′
A
β ′(A′) + ∑

A′′∈A′′
A
β ′′(A′′) − |A|;

– φ(A) = φ′(A′) for all A′ ∈ A′
A and φ(A) = φ′′(A′′) for all A′′ ∈ A′′

A;
– for A ∈ A, if φ(A) = t, then γ (A) = max

({γ ′(A′) : A′ ∈ A′
A}∪ {γ ′′(A′′) : A′′ ∈

A′′
A}), otherwise γ (A) = min

({γ ′(A′) : A′ ∈ A′
A} ∪ {γ ′′(A′′) : A′′ ∈ A′′

A});

123

1232 J Comb Optim (2018) 36:1221–1242

Xq

Xr

Xp

Vq \ Xq

Vr \ Xr

Fig. 4 Joining at bags Xq and Xr . (An active fragment in F(p, S) is depicted.)

– for all A, B ∈ A,

ψ(A, B) =
⎛
⎝ ∨

A′∈A′
A, B′∈A′

B

ψ ′(A′, B ′)

⎞
⎠ ∨

⎛
⎝ ∨

A′′∈A′′
A, B′′∈A′′

B

ψ ′′(A′′, B ′′)

⎞
⎠ .

Under the conditions of Proposition 3.6. there are O(n) possible options for (s′, s′′),
O(nk+1) for (β ′, β ′′), O(n2k+2) for (γ ′, γ ′′), and O(1) for the remaining parameters.
Thus we can compute the entry ps(p, s, α, β, γ, φ,ψ) in O(n3k+4) time because the
validity of each tuple can be checked in O(1) time. ��

Note that our algorithm for graphs of treewidth at most k runs in nO(k) time. Such
an algorithm is called an XP algorithm, and an FPT algorithm with running time
f (k) · nc is more preferable, where f is an arbitrary computable function and c is a
fixed constant. It would be interesting if one can show that such an algorithm exists
(or does not exist under some complexity assumption).

3.1 Weighted graphs

For a vertex-weighted graph G = (V, E) with a weight function w : V → Z+, a
set S ⊆ V is a weighted safe set of weight

∑
s∈S w(s) if for each component C of

G[S] and each component D of G[V \S] with an edge between C and D, it holds
that w(C) ≥ w(D). Bapat et al. (2016) showed that finding a minimum (connected)
weighted safe set is weakly NP-hard even for stars. Here we note that the problem is
not strongly NP-hard unless P = NP. Let W = ∑

v∈V w(v). Our dynamic program
above works for the weighted version if we extend the ranges of parameters s, β, and
γ by including {1, . . . ,W }. The running time becomes polynomial in W .

123

J Comb Optim (2018) 36:1221–1242 1233

Theorem 3.7 For a vertex weighted graph of bounded treewidth, a weighted (con-
nected) safe set of the minimum weight can be found in pseudo-polynomial time.

4 Safe sets in interval graphs

In this section, we present a polynomial-time algorithm for finding a minimum safe
set and a minimum connected safe set in an interval graph.

A graph is an interval graph if it can be represented as the intersection graph of
intervals on a line. Given a graph, one can determine in linear time whether the graph
is an interval graph, and if so, find a corresponding interval representation in the same
running time (Booth and Lueker 1976).

Theorem 4.1 For an n-vertex interval graph, a minimum safe set and a minimum
connected safe set can be found in time O(n8).

Proof LetG = (V, E) be a given interval graph. As we can deal with each component
of G separately, we assume that G is connected. The algorithm uses the dynamic
programming technique on an interval representation ofG. We assume that its vertices
(i.e. intervals)v1, . . . , vn are ordered increasingly according to their left ends, andwrite
Xi = {v1, . . . , vi }.

At each step i of the algorithm, we want to store all subsets S ⊆ Xi which can
potentially be completed (with vertices from V \Xi) into a safe set. The number of such
sets can be exponential: we thus define a notion of signature, and store the signatures
of the sets instead of storing the sets themselves. The cost of this storage is bounded
by the number of possible signatures, which is polynomial in n.

We will then prove that all possible signatures of sets at step i can be deduced from
the set of signatures at step i−1. The cardinality of aminimumsafe set (and aminimum
connected safe set) can finally be deduced from the set of signatures stored during the
last step. We can easily modify the algorithm so that it also outputs a minimum set.

We define the signature of S at step i as the 8-tuple that consists of the following
items (see Fig. 5):

1. The size of S.
2. The vertex vS

r of S with the most neighbors in V \Xi .

3. The vertex v S̄
r of S̄ := Xi\S with the most neighbors in V \Xi .

4. The size of Sr (the rightmost component of S).
5. The size of S̄r (the rightmost component of S̄).
6. The largest size of a component of S̄\S̄r adjacent with Sr .
7. The smallest size of a component of S\Sr adjacent with S̄r .
8. A Boolean value indicating whether S is connected.

Assuming that we know the signature of a set S at step i , we show how to obtain
the signature at step i + 1 of (a) S′ = S and (b) S′ = S ∪ {vi+1}. With this procedure,
all signatures of step i + 1 can be obtained from all signatures at step i .

1. The size of S′ (at step i : |S|).
(a) |S|.

123

1234 J Comb Optim (2018) 36:1221–1242

Fig. 5 The dynamic programming technique applied to an interval representation

(b) |S| + 1.
2. The vertex of S′ with the most neighbors in V \Xi+1 (at step i : vS

r).
(a) vS

r .
(b) The one of vS

r and vi+1 which has the most neighbors in V \Xi+1.

3. The vertex of S̄′ := Xi+1\S′ with the most neighbors in V \Xi+1 (at step i : v S̄
r).

(a) The one of v S̄
r and vi+1 which has the most neighbors in V \Xi+1.

(b) v S̄
r .

4. The size of the rightmost component S′
r of S

′ (at step i : |Sr |).
(a) |Sr |.
(b) |Sr | + 1 if vi+1 and vS

r are adjacent, and 1 otherwise (new component). In the
latter case, we discard the signature if |Sr | is strictly smaller than the largest
size of a component of S̄\S̄r adjacent with Sr at step i .

5. The size of the rightmost component S̄′
r of S̄

′ (at step i : |S̄r |).
(a) 1 if vi+1 and v S̄

r are not adjacent (new component), and |S̄r | + 1 otherwise. In
the latter case, we discard the signature if |S̄r | is strictly larger than the smallest
size of a component of S\Sr adjacent with S̄r at step i .

(b) |S̄r |.
6. The largest size of a component of S̄′\S̄′

r adjacent with S′
r (at step i : c).

(a) c if no new component of S̄′ was created (see 5.), and max{c, |S̄′
r |} otherwise.

(b) c if no new component of S′ was created (see 4.), and −∞ otherwise.
7. The smallest size of a component of S′\S′

r adjacent with S̄′
r (at step i : c).

(a) c if no new component of S̄′ was created (see 5.), and +∞ otherwise.
(b) c if no new component of S′ was created (see 4.), and min{c, |S′

r |} otherwise.
8. A Boolean variable indicating whether S′ is connected (at step i : b).

(a) b
(b) t if |S| = 0, b if vi+1 and vS

r are adjacent, and f otherwise.

When all signatures at step n have been computed, we use the additional infor-
mation that S and S̄ cannot be further extended to discard the remaining signatures
corresponding to non-safe sets. That is, we discard a signature if |Sr | < |S̄r |, or |Sr | is
strictly smaller than the largest size of a component of S̄\S̄r adjacent to it, or |S̄r | + 1
is strictly larger than the smallest size of a component of S\Sr adjacent to it.

The minimum sizes of a safe set and a connected safe set can be obtained from the
remaining signatures. For each step i , there are O(n7) signatures. From a signature
for step i , we can compute the corresponding signature for step i + 1 in O(1) time.
Therefore, the total running time is O(n8). ��

123

J Comb Optim (2018) 36:1221–1242 1235

5 Fixed-parameter tractability

In this section, we show that the problems of finding a safe set and a connected safe set
of size at most s is fixed-parameter tractable when the solution size s is the parameter.
For the standard concepts in parameterized complexity, see the recent textbook (Cygan
et al. 2015).

We first show that graphs with small safe sets have small treewidth. We then show
that for any fixed constants s the property of having a (connected) safe set of size at
most s can be expressed in the monadic second-order logic on graphs. Then we use the
well-known theorems by Bodlaender (1996) and Courcelle (1992) to obtain an FPT
algorithm that depends only linearly on the input size.

Lemma 5.1 Let G = (V, E) be a connected graph. If tw(G) ≥ s2−1, then s(G) ≥ s.

Proof It is known that every graph G has a path of tw(G) + 1 vertices as a sub-
graph (Bodlaender 1993). Thus tw(G) ≥ s2 − 1 implies that G has a path of s2

vertices as a subgraph.
Let P be a path of s2 vertices in G, and let S ⊆ V be an arbitrary set of size less

than s. By the pigeon-hole principle, there is a subpath Q of P such that |Q| ≥ s
and S ∩ V (Q) = ∅. Hence there is a component B of G[V \S] with V (Q) ⊆ B.
Since G is connected there is a component A of G[S] adjacent to B. Now we have
|A| ≤ |S| < s ≤ |Q| ≤ |B|, which implies that S is not a safe set. ��

The syntax of the monadic second-order logic of graphs (MS2) includes (i) the
logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices, edges, vertex sets,
and edge sets, (iii) the quantifiers ∀ and ∃ applicable to these variables, and (iv) the
following binary relations:

– v ∈ U for a vertex variable v and a vertex set variable U ;
– e ∈ F for an edge variable e and an edge set variable F ;
– inc(e, v) for an edge variable e and a vertex variable v, where the interpretation is
that e is incident with v;

– equality of variables.

Lemma 5.2 For a fixed constant s, the property of having a safe set of size at most s
can be expressed in MS2.

Proof For two sets U and W of vertices, we can express the adjacency between them
as:

adjacent(U,W) := ∃e ∈ E, u ∈ U, w ∈ W (inc(e, u) ∧ inc(e, w)).

For a setU of vertices, the following formula implies that the subgraph induced by
U is connected:

connected(U) := ∀X ⊆ U (X �= ∅ ∧ X �= U) �⇒ adjacent(X,U\X).

123

1236 J Comb Optim (2018) 36:1221–1242

By testing maximality also, the following formula implies that W is the vertex set of
a component of the subgraph induced by U .

component(U,W) := (W ⊆ U) ∧ connected(W)

∧ ¬(∃u ∈ U, connected(W ∪ {u})).

To express the formula that a vertex set is a safe set, we need to compare the sizes
of two sets. In general, MS2 is not capable of measuring the size of a set. However,
for a fixed constant s, we can express the relation |S| = s (and thus |S| ≤ s and
|S| ≥ s also) for any set S in MS2. For example, |S| = 2 is equivalent to the formula
∃v1, v2 ∈ S (v1 �= v2 ∧ ¬(∃v3 ∈ S (v3 �= v1 ∧ v3 �= v2))). This obviously extends to
|S| = s for any fixed s. Using such a formula, we can express the relation |Q| ≥ |W |
for a set Q with |Q| ≤ s and for any setW as follows:

∨
s′≤s(|Q| ≥ s′∧|W | ≤ s′−1).

Now a set S is a safe set of size at most s if and only if it satisfies the following formula:

s-safe(S) := (|S| ≤ s) ∧ (∀Q ⊆ S,∀W ⊆ V \S, (component(S, Q) ∧
component(V \S,W) ∧ adjacent(Q,W) �⇒ |Q| ≥ |W |)).

This implies the lemma as s(G) ≤ s if and only if G models “∃S, s-safe(S).” ��
Corollary 5.3 For a fixed constant s, the property of having a connected safe set of
size at most s can be expressed in MS2.

Theorem 5.4 The problems of finding a safe set and a connected safe set of size
at most s are fixed-parameter tractable when the solution size s is the parameter.
Furthermore, the running time depends only linearly on the input size.

Proof Let G be a given graph. Since we can handle the components separately, we
assume that G is connected. We first check whether tw(G) < (s + 1)2 − 1 in O(n)

time by Bodlaender’s algorithm (Bodlaender 1996). If not, Lemma 5.1 implies that
s(G) ≥ s + 1. Otherwise, Bodlaender’s algorithm gives us a tree decomposition of
G with width less than (s + 1)2 − 1. Courcelle’s theorem (Courcelle 1992) says that
it can be checked in linear time whether a graph satisfies a fixed MS2 formula if the
graph is given with a tree decomposition of constant width (see also Arnborg et al.
1991). Therefore, Lemma 5.2 and Corollary 5.3 imply the theorem. ��

5.1 Relationships to other structural graph parameters

As we showed in Lemma 5.1, the treewidth of a graph is bounded by a constant if
it has constant safe number. Here we further discuss the relationship to other well-
studied graph parameters: tree-depth and vertex cover number. As bounding these
parameters is more restricted than bounding treewidth, more problems can be solved
efficiently when the problems are parameterized by tree-depth or vertex cover number
(see Fellows et al. 2008; Gutin et al. 2015). In the following, we show that the safe
number lies between these two parameters. This implies that parameterizing a problem
by safe number may give a finer understanding of the parameterized complexity of
the problem.

123

J Comb Optim (2018) 36:1221–1242 1237

Tree-depth The tree-depth (Nešetřil and deMendez 2012) [also known as elimination
tree height (Pothen 1988) and vertex ranking number (Bodlaender et al. 1998)] of a
connected graph G is the minimum depth of a rooted tree T such that T ∗ contains G
as a subgraph, where T ∗ is the supergraph of T with the additional edges connecting
all comparable pairs in T . We can easily see that the tree-depth of a graph is at least
its treewidth. It is known that a graph has constant tree-depth if and only if it has
a constant upper bound on the length of paths in it (Nešetřil and de Mendez 2012).
Hence the proof of Lemma 5.1 implies the following relation.

Lemma 5.5 The tree-depth of a connected graph is bounded by a constant if it has
constant safe number.

The converse of the statement above is not true in general. The complete k-ary tree of
depth d is the rooted tree such that each non-leaf vertex has k children and the distance
between the root and each leaf is d. The complete k-ary tree of depth 2 has tree-depth
2 and safe number k.

Vertex cover number A set C ⊆ V (G) is a vertex cover of a graph G if each edge in
G has at least one end in C . A connected vertex cover is a vertex cover that induces
a connected subgraph. The vertex cover number of a graph is the size of a minimum
vertex cover in the graph. We can see that C is a vertex cover if and only if each
component of G\C has size 1. Thus a vertex cover is a safe set, and the following
relation follows.

Lemma 5.6 The safe number of a graph is at most its vertex cover number.

Again the converse is not true. Consider the graph obtained from the star graph K1,k
by subdividing each edge. It has a (connected) safe set of size 2, while its vertex cover
number is k.

Note that Lemma 5.6 and Theorem 5.4 together imply that the problem of finding a
(connected) safe set is fixed-parameter tractable when parameterized by vertex cover
number.

6 Hardness results

A graph is chordal if it has no induced cycle of length 4 or more. Trees and interval
graphs form the most well-known subclasses of the class of chordal graphs. A natural
questionwould be deciding the complexity of the problems on chordal graphs. Another
question is about planar graphs. As the original motivation of the problem was from a
facility location problem, it would be natural to study the problem on planar graphs.
In this section, we show that both cases are hard, even for some of their subclasses.
We also discuss the approximation hardness of the problem.

The problem of deciding whether s(G) ≤ k (or cs(G) ≤ k) is clearly in NP. Thus
in the next subsections we only show NP-hardness.

123

1238 J Comb Optim (2018) 36:1221–1242

6.1 Split graphs

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph
is a set of pairwise nonadjacent vertices. A graph G = (V, E) is a split graph if V
can be partitioned into a clique C and an independent set I . We denote such a split
graph by (C, I ; E). In this subsection, we show that the problem of deciding whether
a split graph has a safe set (or a connected safe set) of size at most k is NP-complete.
This also implies the NP-completeness for chordal graphs because a split graph cannot
have an induced cycle of length 4 or more.

Lemma 6.1 Every connected split graph G = (C, I ; E) with two or more vertices
has a minimum safe set S such that S ⊆ C.

Proof First observe that s(G) ≤ |C | since C itself is a safe set. If s(G) = |C |, then
C is the desired safe set. In the following, we assume that s(G) < |C |.

Let S be a minimum safe set of G that minimizes |S ∩ I |. Suppose to the contrary
that S includes a vertex u ∈ I . Let v ∈ C\S and S′ := S\{u} ∪ {v}.

Let X and X ′ be the unique components of G[V (G)\S] and G[V (G)\S′] that
contains vertices of C , respectively. (Such components exists since |S′| = |S| < |C |.)
All other components of G[V (G)\S] and G[V (G)\S′] are of size 1. Observe that X ′
is obtained from X by first removing v with its neighbors in X ∩ I that have v as the
unique neighbor in X ∩ C , and then adding u if u has a neighbor in (X ∩ C)\{v}.
Hence, X ′ ⊆ X ∪ {u}\{v} holds.

Observe that S is adjacent to X : it is trivial if S includes a vertex in C ; otherwise,
X contains C and is a dominating set of G. Since S is a safe set, |S| ≥ |X | holds. Thus
we have that |S′| = |S| ≥ |X | ≥ |X ′|. This implies that S′ is a minimum safe set of
G. This contradicts the choice of S as |S′ ∩ I | = |S ∩ I | − 1. ��
Corollary 6.2 For every split graph G, s(G) = cs(G).

Now we reduce Clique to our problem. In the problem Clique, we are given a
graph H and an integer q and asked whether H contains a clique of size at least q.
Clique is one of Karp’s 21 NP-complete problems (Karp 1972). Note that Clique
is NP-complete even if 2q < |V (H)| since we can add a long path to H without
changing the maximum clique size.

Theorem 6.3 The problemof deciding s(G) ≤ k isNP-complete even for split graphs.

Proof Let (H, q) be an instance of Clique with 2q < |V (H)|. We construct an
instance (G, k) of our problem as follows.

Let n = |V (H)| andm = |E(H)|.We set k = n+m−q−(q
2

)
. LetC = V (H)∪W ,

where W is a set of k − q new vertices. If k − q is not positive, then 2q < n implies
that m <

(q
2

)
and thus (H, q) is a no-instance. Thus we assume k − q is positive. Let

I = E(H) ∪ P , where P is a set of k(k − q) new vertices. We set V (G) = C ∪ I .
That is, we use the edges of H as vertices of G. In G, each {u, v} ∈ E(H) is adjacent
to u and v. Each w ∈ W is adjacent to k vertices in P , and no two vertices inW share
neighbors in P . Finally we make C a clique. Note that I is an independent set, and
thus G is a split graph. See Fig. 6.

123

J Comb Optim (2018) 36:1221–1242 1239

C

I

V (H)

E(H)

· · ·

· · · · · ·

W

P

V (H)

E(H)
H

Fig. 6 The reduction for split graphs

Now we show that H has a clique of size at least q if and only if G has a safe set
of size at most k.

To show the only-if part, assume that H has a clique Q of size at least q. Let Q′ ⊆ Q
be a clique of size exactly q. Let S = Q′ ∪ W . The set S has size k. We show that S
is a safe set. Let X be the unique component of G[V (G)\S] that contains vertices of
C . It suffices to show that |X | ≤ k. It holds that

X ∩ I = I\{v ∈ I : NG(v) ⊆ S} = E(H)\E(H [Q′]).

Since Q′ is a clique of size q, we have |X ∩ I | = m−(q
2

)
. As |X ∩C | = |V (H)\Q′| =

n − q, it holds that |X | = |X ∩ C | + |X ∩ I | = n + m − q − (q
2

) = k.
To show the if part, assume that G has a safe set S of size at most k. By Lemma 6.1,

we can assume that S ⊆ C . Let S′ be a set of size exactly k satisfying that S ⊆ S′ ⊆ C .
(Recall that |C | = |V (H)| + |W | = n + k − q ≥ k.) Obviously S′ is a safe set. If
some w ∈ W does not belong to S′, then some component of G[V (G)\S′] contains
NG [w] and thus has size at least k + 1. This contradicts that S′ is a safe set. Hence
W ⊆ S holds. Let Q = S′ − W . Since |W | = k − q, we have |Q| = q. Let X be the
unique component of G[V (G)\S′] that contains vertices of C . Since S′ is a safe set,
|X | ≤ k. As before, we have |X | = |X ∩ C | + |X ∩ I | = n − q + m − |E(H [Q])|,
and thus |E(H [Q])| ≥ (q

2

)
. This implies that Q is a clique (of size q). ��

By Lemma 6.1, s(G) = cs(G) holds for every split graph G. Thus we have NP-
completeness also for the connected safe set problem.

Corollary 6.4 The problem of deciding cs(G) ≤ k is NP-complete even for split
graphs.

6.2 Planar bipartite graphs

In Connected Vertex Cover, we are given a graph H and an integer k < |V (H)|,
and our goal is to decide whether H has a connected vertex cover of size at most k.
It is known that Connected Vertex Cover is NP-complete for connected planar
graphs of maximum degree 4 (Garey and Johnson 1977). We reduce this problem to
ours for connected planar bipartite graphs of maximum degree 7.

We first show that the problem is NP-hard even if k is relatively small.

Lemma 6.5 Connected Vertex Cover is NP-complete for connected planar
graphs G of maximum degree at most 6, even if 4k − 2 < |V (G)|.

123

1240 J Comb Optim (2018) 36:1221–1242

H
v

2k − degH(v) − 2G

Fig. 7 The reduction for planar bipartite graphs

Proof In the reduction by Garey and Johnson (1977), the obtained graph H has a
vertex v with a degree-1 neighbor. We can see that there is a minimum connected
vertex cover of H that contains v.

Let d be the integer such that (5d−1 − 1)/12 ≤ |V (H)| < (5d − 1)/12, and T be
the complete 5-ary tree of depth d, which is with (5d+1 − 1)/4 vertices. Observe that
the unique minimum connected vertex cover of T includes all inner vertices and is of
size (5d − 1)/4. Note that |V (T)| is bounded by a polynomial in |V (H)|. To see this,
observe that |V (H)| ≥ 2 implies d ≥ 3. Thus we have

|V (T)|
3 · |V (H)| ≤ 5d+1 − 1

5d−1 − 1
= 52 + 52 − 1

5d−1 − 1
≤ 52 + 1.

This implies that |V (T)| ≤ 78 · |V (H)|.
Now take the disjoint union of H and T , and then add an edge between v and the

root of T . We call the obtained graph G. This graph G has maximum degree at most 6.
From the arguments above, we can see that H has a connected vertex cover of size at
most k if and only ifG has a connected vertex cover of size atmost k′ := k+(5d−1)/4.
Now we can see that 4k′ − 2 < |V (G)| as follows:

4k′ − 2 < 4k + 5d < 4|V (H)| + 5d = |V (H)| + 3|V (H)| + 5d

< |V (H)| + (5d − 1)/4 + 5d = |V (H)| + (5d+1 − 1)/4 = |V (G)|.

This implies the lemma. ��

Let H be a connected planar graph of maximum degree at most 6, and let k be an
integer such that 4k−2 < |V (H)|. We may also assume that k ≥ 5 because otherwise
the problem can be solved in polynomial time by an exhaustive search. First subdivide
each edge in E(H) once. Then, for each v ∈ V (H), join v to one endpoint of a path
Pv of 2k − degH (v) − 2 new vertices. We call the obtained graph G. See Fig. 7. Note
that G is a connected planar bipartite graph of maximum degree at most 7. For each
vertex v ∈ V (H), let Gv denote the subgraph of G induced by NG[v] ∪ V (Pv). Note
that |V (Gv)| = 2k − 1 for every v ∈ V (H).

Lemma 6.6 If k ≥ 5, then the following are equivalent:

123

J Comb Optim (2018) 36:1221–1242 1241

(i) H has a connected vertex cover of size k;
(ii) G has a connected safe set of size 2k − 1;
(iii) G has a safe set of size 2k − 1.

Proof To show that (i) implies (ii), assume thatC is a connected vertex cover of H such
that |C | = k. Let F be the set of edges in a spanning tree of H [C], and let SF ⊆ V (G)

be the set of corresponding subdivision vertices. We claim that S := C ∪ SF is a
desired connected safe set of G. Since S is connected and |S| = 2k − 1, it suffices
to show that G − S has no component of size at least 2k. Since C is a vertex cover,
no two vertices in V (H) are in the same component of G[V (G)\S]. This implies that
each component of G[V (G)\S] is contained in Gv for some v ∈ V (H) and thus has
size at most 2k − 1.

Now we show that (ii) implies (i). Let S be a connected safe set of G with |S| =
2k − 1. Let S′ be the set of vertices v ∈ V (H) such that S intersects {v} ∪ V (Pv).
Since S is connected in G, S′ is connected in H . Furthermore, |S′| ≤ k holds since
the connectedness of G[S] implies that |S| ≥ |S′| + |S′| − 1. Now it suffices to show
that S′ is a vertex cover of H . Suppose to the contrary that H [V (H)\S′] has an edge
{u, v}. That is, S∩ ({u}∪ Pu ∪{v}∪ Pv) = ∅. Letw ∈ V (G) be the subdivision vertex
corresponding to the edge {u, v}. Observe thatw /∈ S also holds since otherwise {w} is
a component of G[S] adjacent to the component of G[V (G)\S] containing Pu . Thus
G[V (G)\S] has a component that contains {u}∪ Pu ∪{v}∪ Pv ∪{w}. This component
has size at least

(2k − degH (u) − 2) + (2k − degH (v) − 2) + 3 ≥ 4k − 13 > k.

This contradicts that S is a safe set. Thus S′ is a vertex cover of H .
By definition, (ii) implies (iii). To show that (iii) implies (ii), let S be a safe set of

G such that |S| = 2k − 1. A vertex of G can belong to at most two subgraphs Gv and
Gv′ for some v, v′ ∈ V (H). Since 4k − 2 < |V (H)|, there is a vertex v ∈ V (H) such
that S does not intersect Gv . Hence, G[V (G)\S] has a connected component D of
size at least |V (Gv)| = 2k − 1. If S is not connected, then each component of G[S]
has size less than 2k − 1. Since G is connected, some component of G[S] is adjacent
to D. This contradicts that S is a safe set. ��
Theorem 6.7 The problems of deciding s(G) ≤ k and of deciding cs(G) ≤ k are
NP-complete even for planar bipartite graphs of maximum degree at most 7.

6.3 Approximation hardness

Fujita et al. (2016) presented a reduction that transforms an instance (G, k) of Inde-
pendent Set to an instance (G ′, |V (G)|−k+1) of Safe Set andConnected Safe
Set. This can be seen as a reduction from an instance (G, k′) of Vertex Cover to
an instance (G ′, k′ + 1) of Safe Set and Connected Safe Set. It is known that
approximating the vertex cover number within a factor of 1.3606 is NP-hard (Dinur
and Safra 2005). Since the reduction above is gap-preserving, we have the following
approximation hardness for our problems.

123

1242 J Comb Optim (2018) 36:1221–1242

Corollary 6.8 It is NP-hard to approximate the safe number and the connected safe
number within a factor of 1.3606.

References

Arnborg S, Lagergren J, SeeseD (1991) Easy problems for tree-decomposable graphs. JAlgorithms 12:308–
340

Bapat RB, Fujita S, Legay S, Manoussakis Y, Matsui Y, Sakuma T, Tuza Z (2016) Safe sets, network
majority on weighted trees. Networks (To appear).

Bodlaender HL (1993) On linear time minor tests with depth-first search. J Algorithms 14:1–23
Bodlaender HL (1996) A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM

J Comput 25:1305–1317
Bodlaender HL, Deogun JS, Jansen K, Kloks T, Kratsch D, Müller Haiko, Tuza Z (1998) Rankings of

graphs. SIAM J Discrete Math. 11:168–181
Booth KS, Lueker GS (1976) Testing for the consecutive ones property, interval graphs, and graph planarity

using PQ-tree algorithms. J Comput Syst Sci 13:335–379
Courcelle B (1992) The monadic second-order logic of graphs III: tree-decompositions, minor and com-

plexity issues. Theor Inform Appl 26:257–286
Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)

Parameterized algorithms. Springer, Berlin
Dinur I, Safra S (2005) On the hardness of approximating minimum vertex cover. Ann Math 162:439–485
Fellows MR, Lokshtanov D, Misra N, Rosamond FA, Saurabh S (2008). Graph layout problems param-

eterized by vertex cover. In: ISAAC 2008, volume 5369 of Lecture notes in computer science, pp
294–305

Fujita S, MacGillivray G, Sakuma T (2016) Safe set problem on graphs. Discrete Appl Math 215:106–111
Garey MR, Johnson DS (1977) The rectilinear Steiner tree problem is NP-complete. SIAM J Appl Math

32:826–834
GutinG, JonesM,WahlströmM(2015) Structural parameterizations of themixed chinese postman problem.

In: ESA 2015, volume 9294 of Lecture notes in computer science, pp 668–679
Karp RM (1972) Reducibility among combinatorial problems. In: Proceedings of a symposium on the

complexity of computer computations. The IBM research symposia series, pp 85–103
Kloks T (1994) Treewidth, computations and approximations, volume 842 of Lecture notes in computer

science. Springer
Nešetřil J, de Mendez PO (2012) Sparsity: graphs, structures, and algorithms, volume 28 of Algorithms and

combinatorics. Springer, Berlin
Pothen A (1988) The complexity of optimal elimination trees. Technical Report CS-88-13, Pennsylvania

State University

123

	Safe sets in graphs: Graph classes and structural parameters
	Abstract
	1 Introduction
	2 Safe sets in trees
	3 Safe sets in graphs of bounded treewidth
	3.1 Weighted graphs

	4 Safe sets in interval graphs
	5 Fixed-parameter tractability
	5.1 Relationships to other structural graph parameters

	6 Hardness results
	6.1 Split graphs
	6.2 Planar bipartite graphs
	6.3 Approximation hardness

	References

