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Abstract We investigate special cases of the quadratic minimum spanning tree prob-
lem (QMSTP) on a graphG = (V, E) that can be solved as a linearminimum spanning
tree problem.We give a characterization of such problemswhenG is a complete graph,
which is the standard case in the QMSTP literature. We extend our characterization
to a larger class of graphs that include complete bipartite graphs and cactuses, among
others. Our characterization can be verified in O(|E |2) time. In the case of complete
graphs and when the cost matrix is given in factored form, we show that our charac-
terization can be verified in O(|E |) time. Related open problems are also indicated.

Keywords Minimum spanning tree · Quadratic 0–1 problems · Quadratic minimum
spanning tree · Polynomially solvable cases · Linearization

1 Introduction

The minimum spanning tree problem (MSTP) is well studied in the combinatorial
optimization literature.Ageneralization of this problem, called thequadraticminimum
spanning tree problem (QMSTP), received considerable attention from the research
community recently. Some of these papers focus on exact algorithms (Assad and Xu
1992; Pereira et al. 2015a, b) and lower bounds (Pereira et al. 2013, 2015b; Rostami
and Malucelli 2015), while the majority of the published works deal with heuristic
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algorithms (Cordone and Passeri 2012; Fu and Hao 2015; Lozano et al. 2014; Öncan
andPunnen 2010; Palubeckis et al. 2010; Sundar andSingh 2010; Zhou andGen 1998).
Isolated results on some theoretical properties of the problemare also available. Special
cases of QMSTP studied in the literature include multiplicative objective functions
(Goyal et al. 2011; Kern andWoeginger 2007;Mittal and Schulz 2013), spanning trees
with conflict pair constraints (Darmann et al. 2011; Zhang et al. 2011), and spanning
tree problemswith one quadratic term (Buchheim andKlein 2014; Fischer and Fischer
2013). A multiobjective version of QMSTP (Maia et al. 2013, 2014) and a version
with fuzzy costs (Gao and Lu 2005) have also been investigated in the literature. Some
polynomially solvable special cases of QMSTP are discussed in Ćustić et al. (2016),
along with various complexity results.

Let G = (V, E) be a simple graph such that |V | = n and E = {1, 2, . . . ,m}. For
each (e, f ) ∈ E × E a cost q(e, f ) is given. Let F be the family of all spanning trees
of G and Q be an m × m matrix, with its (i, j)-th entry denoted by q(i, j). The cost
Q(T ) of each T ∈ F is given by

Q(T ) =
∑

e∈T

∑

f ∈T
q(e, f ).

The notation e ∈ T is used to indicate that e belongs to the edge set of T . Then the
QMSTP is to find a spanning tree T in F such that Q(T ) is as small as possible. The
QMSTP is well known to be strongly NP-hard. In fact, it is NP-hard even if the square
matrix Q is of rank one (Punnen 2001) or the underlying graph is a wheel (Ćustić
et al. 2016).

Similarly, for each T ∈ F , letC(T ) = ∑
e∈T c(e), where c(e) is a given cost of edge

e ∈ E . Given a costmatrix Q, the quadratic spanning tree linearization problem (QST-
LP) is to determine if there exists a linear cost vectorC = (c(1), c(2), . . . , c(m)) such
that Q(T ) = C(T ) for all T ∈ F . If the answer to this decision problem is ‘yes’, the
quadratic costmatrix Q is said to be linearizable andC is called a linearization of Q. In
the literature, QMSTP is considered predominately in the context of a complete graph
G. In that case, |F | is equal to nn−2, and henceQST-LP is a non-trivial problem. In fact,
there is no immediate direct way to test if QST-LP belongs to NP. Testing membership
in NP is straightforward for most NP-complete versions of combinatorial optimization
problems. This makes investigation of QST-LP even more interesting.

The linearization problem for the quadratic assignment problem (QAP)was consid-
ered by Kabadi and Punnen (2011), Adams andWaddell (2014) and Çela et al. (2016).
The special case of the Koopmans–Beckman QAP linearization problem was studied
by Bookhold (1990), Punnen and Kabadi (2013) and Çela et al. (2016). Although fast
algorithms that recognize whether a QAP instance is linearizable exist, only for the
case of symmetric Koopmans–Backman QAP a simple closed form expression that
characterizes linearizable instances is known (see Kabadi and Punnen 2011; Punnen
and Kabadi 2013). The linearization problem for the bilinear assignment problem was
studied by Ćustić et al. (2017) and for the quadratic travelling salesman problem was
studied by Punnen and Woods (2017).

In this paper, we provide a characterization of linearizable instances of QMSTP in
the standard context of complete graphs (Sect. 3). Our characterization can be tested
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in O(m2) time, and unlike the QAP linearization results, it is given as a simple closed
form condition on the matrix Q. Also, an O(m) algorithm for recognizing an m × m
sum matrix represented in factored form is given. This leads to an O(m) algorithm to
test if a symmetricmatrix Q is linearizablewhen represented in factored form (Sect. 5).
As a byproduct of these results, we have new polynomially solvable special cases of
the QMSTP. Further, we extend the characterization beyond complete graphs, e.g., for
complete bipartite graphs, cactuses etc (Sect. 4). Concluding remarks are presented in
Sect. 6 along with some open problems.

2 Preliminaries

In this section we present some definitions and basic facts about the QMSTP that one
used later in the paper.

Let Mm×m be the vector space of all real valued m × m matrices. The set of
linearizable quadratic cost matrices for QMSTP on a given graph with m edges forms
a subspace of Mm×m . As a consequence we have the following.

Observation 1 Let Q1 and Q2 be two cost matrices for the QMSTP on a graph G.
If Q1 and Q2 are linearizable, then αQ1 + βQ2 is also linearizable for any scalars
α and β. Furthermore, if C1 is a linearization of Q1 and C2 is a linearization of Q2,
then αC1 + βC2 is a linearization of αQ1 + βQ2.

A square matrix A is said to be a skew-symmetric matrix if AT = −A.

Observation 2 If Q is a cost matrix for the QMSTP on a graph G, A is a skew-
symmetricmatrix and D is a diagonalmatrix, all of the same size, then Q is linearizable
if and only if Q + A + D is linearizable.

It may be noted that, if Q is skew-symmetric, then Q(T ) = 0 for any spanning tree
T . Thus a skew-symmetric matrix is linearizable for any graph G.

Observation 3 If Q is a cost matrix for the QMSTP on a graph G. Then Q is lin-
earizable if and only if 1

2 (Q + QT ) is linearizable. Furthermore, C is a linearization
of Q if and only if C is a linearization of 1

2 (Q + QT ).

Proof Note that Q = 1
2 (Q−QT )+ 1

2 (Q+QT ). As 1
2 (Q−QT ) is skew-symmetric, the

result follows fromObservations 1, 2, and the fact that the null-vector is a linearization
of a skew-symmetric matrix. ��

Note that 12 (Q+QT ) is a symmetricmatrix. Thus in view ofObservation 3 hereafter
we assume without loss of generality that the cost matrix Q is symmetric.

Definition 4 An n1 × n2 matrix H = (h(i, j)) is called a sum matrix if there
exist vectors a = (a(1), a(2), . . . , a(n1)) and b = (b(1), b(2), . . . , b(n2)) such that
h(i, j) = a(i) + b( j) for all i = 1, . . . , n1 and j = 1, . . . , n2. A square matrix
is called a weak sum matrix if the relation above is not necessarily satisfied for the
diagonal elements.
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Note that if an n×n square summatrix H = (h(i, j)) is symmetric, then h(i, j) =
a(i)+a( j) for all i, j = 1, 2, . . . , n, for some vector a = (a(1), . . . , a(n)). Similarly,
if an n × n square weak sum matrix H = (h(i, j)) is symmetric, then h(i, j) =
a(i) + a( j) for all i, j = 1, 2, . . . , n, i �= j , for some vector a = (a(1), . . . , a(n)).

Furthermore, given an n1×n2 (weak) summatrix H = (h(i, j)), it takes O(n1+n2)
time to find two vectors a = (a(1), a(2), . . . , a(n1)), b = (b(1), b(2), . . . , b(n2))
such that h(i, j) = a(i) + b( j) ∀i, j (i �= j for the weak sum case). For example, we
can set a(1) to an arbitrary value and then each of a(i)’s and b(i)’s can be calculated
in a constant time. In the case when H is a symmetric square matrix, the vector
ā = (ā(1), ā(2), . . . , ā(n)) such that h(i, j) = ā(i) + ā( j) is produced by setting
ā(i) = (a(i) + b(i))/2 ∀i .

3 Characterization of linearizable QMSTP on Kn

In the QMSTP literature, the default underlying graph structure is a complete graph
Kn . In such a setting, we show that a symmetric cost matrix is linearizable if and only
if it is a symmetric weak sum matrix.

Theorem 5 A symmetric cost matrix Q of the QMSTP on a complete graph Kn is
linearizable if and only if it is a symmetric weak sum matrix. Further, a linearization
of a linearizable symmetric matrix Q can be identified by a closed form expression.

Proof First assume that Q = (q(e, f )) is a weak sum matrix, i.e., there exist a(e),
e = 1, . . . ,m, such that q(e, f ) = a(e) + a( f ) for all e �= f . Then we have

Q(T ) =
∑

e∈T

∑

f ∈T
q(e, f ) =

∑

e∈T

∑

f ∈T
f �=e

(a(e) + a( f )) +
∑

e∈T
q(e, e)

=
∑

e∈T
(2n − 4)a(e) +

∑

e∈T
q(e, e)

=
∑

e∈T
c(e),

where a linearization c(e) is given by

c(e) := (2n − 4)a(e) + q(e, e).

Next, we assume that Q is linearizable. It is not hard to see that for n ≤ 3 every
corresponding symmetric square costmatrix is a symmetricweak summatrix. Namely,
the conditions q(i, j) = a(i)+a( j) for all non-diagonal elements of a 3×3 symmetric
matrix lead to a system of three independent linear equations with three variables.
Hence we can assume that n ≥ 4.

Consider an
(n
2

)× (n
2

)
sum matrix H = (h(i, j)) of the form h(i, j) = a(i)+a( j),

where a(1) = 0 and a(i) = q(i, 1) for i = 2, . . . ,
(n
2

)
. By subtracting H and an

appropriate diagonal matrix from Q, we could obtain zeros on the first row, the first
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Fig. 1 Configurations of
{1, b, x, y} and corresponding
C1 ∪ C2
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column and the diagonal. Since H is a sum matrix, it is linearizable, and furthermore,
any diagonal matrix is linearizable. Hence, from Observation 1 it follows that without
loss of generality we can assume that elements of the first row, the first column and
the diagonal of Q are equal to zero. In that case, showing that Q is a weak sum matrix
is equivalent to showing that all elements of Q that are not in the first row, the first
column or on the diagonal, have the same value. Namely, q(1, j) = 0 = a(1) + a( j)
for all j ≥ 2 implies that a( j) is the same for all j ≥ 2. And if all elements not in
the first row/column or on the diagonal have the same value K , then Q is obviously a
weak sum matrix (q(i, j) = a(i) + a( j) where a(1) = 0 and a(i) = K/2 for i ≥ 2).

Now, we assume the contrary, i.e. Q is linearizable but there are two elements of Q
(not in the first row/column or on the diagonal) that have different values. Moreover,
due to the symmetry of Q, there is a row b that contains such two distinct value
elements q(b, x) and q(b, y). As any element of row b (except q(b, 1) and q(b, b))
can be a member of such pair, without loss of generality we can assume that edges 1
and x are nonincident.

Next, we show that there exists a cycle C1 that contains edges 1 and b, and a cycle
C2 that contains edges x and y with the following property: C1 ∪C2 \ {e, f } does not
contain a cycle for all e ∈ {1, b}, f ∈ {x, y}. In the case when there are no two pairs
of edges from {1, b} × {x, y} that are incident, it is straightforward to construct C1
and C2 that are edge disjoint and satisfy the above property, see Fig. 1a. In the case
when there are at least two pairs of edges from {1, b} × {x, y} that are incident, all
possible 1, b, x, y configurations can be reduced to only two cases, presented in Fig. 1b
and c. These reductions consist of symmetries (defined by exchanging sets {1, b} and
{x, y}, and by exchanging elements inside of those two sets), and edge contractions
(that can induce more incidences and only make the case more complicated). These
configurations in Fig. 1b and c are extended with a (dashed) edge that constitutes
feasible C1 and C2. In particular, C1 = {1, b, edash}, C2 = {x, y, b} in Fig. 1b and
C1 = {1, b, edash}, C2 = {x, y, edash} in Fig. 1c, where edash is the dashed auxiliary
edge in the figures. Note that we used the fact that 1 and x are nonincident, otherwise
there are instances for which C1 and C2 with the property above do not exist, see
Fig. 1d.

Let T be a minimum cardinality set of edges of a tree connected to both C1 and C2
that spans the remaining vertices. Then we define B to be T ∪ C1 ∪ C2 \ {1, b, x, y}.
It is easy to see that B extended by any two edges e ∈ {1, b} and f ∈ {x, y} forms a
spanning tree.

LetC = (c(i)) be a cost vector that linearizes Q. Since both B∪{b, x} and B∪{1, x}
form a spanning tree, we have that
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C(B ∪ {b, x}) − C(B ∪ {1, x}) =
∑

e∈B∪{b,x}
c(e) −

∑

e∈B∪{1,x}
c(e) = c(b) − c(1).

Analogously, C(B ∪ {b, y}) − C(B ∪ {1, y}) = c(b) − c(1), hence

Q(B ∪ {b, x}) − Q(B ∪ {1, x}) = Q(B ∪ {b, y}) − Q(B ∪ {1, y}). (1)

Now let us express the cost of the spanning tree B ∪ {b, x} in terms of the quadratic
cost matrix Q. Since q(e, e) = 0 for all e, we have

Q(B ∪ {b, x}) =
∑

e∈B∪{b,x}

∑

f ∈B∪{b,x}
q(e, f )

=
∑

e∈B

∑

f ∈B
q(e, f ) +

∑

e∈B
2q(b, e) +

∑

e∈B
2q(x, e) + 2q(b, x).

Since q(1, e) = 0 for all e we analogously have

Q(B ∪ {1, x}) =
∑

e∈B

∑

f ∈B
q(e, f ) +

∑

e∈B
2q(x, e).

Therefore

Q(B ∪ {b, x}) − Q(B ∪ {1, x}) =
∑

e∈B
2q(b, e) + 2q(b, x). (2)

Analogously

Q(B ∪ {b, y}) − Q(B ∪ {1, y}) =
∑

e∈B
2q(b, e) + 2q(b, y). (3)

Then from (1), (2) and (3) it follows that q(b, x) = q(b, y) which is a contradiction
to our choice of b, x and y. ��

4 Extension to other classes of graphs

In this section we will generalize the approach from the proof of Theorem 5 to obtain
a characterization of linearizable cost matrices of the QMSTP for a larger class of
graphs. Note that in the study of linearizable instances of the QAP, the case when the
underlying graph structure is not complete has not yet been considered. Our results
of the section are summarized in Theorem 16, after which an illustrative example is
given.

As noted earlier, any skew-symmetric matrix is linearizable regardless of the struc-
ture of the underlying graph. We now observe that if the underlying graph is a cycle,
then the resulting QMSTP is linearizable regardless the structure of the cost matrix
Q.
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Lemma 6 The QMSTP on a cycle is linearizable for any cost matrix Q. Further, the
linearization C = (c(1), c(2), . . . , c(m)) is given by

c(e) = q(e, e) +
∑

i∈E\{e}
(q(i, e) + q(e, i)) −

∑
i∈E

∑
j∈E, j �=i q(i, j)

m − 1
, e ∈ E . (4)

Proof Let G be a cycle with edges e1, e2, . . . , em . Then the spanning trees of G
are precisely T1, T2, . . . , Tm where Ti = G \ {ei }. We need to find a vector C =
(c(1), c(2), . . . , c(m)) such that

∑

e∈Ti
c(e) = Q(Ti )

for all i = 1, . . . ,m. Equivalently,wewant to find a solution to the linear systemabove,
where the variables being c(1), c(2), . . . , c(m). It can be verified that the coefficient
matrix is invertible and hence the system has a unique solution. The formula for the
linearization can be verified by simple algebra. ��

Note that the result of Lemma6canbe extended to any real valued objective function
for a spanning tree, not simply the quadratic objective function. The following is an
immediate corollary of Lemma 6.

Corollary 7 The QMSTP is linearizable for any cost matrix Q on the graph T ∪ {e}
where T is a tree and e is an edge (not necessarily in T ) joining two vertices of T .

In order to present a sufficient condition for the linearization (Lemma 10), we need
a notion of biconnected components.

Definition 8 A subgraph G ′ of a simple graph G is called a biconnected component
of G if it is a maximal subgraph of G with the property that if any vertex of G ′ were
to be removed, G ′ will remain connected.

Throughout this text, biconnected components are represented by the set of their
edges. The following fact is straightforward to prove, for example see [Ćustić (2014)
Ch.5, p. 101].

Proposition 9 An instance of the MSTP on a graph G has the property that every
spanning tree has the same cost, if and only if all edges from the same biconnected
component of G have the same cost.

Lemma 10 Let Q be a symmetric cost matrix of the QMSTP on a graph G = (V, E)

such that for every pair I , J of biconnected components of G, the submatrix of Q
defined by rows I and columns J is a sum matrix if I �= J , or a symmetric weak sum
matrix if I = J . Then Q is linearizable and a linearization of Q can be computed in
O(|E |2) time.
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Proof Let Q be a symmetric matrix that satisfies the hypothesis of the lemma. Note
that for a (sub)matrix M , being a sum matrix is equivalent to being a sum of two
matrices M = R+C , where every row of matrix R and every column of matrix C is a
constant vector. (Ifm(i, j) = a(i)+b( j) then set r(i, j) = a(i) ∀ j and c(i, j) = b( j)
∀i .) Therefore Q can be expressed as

Q = A + AT + D, (5)

where D = (d(i, j)) is a diagonal matrix, and matrix A = (a(i, j)) has the property
that a(i, j) = a(i, k) if j and k are edges from the same biconnected component.
Note that matrices A and D can be found in O(|E |2) time (see the discussion bellow
Definition 4). From Proposition 9 it follows that an MSTP instance defined by any
row of A [i.e. for some fixed row i we define the length of an edge j to be a(i, j)] has
the property that every spanning tree has the same cost. Let r(i) denote the constant
objective function value of the MSTP corresponding to the i-th row of A. Then the
objective value of the QMSTP for some spanning tree T is

Q(T ) =
∑

e∈T

∑

f ∈T
(a(e, f ) + a( f, e) + d(e, f ))

=
∑

e∈T

∑

f ∈T
(a(e, f ) + a( f, e)) +

∑

e∈T
d(e, e)

=
∑

e∈T
(r(e) + r(e)) +

∑

e∈T
d(e, e)

=
∑

e∈T
(2r(e) + d(e, e)).

Hence, by setting

c(i) := 2r(i) + d(i, i) (6)

we obtain a linearization of Q. Note that the choice of matrix A is not always uniquely
determined. Hence a linearization is not necessarily unique. ��

Next we define the concept of backbone, which will play a crucial role in proving
the necessary conditions.

Definition 11 Let a, b, x and y be distinct edges of a simple graph G with n vertices.
We say that a set B of n − 3 edges is an {a, b}-{x, y}-backbone of G if adding any
two edges e ∈ {a, b} and f ∈ {x, y} to B generates a spanning tree of G.

Lemma 12 Let Q be a linearizable symmetric cost matrix of the QMSTP on a simple
graph G, and let a and x be two fixed distinct edges of G. If for all additional edges
b and y there exist a sequence of k ≥ 2 edges z1, z2, . . . , zk such that x = z1, y = zk
and there exists an {a, b} − {zi , zi+1}-backbone Bi for every i = 1, . . . , k − 1, then
Q is a symmetric weak sum matrix.
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Proof Let Q be linearizable and let a, b, x, y be four distinct edges such that there
exists an {a, b} − {x, y}-backbone B. Since Q is linearizable it follows that

Q(B ∪ {b, x}) − Q(B ∪ {a, x}) = Q(B ∪ {b, y}) − Q(B ∪ {a, y}). (7)

Indeed, by expressing spanning tree objective values from (7) with linearization costs
C = (c(i)), one gets c(b) − c(a) = c(b) − c(a). However, by expressing spanning
tree objective values from (7) with quadratic costs Q = (q(i, j)), one gets

q(b, x) − q(a, x) = q(b, y) − q(a, y).

Now assume that a and x are fixed and there exist edges b, y and z1, . . . , zk with
z1 = x, zk = y, such that there exists an {a, b}-{zi , zi+1}-backbone Bi for every
i = 1, . . . , k − 1. Then by the same reasoning as above for all i = 1, . . . , k − 1, we
obtain the following system of equations:

q(b, x) − q(a, x) = q(b, z2) − q(a, z2),

q(b, z2) − q(a, z2) = q(b, z3) − q(a, z3),

...

q(b, zk−1) − q(a, zk−1) = q(b, y) − q(a, y).

As the right-hand side of every i-th equation is identical to the left-hand side of the
(i + 1)-th equation, it follows that q(b, x) − q(a, x) = q(b, y) − q(a, y), which can
be rearranged to

q(b, y) = q(b, x) + q(a, y) − q(a, x). (8)

Note that (8) is satisfied also for b = a or y = x .
By the assumption of the lemma, we can obtain (8) for all b and y, therefore it

follows that q(b, y) is a sum of a function of b and a function of y (as a and x are
fixed), i.e.

q(i, j) = s(i) + t ( j) ∀i �= j,

for some vectors s = (s(i)) and t = (t (i)). As Q is symmetric it follows that

q(i, j) = w(i) + w( j) ∀i �= j,

for some vector w = (w(i)), which proves the lemma. ��
Note that Theorem 5 can be proved using Lemma 12 and the fact that if a and x are

two nonincident edges of a complete graph, then for any other pair of edges b and y
there exists an {a, b}-{x, y}-backbone. However, the independent proof given earlier
is more intuitive for this important special case.
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Corollary 13 Let Q be a linearizable symmetric costmatrix of theQMSTPona simple
graph G. Let I and J be two disjoint sets of edges of G, and let a ∈ I and x ∈ J
be two fixed edges. Let QI J be the submatrix of Q defined by rows I and columns J .
If for all additional edges b ∈ I and y ∈ J there exist a sequence of k ≥ 2 edges
z1, z2, . . . , zk such that x = z1, y = zk and there exists an {a, b}-{zi , zi+1}-backbone
Bi for every i = 1, . . . , k − 1, then QI J is a sum matrix.

Proof The proof is similar as that of Lemma 12. ��
In most of the cases when we make use of Lemma 12 and Corollary 13, k will be

equal to 2, i.e. we will not need additional edges zi .
Given the edges a, b, x and y, usually we try to build an {a, b}−{x, y}-backbone

in the following way. We aim to find a cycle C1 that contains a and b and a cycle C2
that contains x and y, such that if the intersection of C1 and C2 is nonempty, then it
is connected and does not contain a pair of edges from {a, b} × {x, y}. We denote C1
and C2 as feasible backbone cycles for a, b, x , and y. For feasible backbone cycles
C1 and C2, (C1 \ {a, b}) ∪ (C2 \ {x, y}) extended by a tree which is connected to C1
and C2 and spans the remaining set of vertices, forms an {a, b}−{x, y}-backbone.
Lemma 14 A symmetric cost matrix Q of the QMSTP on a complete bipartite graph
Kn1,n2 withmin{n1, n2} ≥ 3, is linearizable if and only if Q is a symmetric weak sum
matrix. A linearization of a linearizable symmetric matrix Q is given by (6).

Proof If Q is a weak summatrix, then from Lemma 10 it follows that Q is linearizable
and a linearization is given by (6). Note that in the case of the complete bipartite graph
Kn1,n2 , entries of the matrix A in the expression (5) are the same for every fixed row.
Hence, r(i) = (n1 + n2 − 1)a(i, j) for any column j .

Let min{n1, n2} ≥ 3 and assume that Q is linearizable. We fix two arbitrary nonin-
cident edges a and x . We will show that for any two additional edges b and y, (b �= y),
conditions of Lemma 12 are satisfied, which completes the proof.

In Fig. 2 all possible essentially different configurations of incidences between a, b,
x and y, up to symmetries, are presented. (The symmetries are defined by exchanging
sets {a, b} and {x, y}, and by exchanging elements inside of those two sets.) Con-
figurations in Fig. 2 are of two types. In the cases where we apply Lemma 12 with
k = 2, the configurations are extended by (dashed) edge(s) that form feasible back-
bone cycles. In other cases we use one auxiliary edge of Lemma 12 (k = 3), therefore
configurations are extended by the edge z which plays the role of z2 in Lemma 12. ��

Fig. 2 The a, b, x, y
configurations
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The previous lemma gives linearization characterization only for min{n1, n2} ≥ 3.
Note that for configurations in Fig. 2e, h, i, j, k, and m, we actually use the fact that
min{n1, n2} ≥ 3. If min{n1, n2} < 3, a linearizable cost matrix Q is not necessary
a weak sum matrix. For example, if n1 or n2 equals to 1, Kn1,n2 is a tree, and if
n1 = n2 = 2, Kn1,n2 is a cycle. In both cases an arbitrary Q is linearizable. For the
remaining case of n1 = 2 and n2 ≥ 3, we present the following counterexample of a
symmetric matrix Q that is linearizable but not a weak sum matrix. For i �= j , cost
element q(i, j) is equal to 1 if edges i and j are incident through the n2-set vertex,
and 0 otherwise. Then the linearization costs are given by c(i) = q(i, i)+2/(n2 +1).

Lemma 15 Let Q be a linearizable symmetric cost matrix of the QMSTP on a graph
G. Then for every two distinct biconnected components I , J of G, the submatrix of
costs q(i, j), i ∈ I , j ∈ J, is a sum matrix.

Proof If I or J is just one edge, i.e. a bridge, then there is nothing to prove, as every
1×n matrix is a summatrix. Since a biconnected component cannot have exactly two
edges, in the rest of the proof we assume that min{|I |, |J |} ≥ 3.

We will again make use of backbones. First we fix two edges a ∈ I and x ∈ J . It
is easy to see that for every pair of additional edges b ∈ I and y ∈ J there exist an
{a, b}−{x, y}-backbone. Namely, in every biconnected component, there exist a cycle
that contains any pair of edges. Hence, there exists a cycle in I that contains a and
b, and a cycle in J that contains x and y. As their intersection contains at most one
vertex, they are feasible backbone cycles. Hence, by Corollary 13, the lemma follows.

��
Lemmas 6, 10, 14, 15 and Theorem 5 can be combined to produce the linearization

characterization for a larger class of graphs, e.g. cactuses.

Theorem 16 Let G be a graph such that every biconnected component is either a
clique, a cycle or a biclique (with vertex partition sets of sizes at least three). Then a
symmetric cost matrix Q of the QMSTP on G is linearizable if and only if the subma-
trices of Q that correspond to different biconnected components are summatrices, and
submatrices that correspond to single biconnected components that are either a clique
or a biclique are symmetric weak sum matrices. Furthermore, if Q is linearizable, a
linearization can be computed in O(|E |2) time.
Proof Let Q be of the form described in the theorem. We denote by k the number
of biconnected components of G that are cycles. Then Q can be expressed as Q =
H + B1 + · · · + Bk , where H satisfies the hypothesis of Lemma 10, and Bi is a
matrix in which all entries that are not in the submatrix defined by the i-th cycle, are
equal to 0. Note that matrices H and Bi , i = 1, . . . , k, can be found in O(|E |2) time.
From Lemma 10 it follows that H is linearizable and its linearization vector CH can
be computed by (6). From Lemma 6, it follows that for every i = 1, . . . , k, Bi is
linearizable and its linearization CBi is given by (4). Therefore by Observation 1, Q is
also linearizable and its linearization vector is given by C = CH +CB1 + · · · +CBk .

Conversely, if Q is linearizable then it has to be of the formdescribed in the theorem.
This follows directly from Lemma 15 and the proofs of Theorem 5 and Lemma 14.
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Fig. 3 A linearizable QMSTP
instance e1

e2 e3
e4

e5

e6

e7

e8

e9

e10

e11

(a)

⎛
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1 4 8 7 4 6 3 8 5 7 9
4 2 9 2 3 5 2 7 4 6 9
8 9 3 4 5 7 4 9 6 8 0
7 2 4 8 0 9 3 6 6 3 2
4 3 5 0 5 4 5 8 3 7 3
6 5 7 9 4 2 3 6 1 5 3
3 2 4 3 5 3 1 7 2 6 4
8 7 9 6 8 6 7 5 5 9 5
5 4 6 6 3 1 2 5 8 4 6
7 6 8 3 7 5 6 9 4 7 0
9 9 0 2 3 3 4 5 6 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)

Namely, backbones of biconnected components can be extended into backbones of G
by adding edges that span the remaining vertices. ��

We present an example that illustrates Theorem 16. Let G = (V, E) be the graph
presented byFig. 3a.GraphG has four biconnected componentswith its corresponding
edge sets E1 = {e1, e2, e3}, E2 = {e4}, E3 = {e5, e6, e7, e8, e9, e10} and E4 = {e11}.
Let the symmetricmatrix Q = (q(i, j)), presented in Fig. 3b, be aQMSTP cost matrix
associated toG, such that q(i, j) is theQMSTP cost associated to the edge pair (ei , e j ).
We denote by QEi E j the submatrix of Q consisting of elements q(k, �) for ek ∈ Ei

and e� ∈ E j . In Fig. 3b, Q is divided into submatrices QEi E j , i, j ∈ {1, . . . , 4}, using
dashed lines.

Biconnected components E1, . . . , E4 are cycles and cliques, so according to The-
orem 16, matrix Q is linearizable if and only if submatrices QEi E j have some specific
properties. In particular, submatrices that correspond to a pair of different biconnected
components, i.e. QEi E j with i �= j , have to be summatrices. There are 12 such subma-
trices, and 10 of them have one row and/or one column in which case the sum matrix
property is trivially satisfied. The remaining 2 submatrices are QE1E3 and QE3E1 .
Since Q is symmetric, they are transpose of each other, hence it is enough to check the
sum matrix property only for one of them. Indeed they are sum matrices, since they
are a sum of vectors (3, 2, 4) and (1, 3, 0, 5, 2, 4). It remains to check the remaining
4 submatrices QEi Ei , i ∈ {1, . . . , 4}. If Ei is a clique or (big enough) biclique then
we need to check whether QEi Ei is a weak sum matrix. If Ei is a cycle then there
are no necessary conditions on QEi Ei . Edges E1 form a complete graph on three
vertices, but in the same time E1 forms a cycle. This is not a contradiction, because
every symmetric 3× 3 matrix is a weak sum matrix. Biconnected components E2 and
E4 are trivial cliques, hence the weak sum property of QE2E2 and QE4E4 is trivially
satisfied. E3 is a complete graph, hence it remains to check whether QE3E3 is a weak
sum matrix. It is easy to see that QE3E3 is a symmetric weak sum matrix generated
by the vector a = (3, 1, 2, 5, 0, 4), i.e. for i �= j , the i-th row and j-th column of the
submatrix QE3E3 contains the value a(i) + a( j). We see that all submatrices of Q
have the required structures, therefore Q is linearizable.

At this point, it is straightforward to obtain a linearization of Q. We can express Q
as Q = H + B1, where H is the matrix obtained from Q by replacing elements in the
submatrix QE1E1 by 0. Matrix H satisfies Lemma 10, and its linearization vector CH

can be calculated as described in the proof of Lemma 10 using vectors obtained in the
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analysis above. Furthermore, B1 is linearizable and its linearization vector CB can be
calculated as described in Lemma 6. Then vector C = CH + CB is a linearization
of Q. And C = (54, 41, 48, 12, 27, 42, 23, 67, 40, 45, 2) is one such vector for the
considered matrix Q.

5 Recognition of linearizable QMSTP

Theorem 16 gives us a solution for the quadratic spanning tree linearization problem
(QST-LP) for the class of graphs in which every biconnected component is either
a clique, a biclique or a cycle. Given such a graph G = (V, E), one can find in
linear time its biconnected components (see Hopcroft and Tarjan 1973), and determine
which type they are. Now for a given (not necessary symmetric) cost matrix Q, from
Observation 3 it follows that Q is linearizable if and only if the symmetric matrix
1
2 (Q + QT ) is linearizable. According to Theorem 16, to determine whether Q is
linearizable we need to check whether appropriate submatrices of 1

2 (Q + QT ) are
sum matrices or symmetric weak sum matrices. In the worst case this takes Θ(|E |2)
time, since potentially every element of Q which is not on the main diagonal has to
be examined. Next we examine whether the recognition can be done faster if the cost
matrix is given in the factored form.

Let H = (h(i, j)) be an m × m matrix of rank p. Then the elements of H are of
the form

H(i, j) =
p∑

k=1

a(k)
i b(k)

j , (9)

for some vectors a(k) and b(k), k = 1, . . . , p. Hence, an m × m matrix of a rank p
can be represented with 2pm values. We say that (9) is a factored form representation
of matrix H . (To save space, in this section we denote i-th element of a vector by ai ,
instead of previous notation a(i).)

Note that every sum matrix can be written as the sum of a constant row matrix and
a constant column matrix. Since rank(M1 + M2) ≤ rank(M1) + rank(M2) for every
pair of matrices M1 and M2, it follows that every sum matrix has the rank at most 2.
Therefore, the problem of recognizing summatrices represented in a factored form (9)
is reduced to the following question. Given ai , bi , ci , di , i = 1, . . . ,m, is it possible
to decide in O(m) time whether a matrix H = (h(i, j)) with h(i, j) = aib j + cid j

is a sum matrix? An affirmative answer to this question follows from the following
theorem.

Theorem 17 Let an m×m matrix H = (h(i, j)) be of the form h(i, j) = aib j +ci d j ,
i, j = 1, . . . ,m.

– If at least one of the vectors a, b, c, d is a constant vector, then H is a sum matrix
if and only if a or b is a constant vector, and c or d is a constant vector.

– If none of the vectors a, b, c, d is a constant vector, then H is a sum matrix if and
only if there exist three constants K �= 0, K1 and K2 such that ai = Kci + K1
and di = −Kbi + K2, i = 1, . . . ,m.
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Proof Let a matrix H = (h(i, j)) be of the form h(i, j) = aib j +ci d j . Let us assume
H is a sum matrix, i.e. there exist two vectors e and f such that h(i, j) = ei + f j ,
i, j = 1, . . . ,m. Then for arbitrary i, j, k, � ∈ {1, . . . ,m}

h(i, k) − h(i, �) = fk − f� and h( j, k) − h( j, �) = fk − f�.

Hence h(i, k)−h(i, �) = h( j, k)−h( j, �). Now from h(i, j) = aib j +ci d j it follows
that

aibk + cidk − aib� − ci d� = a jbk + c j dk − a jb� − c j d�,

which can be rearranged to

ai (bk − b�) + ci (dk − d�) = a j (bk − b�) + c j (dk − d�).

Finally, we get a necessary condition that if H is a sum matrix then

(ai − a j )(bk − b�) = −(ci − c j )(dk − d�), (10)

for every i, j, k, � ∈ {1, . . . ,m}. Now we divide our investigation into two cases.
Case 1: At least one of the vectors a, b, c, d is a constant vector. Without loss of

generality we can assume that a is a constant vector. From (10) it follows that

(ci − c j )(dk − d�) = 0 ∀i, j, k, � ∈ {1, . . . ,m}. (11)

Hence either c or d is a constant vector. Otherwise there would exist i, j for which
ci − c j �= 0, and k, � for which dk − d� �= 0 which would contradict (11).

Note that this is also a sufficient condition. Let us assume ai = α and di = δ,
i = 1, . . . ,m. Then,

h(i, j) = αb j + ciδ = ei + f j ∀i, j ∈ {1, . . . ,m},

where ei := δci and fi := αbi , i = 1, . . . ,m. In the case when c (instead of d) is a
constant vector, in a similar way one gets that H is a sum matrix.

Case 2: None of the vectors a, b, c, d is a constant vector. Assume that there are
two elements of vector a that are the same, i.e. there exist i, j , i �= j such that ai = a j .
Then for the same i, j ci = c j holds. Assume the contrary, i.e. ai = a j and ci �= c j .
As d is not a constant vector, there exist k, � such that dk �= d�. Now for such i, j, k, �,
Eq. (10) does not hold, which is a contradiction. Hence, ai = a j if and only if ci = c j .
Using the same logic, for all i, j ∈ {1, . . . ,m}, bi = b j if and only if di = d j .

Let N1 ⊆ {1, . . . ,m} be a maximal set of indices i for which ai ’s (and ci ’s) are
pairwise distinct. That is, for every i, j ∈ N1, i �= j , it follows that ai �= a j (and
hence ci �= c j also). Let N2 be a set of indices with the same property for vectors b
and d. Now from (10) it follows that

ai − a j

ci − c j
= −dk − d�

bk − b�

,

123



450 J Comb Optim (2018) 35:436–453

for every distinct i, j ∈ N1 and k, � ∈ N2. By fixing some distinct k, � ∈ N2, it
follows that (ai − a j )/(ci − c j ) is a nonzero constant (which we denote by K ) for
every distinct i, j ∈ N1. Analogously, it follows that (dk − d�)/(bk − b�) = −K for
every distinct k, � ∈ N2. Hence

ai − a j = K (ci − c j ) = Kci − Kc j ∀i, j ∈ N1,

and therefore

ai = Kci + (a j − Kc j ) ∀i, j ∈ N1. (12)

By fixing j ∈ N1 in (12) we get that ai = Kci + K1 for some constant K1 and for all
i ∈ N1. Note that from the way we defined N1, this relation can be extended to entire
{1, . . . ,m}, i.e. we have that

ai = Kci + K1 i = 1, . . . ,m, (13)

for some constants K �= 0 and K1. Analogously we obtain that

di = −Kbi + K2 i = 1, . . . ,m, (14)

for some additional constant K2.
Note that (13) and (14) are sufficient conditions also. Namely

h(i, j) = aib j + ci d j

= (Kci + K1)b j + ci (−Kb j + K2)

= K2ci + K1b j

is a sum matrix relation. ��
Corollary 18 Given ai , bi , ci , di , i = 1, . . . ,m, it is possible to decide in O(m) time
whether the square matrix H = (h(i, j)) with h(i, j) = aib j + ci d j is a sum matrix.

Proof It follows directly from the statement and the proof of Theorem 17. Namely,
the following is an O(m) time algorithm.

First we checkwhether any of the vectors a, b, c, d is a constant vector. If so, then H
is a summatrix if and only if a or b is a constant vector, and c or d is a constant vector.
Else, find i and j such that ai − a j �= 0 and define K to be K = (ai − a j )/(ci − c j ).
Furthermore, define K1, K2 to be K1 = a1 − Kc1 and K2 = d1 + Kb1. Then H is a
sum matrix if and only if (13) and (14) are satisfied. ��

In the case of complete graphs, the following result on the recognition of linearizable
cost matrices represented in factored form straightforwardly holds.

Corollary 19 Let G = (V, E) be a complete graph or a complete bipartite graph.
Let Q = (q(i, j)) be a symmetric cost matrix of a QMSTP on the graph G such that
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q(i, j) = aib j +ci d j , i, j = 1, . . . , |E |, i �= j, for some given vectors a, b, c, d. Then
in O(|E |) time it can be decided whether Q is linearizable, and if so, a linearization
can be calculated in O(|E |) time.
Proof It follows directly from Corollary 18 and the fact that in the case of com-
plete (bipartite) graphs, r(i) from (6) can be calculated in O(1) time for every
i = 1, . . . , |E |. ��

6 Conclusions and future work

We investigated the problem of characterizing linearizable QMSTP cost matrices, and
we resolved the problem for the default structure of an underlying graph, i.e. complete
graphs. We then extended the characterization to a broader class of graphs. The main
result is presented as Theorem 16. In particular, given a graph G, Lemma 10 gives a
sufficient condition for a cost matrix to be linearizable, and in the case of complete
and complete bipartite graphs, the condition is also necessary. A natural question
that imposes itself is: for which class of graphs the condition of Lemma 10 is also
necessary? In view of Lemma 15, this question can be rephrased as the following
open problem: for which biconnected graphs a symmetric QMSTP cost matrix is
linearizable only if it is a weak sum matrix?

In this paper so far we have encountered two types of biconnected graphs for which
a linearizable QMSTP cost matrix does not need to be a weak sum matrix. These
graphs were cycles and complete bipartite graphs K2,n . Note that both of these graph
classes contain a vertex with degree 2. As a matter of fact, for every biconnected
graph that contains a vertex with degree 2, the weak sum condition is not necessary.
For example, letG = (V, E), with |V | = n, be a biconnected graph such that p ∈ V is
of degree 2 and Ep is the set of two edges incident to p. Then the following symmetric
matrix Q = (q(i, j)) given by

q(e, f ) =

⎧
⎪⎨

⎪⎩

1/2 if e, f ∈ Ep, e �= f,

1/(2(n − 3)) if e, f ∈ E \ Ep, e �= f,

0 otherwise,

is linearizable, but it is not aweak summatrix. The linearization is givenby c(e) = n−3
n−1 ,

e ∈ E . (Note that such cost matrices have even the stronger property that the cost of
every spanning tree is the same.) Therefore, an interesting questionwould be to identify
how dense a graph needs to be in order that all linearizable cost matrices are weak
sum matrices. Is it enough that the minimum vertex degree is at least 3?
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