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Abstract In thisworkwe investigate the online over-listMapReduce processing prob-
lem on two identical parallel machines, aiming at minimizing the makespan. Jobs are
revealed one by one, and each job consists of one map task and one reduce task. The
map task can be arbitrarily split and processed on bothmachines simultaneously, while
the reduce task has to be processed on a single machine and it cannot be started unless
the map task has been completed. We first show that the general case of the problem
reduces to the classical two machine online scheduling model with an optimal com-
petitive ratio of 3/2. For a special case where the map task is at least as long as the
reduce task, we prove that no online algorithm can be less than 4/3-competitive. An
optimal Greedy algorithm with a matching competitive ratio is proposed as well.
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1 Introduction

In the last decade, the MapReduce system under the big data processing framework
has caughtmuch interest in operations research (Dean andGhemawat 2008; Sandholm
and Lai 2009; Chen et al. 2012). MapReduce processing generally consists of two
phases: the map phase and the reduce phase. Any job in the system consists of one
map task and one reduce task. The map task can be arbitrarily split and processed
simultaneously on parallel machines, while the reduce task of the job can only be
processed on one of the machines and it starts after the completion of the map task.

Moseley et al. (2011) modeled the MapReduce system as the two-stage flexible
flow shop problem. For the objective of the total flow time they presented a 12-
approximation algorithm. They also designed a dynamic program for the case where
jobs are of the same release time. Zhu et al. (2014) investigated the MapReduce
problems of minimizing either makespan or total completion time. They considered
both preemptive and non-preemptive reduce tasks. For the objective of makespan
minimization, they proved that the preemptive model is solvable, and proposed a
( 32 − 1

2m )-approximation algorithm for the non-preemptive model where m is the
number of machines. For the objective of total completion time, they presented a
2 − 1/m-approximation algorithm for the non-preemptive model and a heuristic for
the preemptive model.

Some authors paid attention to the online version of the MapReduce processing
problem, and constructed competitive online algorithms for various online models.
Zheng et al. (2013) investigated the online over-time problem of minimizing the total
flow time of jobs in theMapReduce framework. They showed that for non-preemptive
tasks, no online algorithms guarantee constant competitive ratios. They constructed
a slightly weaker metric of performance called the efficiency ratio, and presented an
online algorithm with a small efficiency ratio. Chen et al. (2017) considered the online
over-timeMapReduce systemswhere jobs are released over time and the objective is to
minimize the makespan. The map task of any job is parallelized while the reduce task
of the job can only be processed on one of the machines. For non-preemptive model,
they proposed a 2− 1/m-competitive algorithm called Map First-Longest Processing
Time (MF-LPT), and a lower bound is provided as well. For preemptive-resumption
model, they proposed an optimally 1-competitive algorithm for the case with two
parallel machines.

Luo et al. (2017) studied the online over-list MapReduce processing such that jobs
are revealed one-by-one. They assumed that the reduce task of any job is unknown
until its map task has been completed. For the makespan minimization objective, they
proved a lower bound of 2 − 1/m for any deterministic online algorithm where m is
the number of parallel machines. For both preemptive-resumption and non-preemptive
models, they proposed optimally 2 − 1/m-competitive online algorithms.

In this work, we investigate the online over-list model and focus on the two parallel
machine environment. Different from the model in Luo et al. (2017), we assume that
both the map and the reduce tasks of a job become known on the release of the job.
We first show that for the general case with no constraints on the processing times of
map tasks and reduce tasks, the problem reduces to the classical two parallel machine
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scheduling problem. For a special case with map tasks longer than reduce tasks, we
propose an optimally 4/3-competitive algorithm.

2 Problem description

There are two parallel identical machines in the online MapReduce processing system
to process jobs which are revealed one-by-one over list. Each job consists of oneMap
task and one Reduce task, and the processing times of both tasks become known to
the decision maker once the job is revealed. A decision on the processing schedule
of both map and reduce tasks has to be made immediately and irrecoverably on the
release of the job. Moreover, the map task is required to be completed on or before the
start of the reduce task. Preemption for the processing of either map or reduce task is
not allowed. In the MapReduce system, each map task is parallelizable, i.e., it can be
arbitrarily split and processed on the two machines simultaneously, while the reduce
task can only be processed on a single machine. The objective of the problem is to
minimize the makespan, i.e., the largest completion time of job.

We represent any job j as (Mj , R j ) where Mj and R j are the processing of the
map task and respectively the reduce task. Denote by |Mj | and |R j | the respective
processing time of the corresponding task. Given an arbitrary processing schedule
produced by an online algorithm, let S(Mj ) (or S(R j )) the start time of the map task
(or the reduce task) of job j , and C(Mj ) (or C(R j )) the end time of the map task (or
the reduce task) of the job. Let Cmax and C∗

max be the objective value of the schedule
by the online algorithm and that of an optimal schedule, respectively. Adopting the
classical three-fold notation, we denote the above problem as P2|online, over −
list, MapReduce|Cmax.

Theperformance of anyonline algorithmA is usuallymeasuredby competitive ratio
(Fiat andWoeginger 1998). Consider an online problemwith aminimization objective,
we sayA is ρ-competitive if for any job input instance�,CA(�) ≤ ρC∗(�)+bwhere
b ≥ 0 is any real constant, andCA(�) andC∗(�) are the minimization objective value
of the schedule byA and that of an optimal schedule, respectively. We also sayA has
a competitive ratio of ρ′ which is the infimum of ρ satisfying the above inequality.

3 The general case of P2|onl ine, over − l i st,MapReduce|Cmax

In Luo et al. (2017), it is proved for the general case with no constraints for |Mj | and
|R j | that any online algorithm has a competitive ratio at least 2− 1/m where m is the
number of machines. It means a lower bound of 3/2 for the two machine case. They
presumed that the value of |R j | is unknown until the map task Mj has been completed.

In this section, we consider the general case for problem P2|online, over −
list, MapReduce|Cmax, in which both |Mj | and |R j | become known on the release
of job j . We first prove a lower bound of 3/2, and then point out that the considered
problem reduces to the classical two machine online scheduling model.

Theorem 1 For problem P2|online, over − list, MapReduce|Cmax, any online
algorithm cannot have a competitive ratio less than 3/2.
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Proof To prove the theorem, it suffices to construct a specific job input instance �

such that any online algorithmA cannot produce a processing schedule withmakespan
CA
max less than 3/2 times of the makespan C∗

max of an optimal schedule. � consists of
at most three jobs.

The first two jobs 1 and 2 are of processing time (|Mj |, |R j |) = (0, 1) for j = 1, 2.
Consider the following two cases by the behavior of A.

Case 1 Both jobs are assigned to the same machine. In this case, no more jobs arrive.
CA
max = max{C(R1),C(R2)} ≥ |R1| + |R2| = 2. In an optimal schedule the two jobs

are processed on two machines with C∗
max = |R1| = 1. The ratio CA

max
C∗
max

≥ 2 in this
case.

Case 2 R1 and R2 are assigned to different machines. In this case, the third and last
job 3 with (|M3|, |R3|) = (0, 2) is released. The assignment of the reduce task R3 of
job 3 is the same as either R1 or R2, it implies that CA

max ≥ 2 + 1 = 3. In an optimal
schedule, however, jobs 1 and 2 are assigned to one machine and job 3 is assigned to

the other machine. C∗
max = |R3| = 2, and thus CA

max
C∗
max

≥ 3
2 in this case.

Hence, CA
max

C∗
max

≥ 3
2 for any case. The theorem is established. ��

It is well known that for the classical P2|online, over − list |Cmax problem, any
online algorithm cannot be better than 3/2-competitive in worst-case analysis (Faigle
et al. 1989), and LIST algorithm is optimally 3/2-competitive (Graham 1966). We
observe that in the above proof of Theorem 1, all the three jobs in the instance are
of reduce tasks but not map tasks. As any reduce task can only be processed by a
single machine, we have the following conclusion for the problem P2|online, over −
list, MapReduce|Cmax.

Theorem 2 Problem P2|online, over−list, MapReduce|Cmax reduces to the clas-
sical P2|online, over − list |Cmax problem in worst-case analysis.

We may explain the above theorem as follows. For P2|online, over − list,
MapReduce|Cmax, the map task Mj of any job j can be arbitrarily split and pro-
cessed on the two machines simultaneously. If |Mj | > 0 for some job j , then an
online algorithm A has more flexibility to schedule job j , compared with the case
with |Mj | = 0. The optimal schedule, however, always makes the two machines be
of the same workload in worst-case analysis, no matter whether |Mj | = 0 or not. The
case with |Mj | > 0 results in an improvement of the competitive performance of A.
Thus, in worst-case analysis, |Mj | = 0 for each job j , implying the above theorem.

4 A special case with map tasks longer than reduce tasks

We observe that Theorem 2 also applies to the special case where |Mj | < |R j | for any
job j , implying that no online algorithm can be better than 3/2-competitive. In what
follows, we focus on the other case where |Mj | ≥ |R j | for any job j . We first give
a lower bound of competitive ratio for the case, and then present an online algorithm
and prove its optimal competitiveness.
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4.1 A lower bound of competitive ratio

Theorem 3 In problem P2|online, over − list, MapReduce|Cmax, if |Mj | ≥ |R j |
for any job j , then any online algorithm cannot have a competitive ratio less than 4/3.

Proof To prove the theorem, it suffices to construct a job input instance � to make the
makespan of the processing schedule produced by any online algorithmA is least 4/3
times of that of an optimal schedule.� consists of at least two jobs. The first two jobs 1
and 2 are of identical processing time, i.e., (|Mj |, |R j |) = (1, 1) for j = 1, 2. Assume
without loss of generality that machine 1 is of a workload not less than machine 2
after the assignment of the first two jobs. Consider the following two cases.

Case 1 Machine 1 is of a workload at least 8/3 while machine 2 has a workload at
most 4/3 for processing the first two jobs. In this case, no more jobs are released.
CA
max ≥ 8/3. In an optimal schedule, however, the two jobs are processed on different

machines with C∗
max = |M1| + |R1| = 2. Thus, the ratio of CA

max
C∗
max

≥ 4
3 in this case.

Case 2Machine 2 is of a workload at least 4/3, and the two jobs are completed on or
before time 8/3 on machine 1. In this case, the third and last job 3 with (|M3|, |R3|) =
(4, 4) is released. No matter how A schedules job 3, its reduce task R3 is started not

earlier than
∑2

j=1(|Mj |,|R j |)+|M3|
2 = 4, and CA

max ≥ S(R3) + |R3| ≥ 4 + 4 = 8. In an
optimal schedule, the map task of job 3 is processed on both machines during [0, 2),
and then the first two jobs are processed on one machine from time 2, and the reduce
task of job 3 is processed on the other machine. C∗

max = |M3|
2 + |R3| = 2 + 4 = 6.

Again, the ratio of CA
max

C∗
max

≥ 4
3 in this case.

Hence, CA
max

C∗
max

≥ 4
3 in the above both cases. The theorem is established. ��

Figure 1 illustrates the online and the optimal schedules for the two cases in the proof
of Theorem 1. In the figure, Mac1 and Mac2 denote machines 1 and 2, respectively.
Figure 1a, c denote an online schedule and respectively an optimal schedule in Case
1 of the proof, while Fig. 1b, d are for that in Case 2.

4.2 An optimal online algorithm

Below we present an online algorithm named Greedy, which always starts the reduce
task of each job as soon as possible. We then prove that it behaves optimally with
a matching competitive ratio of 4/3. Remember that the map task of any job can
be partitioned into more than one piece and processed simultaneously on the two
machines. We formally describe the online algorithm as follows.

Algorithm Greedy
On the release of job j ( j ≥ 1), let t1 and t2 be the current completion times of
machines 1 and 2, respectively. Assume without loss of generality that t1 ≤ t2.
Notice that machines 1 and 2 are kept busy in processing jobs during time periods
[0, t1) and [0, t2), respectively. The Greedy starts the map task Mj of job j at
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Fig. 1 Illustration of the proof of Theorem 3. a An online schedule in Case 1, b an online schedule in Case
2, c an optimal schedule in Case 1, d an optimal schedule in Case 2

time t1 on machine 1. Case (1) t2 − t1 ≥ |Mj |. In this case, the reduce task
R j is started at time S(R j ) = C(Mj ) = t1 + |Mj |, and it is completed at time
C(R j ) = t1 + |Mj | + |R j |.
Case (2) t2 − t1 < |Mj |. Then S(R j ) = C(Mj ) = t2 + |Mj |−(t2−t1)

2 = t1+t2+|Mj |
2 .

That is, the remaining workload, i.e., |Mj | − (t2 − t1), of task Mj at time t2 is
partitioned into two equal segments and assigned to both machines. R j is then
assigned to machine 1 on the completion of Mj , and C(R j ) = S(R j ) + |R j |.
We observe that if Case (2) of the online algorithm occurs for some job j , then

S(R j ) =
∑ j−1

u=1(|Mu |+|Ru |)+|Mj |
2 . That is, the two machines are of the same workload

on the start of task R j . In the following we prove the optimal competitiveness of the
Greedy algorithm.

Theorem 4 For problem P2|online, over − list, MapReduce|Cmax, given that
|Mj | ≥ |R j | for any job j , Greedy is optimally 4/3-competitive.

Proof On the release of any job j , assume that machines 1 and 2 complete their current
workloads at times t1 and t2 respectively. Note that

t1 + t2 =
j−1∑

u=1

(|Mu | + |Ru |). (1)

We assume without loss of generality that t1 < t2. For the other case with t1 ≥ t2, it
can be similarly analyzed.

We first bound the value of t1. As t1 < t2, the reduce task R j−1 of the preceding
job j − 1 is processed on machine 2, S(R j−1) = C(Mj−1) = S(Mj−1) + |Mj−1|,
and C(R j−1) = S(R j−1) + |R j−1| = t2 by the algorithm. If t1 > C(Mj−1) =
S(R j−1), then t1 >

∑ j−2
u=1(|Mu |+|Ru |)+|Mj−1|

2 ≥
∑ j−1

u=1 |Mu |
2 . Otherwise t1 = C(Mj−1) =
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∑ j−2
u=1(|Mu |+|Ru |)+|Mj−1|

2 ≥
∑ j−1

u=1 |Mu |
2 where the above first equation is byCase (2) of the

algorithm. Since |Ru | ≤ |Mu | for 1 ≤ u ≤ j − 1, we conclude that t1 ≥
∑ j−1

u=1 |Mu |
2 ≥

∑ j−1
u=1(|Mu |+|Ru |)/2

2 = t1+t2
4 where the last equation is by Eq. (1). The above inequality

is reformulated as

t1 ≥ t2
3

. (2)

Now we consider the following two cases depending on the values of t1 and t2 on the
release of any job j (≥ 1).

Case 1 t2 − t1 ≥ |Mj |, i.e., Case (1) of the Greedy algorithm happens. Then job j is
processed on machine 1, and it is completed at time C(R j ) = t1 + |Mj | + |R j |. In an
optimal schedule, assume without loss of generality that j is the last completed job.
then C∗(R j ) ≥ t1+t2+|Mj |+|R j |

2 .

C(R j )

C∗(R j )
≤ 2(t1 + |Mj | + |R j |)

t1 + t2 + |Mj | + |R j |
≤ 2(t1 + 2|Mj |)

t1 + t2 + 2|Mj |
≤ 4t2 − 2t1

3t2 − t1

≤ 5

4

where the above second inequality is due to |Mj | ≥ |R j |, and the third inequality is
by the case condition |Mj | ≤ t2 − t1. The fourth inequality is by Inequality (2).

Case 2 t2 − t1 < |Mj |. By Case (2) of the algorithm, S(R j ) = C(Mj ) = t1+t2+|Mj |
2 ,

andC(R j ) = S(R j )+|R j | = t1+t2+|Mj |+2|R j |
2 in this case. In an optimal schedule, we

have C∗(R j ) ≥ t1+t2+|Mj |+|R j |
2 =

∑ j
u=1(|Mu |+|Ru |)

2 by Eq. (1). Moreover, C∗(R j ) ≥
|Mj |
2 + |R j | since task R j can only be processed on a single machine and it is started

on or after the completion of Mj . If t1 + t2 ≥ |R j |, then C∗(R j ) ≥ t1+t2+|Mj |+|R j |
2 ,

and

C(R j )

C∗(R j )
≤ 1 + |R j |/2

(t1 + t2 + |Mj | + |R j |)/2
≤ 1 + |R j |

|Mj | + 2|R j |
≤ 4

3

where the second inequality is due to t1 + t2 ≥ |R j |, and the third inequality is by

|R j | ≤ |Mj |. Otherwise if t1 + t2 < |R j |, then C∗(R j ) ≥ |Mj |
2 + |R j |, and
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C(R j )

C∗(R j )
≤ (t1 + t2 + |Mj | + 2|R j |)/2

|Mj |/2 + |R j |
<

(|Mj | + 3|R j |)/2
|Mj |/2 + |R j |

≤ 4

3

where the second and third inequalities are due to t1 + t2 < |R j | and |R j | ≤ |Mj |,
respectively.

According to the above two cases, after the assignment of any job j , the current
makespan of the schedule produced by the Greedy is at most 4/3 times of that of an
optimal solution. It implies thatGreedy is 4/3-competitive. The theorem is established.

��

5 Conclusions

This work investigates the online MapReduce problem on two parallel machines with
the objective of makespan minimization.We consider two cases where the map task of
each job is shorter than the reduce task andwhere themap task is longer than the reduce
task. For the former case we reveal that it reduces to the classical online scheduling
on two parallel machines. For the latter case, we prove a lower bound of 4/3, and put
forward an online algorithm with a matching competitive ratio. One further research
is to extend the above results to the environment with m ≥ 2 parallel machines.
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