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Abstract We study the problem of orienting the edges of a graph such that the min-
imum over all the vertices of the absolute difference between the outdegree and the
indegree of a vertex is maximized.We call this minimum the imbalance of the orienta-
tion, i.e. the higher it gets, themore imbalanced the orientation is. The studied problem
is denoted by MaxIm. We first characterize graphs for which the optimal objective
value of MaxIm is zero. Next we show that MaxIm is generally NP-hard and cannot
be approximated within a ratio of 1

2 + ε for any constant ε > 0 in polynomial time
unless P = NP even if the minimum degree of the graph δ equals 2. Then we describe a
polynomial-time approximation algorithm whose ratio is almost equal to 1

2 . An exact
polynomial-time algorithm is also derived for cacti. Finally, two mixed integer linear
programming formulations are presented. Several valid inequalities are exhibited with
the related separation algorithms. The performance of the strengthened formulations
is assessed through several numerical experiments.
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1 Introduction and notation

Let G = (V, E) be an undirected simple graph (with node set V and edge set E),
we denote by δG the minimum degree of the vertices of G. An orientation Λ of G
is an assignment of a direction to each undirected edge uv in E , i.e. any function on
E of the form Λ(uv) ∈ {−→uv,

−→
vu}, ∀{uv} ∈ E where −→uv and ←−

vu denote the edge uv

oriented from u to v. For each vertex v of Gwe denote by dG(v) or d(v) the unoriented
degree of v in G and by d+

Λ(v) or d+(v) (resp. d−
Λ(v) or d−(v)) the outdegree (resp.

indegree) of v in G w.r.t. Λ. Graph orientation is a well studied area in graph theory
and combinatorial optimization, a large variety of constrained orientations as well as
objective functions have been considered so far.

Among those arise the popular degree-constrained orientation problems: in Frank
and Gyárfás (1976) gave a simple characterization of the existence of an orientation
such that the outdgree of every vertex is between a lower and an upper bound given
for each vertex. Asahiro et al. (2007, 2008, 2014) proved the NP-hardness of the
weighted version of the problem where the maximum outdegree is minimized, gave
some inapproximability results, and studied similar problems for different classes of
graphs. Chrobak and Eppstein (1991) proved that for every planar graph a 3-bounded
outdegree orientation and a5-boundedoutdegree acyclic orientation canbe constructed
in linear time.

Other problems involving other criteria on the orientation have been studied such
as acyclicity, diameter or connectivity. Robbins’ theorem (1939) for example states
that the graphs that have strong orientations are exactly the 2-edge-connected graphs
(Robbins 1939 and later 1985), Chung et al. (1985) provided a linear time algorithm
for checking whether a graph has such an orientation and finding one if it does. Then in
1960, Nash-Williams generalized Robbin’s theorem showing that an undirected graph
has a k-arc-connected orientation if and only if it is 2k-edge-connected (Nash-Williams
1960). The problem called oriented diameter that consists in finding a strongly con-
nected orientation with minimum diameter was introduced in 1978 by Chv́atal and
Thomassen: they proved that the problem is NP-hard for general graphs (Chv́atal and
Thomassen 1978). It was then proven to be NP-hard even if the graph is restricted to
a subset of chordal graphs by Fomin et al. 2004 who gave also approximability and
inapproximability results.

For an orientation Λ of G = (V, E) and a vertex v we call |d+
Λ(v) − d−

Λ(v)| the
imbalance of v in G w.r.t Λ and we call minv∈V |d+

Λ(v)− d−
Λ(v)| the imbalance of Λ.

Biedl et al. studied the problem of finding an acyclic orientation of unweighted graphs
minimizing the imbalance of each vertex: they proved that it is solvable in polynomial
time for graphs with maximum degree at most three but NP-complete generally and
for bipartite graphs with maximum degree six and gave a 13

8 -approximation algorithm
(Biedl et al. 2005). Then Kára et al. closed the gap proving the NP-completeness for
graphs withmaximum degree four. Furthermore, they proved that the problem remains
NP-complete for planar graphs with maximum degree four and for 5-regular graphs
(Kára et al. 2005).

Landau’s (1953) famous theorem gives a condition for a sequence of non-negative
integers to be the score sequence or outdegree sequence of some tournament (i.e. ori-
ented complete graph) and later, Harary and Moser characterized score sequences of
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strongly connected tournaments (Harary et al. 1971). Analogous results for the “imbal-
ance sequences” of directed graphs are given by Mubayi et al. (2001). In 1962, Ford
and Fulkerson characterized the mixed graphs (i.e. partially oriented graphs) whose
orientation can be completed in an eulerian orientation, that is to say, an orientation
for which the imbalance of each vertex equals zero (Ford and Fulkerson 1962). Many
other results related to orientation have been proposed. Some of them are reviewed in
Bang-Jensen and Gutin (2009).

Let us denote by
−→
O (G) the set of all the orientations ofG, we consider the problem

of finding an orientation with maximized imbalance:

(MaxIm) MaxIm(G) = max
Λ∈−→

O (G)

min
v∈V |d+

Λ(v) − d−
Λ(v)|

and we call MaxIm(G) the value of MaxIm for G. The minimum degree δG of a
graph G is a trivial upper bound for MaxIm(G).

The rest of this paper is organized as follows. In the Sect. 2, we give several char-
acterizations of the the graphs verifying MaxIm(G) = 0. In Sect. 3, we show that
MaxIm is generally NP-complete even for graphs with minimum degree 2 and inap-
proximable within a ratio 1

2 +ε for any constant ε > 0 and then give an approximation
algorithm whose ratio is almost equal to 1

2 . In Sect. 4, we present a polynomial-time
exact algorithm for cactus. Section 5 is devoted to mixed integer linear programming
formulations ofMaxImwhere families of valid inequalities are presented for the most
promising formulation. These formulation have been implemented and the computa-
tional results are reported in Sect. 6.

Since the value of MaxIm for a graph is the minimum of the values of MaxIm on
its connected components, from here on out, all the graphs we consider are assumed to
be connected. For a graph G and H a subgraph of G, we will use the notations V (H)

and E(H) to refer to the set of vertices of G and the set of edges of H , respectively.

2 Characterizing the graphs for which MAXIM(G) = 0

Now we characterize the graphs verifying MaxIm(G) = 0. We start by unveiling
several necessary conditions and properties of such graphs. First we can show that
concerning such a graph, we can find an orientation satisfying several additional prop-
erties.

Proposition 1 Let G be a graph such that MaxIm(G) = 0 and u ∈ V . Then there

exists an orientation Λ ∈ −→
O (G) such that u is the only vertex of G with imbalance

equal to zero w.r.t. Λ.

Proof Let Λ ∈ −→
O (G) be an orientation minimizing |{v ∈ V/|d+

Λ(v)− d−
Λ(v)| = 0}|.

We suppose that |{v ∈ V/|d+
Λ(v)−d−

Λ(v)| = 0}| ≥ 2.We choose two distinct vertices
v and w in {v ∈ V/|d+

Λ(v) − d−
Λ(v)| = 0} and a path p = (v = u0, . . . , un = w)

between v and w. If we switch the orientation of the edge u0u1, then the imbalance of
u0 becomes positive and necessarily the imbalance of u1 becomes zero otherwise the
resulting orientation would contradict the minimality ofΛ. Using the same reasoning,
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if we switch the orientation of all the edges u0u1, . . . , un−2un−1, we obtain an orien-
tation where both un−1 and un have an imbalance equal to zero while the imbalance is
positive on all the vertices u0, . . . , un−2 and unchanged on all other vertices. So now
if we switch the orientation of the edge un−1un as well, then the resulting orientation
contradicts the minimality of Λ. Hence, |{v ∈ V/|d+

Λ(v) − d−
Λ(v)| = 0}| = 1.

Now let v be this unique vertex of G such that |d+
Λ(v) − d−

Λ(v)| = 0. Let u �= v

be an arbitrary vertex and let p = (v = u0, . . . , un = u) be a path between v and
u. By switching the orientation of all the edges u0u1, . . . , un−2un−1, we obtain an
orientation Λ′ where u has an imbalance equal to zero while the imbalance is positive
for u0 and unchanged on all other vertices. 	


This yields the following necessary condition: if G is a graph such that
MaxIm(G) = 0, then G is eulerian. For let u ∈ V , we know there exists Λ ∈ −→

O (G)

such that {v ∈ V/|d+
Λ(v) − d−

Λ(v)| = 0} = {u}. Then d+
Λ(u) = d−

Λ(u), hence
d(u) = d+

Λ(u) + d−
Λ(u) = 2d+

Λ(u) is even. The following lemma about eulerian
graphs will be useful for the proof of our characterization.

Lemma 2 If G is an eulerian graph, then there exists an elementary cycle (hereafter
just called cycle) C of G such that G − E(C) has at most one connected component
that is not an isolated vertex.

Proof Since G is eulerian and connected, it can be decomposed into edge-disjoint
cycles that we can order C1, . . . ,Cn according to the following condition: ∪i

k=1Ci is
connected, ∀i ∈ �1, n�. Then Cn is the cycle we are looking for. 	


Now let us define a certain family of graphs which will prove to be exactly the
graphs for which the optimal objective value of MaxIm is zero. Intuitively they are
the graphs for which every block is an odd cycle.

Definition 3 We define the class of graphs C odd as follows: a simple graph G is in
C odd if there exists n odd cycles C1, . . . ,Cn (n ≥ 1) such that:

• ∪n
i=1 Ci = G,

• |V (∪i−1
k=1Ck) ∩ V (Ci )| = 1, ∀i ∈ �2, n�. (1)

Theorem 4 For any simple graph G, MaxIm(G) = 0 if and only if G ∈ C odd .

Proof • ⇐Wework by induction on the number n of cycles contained in the graph.
Nothing is required for these cycles except that they must be elementary. If n = 1,
then our graph is an odd cycle which implies MaxIm(G) = 0. Let n ≥ 2, we
assume that all graphs of C odd with k ≤ n − 1 cycles verifyMaxIm(G) = 0. Let
G ∈ C odd with n cycles C1, . . . ,Cn as in (1). Suppose there exists Λ ∈ −→

O (G)

with strictly positive imbalance. Let us call G ′ = ∪n−1
i=1Ci the graph obtained

from G after removing Cn and let us take a look at Λ|G ′ : the orientation of the
edges of G ′ obtained from Λ restricted to E(G ′). As G ′ is a graph of n − 1
cycles in C odd , our inductive hypothesis implies that we have a vertex u ∈ V (G ′)
such that |d+

Λ|G′ (u) − d−
Λ|G′ (u)| = 0. Necessarily, u = V (G ′) ∩ V (Cn). Thus
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|d+
Λ(u) − d−

Λ(u)| = |d+
Λ|Cn (u) − d−

Λ|Cn (u)| > 0 implying thatMaxIm(Cn) > 0, a
contradiction because Cn is an odd cycle.

• ⇒ SinceMaxIm(G) = 0, we know thatG is eulerian.Wework again by induction
on the number of elementary cycles n. If n = 1, then our graph is eulerian with
a unique cycle, hence it is a cycle. Now as MaxIm(G) = 0, necessarily it is an
odd cycle and is therefore in C odd . Let n ≥ 2, we assume that all graphs with
k ≤ n − 1 cycles verifying MaxIm(G) = 0 are in C odd . Let G be a graph with
n cycles such that MaxIm(G) = 0. Thanks to Lemma 2, there exists a cycle C
of G such that G − E(C) has at most one connected component G ′ that is not an
isolated vertex.
Suppose that MaxIm(G ′) > 0, let Λ ∈ −→

O (G ′) with strictly positive imbalance.
Let u0 ∈ V (G ′) ∩ V (C), we name the vertices of C as follows: u0, u1, . . . , uk =
u0. Without loss of generality, we can assume that d+

Λ(u0)−d−
Λ(u0) > 0; if it was

not the case, replace Λ by its reverse. We complete Λ in an orientation of G by
orienting the edges of C : we orient u0u1 from u0 to u1 and go on as follows:

∀i ∈ �1, k − 1�,

{
if ui ∈ V (G ′), we orient uiui+1 as ui−1ui ,

otherwise, we orient uiui+1 as uiui−1.

Where orienting an edge ab as another edge cd means orienting it from a to b
if cd was oriented from c to d and from b to a otherwise. Let us have a look at
the resulting orientation Λ′ (cf Fig. 1): when completing Λ in Λ′, the imbalance
of the vertices in V (G ′)\{u0} was left unchanged, the imbalance of the vertices
in V (C)\V (G ′) equals 2 and the imbalance of u0 was either left unchanged or
augmented by two. Hence Λ′ has strictly positive imbalance which contradicts
MaxIm(G) = 0, therefore, MaxIm(G ′) = 0.
Suppose |V (G ′)∩V (C)| ≥ 2 and let u and v be 2 distinct vertices in V (G ′)∩V (C)

such that u �= v. Thanks to Proposition 1, we know that there exists an orientation
Λ ∈ −→

O (G ′) such that {w ∈ V/|d+
Λ(w) − d−

Λ(w)| = 0} = {v} and without
loss of generality, d+

Λ(u) − d−
Λ(u) > 0. We name the vertices of C as follows:

u = u0u1 · · · uk = u0, v = ul and we complete Λ in an orientation of G by

G
u0

u1uk−1

C

Fig. 1 The vertices of C in G′ are left unchanged imbalance-wise, the other vertices of C are set to 2 and
in the end |d+

Λ′ (u0) − d−
Λ′ (u0)| ≥ |d+

Λ(u0) − d−
Λ(u0)| > 0
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G
vu

u1uk−1

C

Fig. 2 The vertices of C in G′ are left unchanged imbalance-wise except for v which is set to 2, like the
other vertices of C and in the end |d+

Λ′ (u0) − d−
Λ′ (u0)| ≥ |d+

Λ(u0) − d−
Λ(u0)| > 0

orienting the edges of C : we orient u0u1 from u0 and u1 and go on as follows:

∀i ∈ �1, k − 1� \ {l},
{
if ui ∈ V (G ′), we orient uiui+1 as ui−1ui ,

otherwise, we orient uiui+1 as uiui−1.

And we orient ulul+1 as ulul−1. In the resulting orientation Λ′, the imbalance of
the vertices in V (G ′)\{u, v} was left unchanged, the imbalance of the vertices in
V (C)\V (G ′) equals 2, the imbalance of v was augmented by two and the imbal-
ance of u was either left unchanged or augmented by two. Hence Λ′ contradicts
MaxIm(G) = 0, therefore, |V (G ′) ∩ V (C)| = 1.
Suppose C is even. We call u ∈ V (G ′) such that V (G ′) ∩ V (C) = {u}, and
Λ ∈ −→

O (G ′) such that {v ∈ V/|d+
Λ(v) − d−

Λ(v)| = 0} = {u}. We name the
vertices of C as follows: u = u0u1 · · · uk = u0 and we complete Λ in an orienta-
tion of G by orienting the edges of C : we orient u0u1 from u0 to u1 and uiui+1
as uiui−1, ∀i ∈ �1, k − 1�. In the resulting orientation Λ′, the imbalance of
the vertices in V (G ′)\{u} was left unchanged, the imbalance of the vertices in
V (C)\V (G ′) equals 2 and, C being even, the imbalance of u was augmented by
two. Hence Λ′ contradicts MaxIm(G) = 0, therefore, C is odd.
As G ′ is a graph with at most n − 1 cycles verifying MaxIm(G) = 0, by the
induction hypothesis, there exist C1, . . . ,Cn−1 odd cycles such that:
• ∪n−1

i=1Ci = G ′,
• |V (∪i−1

k=1Ck) ∩ V (Ci )| = 1, ∀i ∈ �2, n − 1�.
Adding the odd cycle Cn = C , we obtain that G ∈ C odd .

	

Now in order to widen our perception of those graphs, let us show another charac-

terization (Fig. 2).

Theorem 5 For every simple graph G,

G ∈ C odd ⇔ G is eulerian with no even cycle

Proof • ⇒ By construction, every graph in C odd is eulerian with no even cycle.
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C

Ci0

u
v

p

podd

peven

(a) C intersects at least
twice another cycle

Ci0

Ci1

C

p podd peven

(b)C intersects two cycles

Fig. 3 In both cases, concatenating p with peven or podd yields an even cycle in G

• ⇐ We will once again work by induction on the number of cycles n. If n = 1,
then our graph is eulerian with a unique odd cycle, hence it is an odd cycle and is
therefore in C odd .
Let n ≥ 2, we assume that all eulerian graphs with no even cycle and k ≤ n − 1
odd cycles are in C odd . Let G be a graph with no even cycle and n odd cycles.
Thanks to Lemma 2, there exists an odd cycle C of G such that G − E(C) has
only one connected component G ′ that is not an isolated vertex. As G ′ is eulerian
and even-cycle-free with n − 1 odd cycles, by induction hypothesis, G ′ ∈ C odd ,
hence there exist C1, . . . ,Cn−1 odd cycles such that:
• ∪n−1

i=1Ci = G ′,
• |V (∪i−1

k=1Ck) ∩ V (Ci )| = 1, ∀i ∈ �2, n − 1�.
Suppose there exist u and v (u �= v) belonging to V (∪n−1

k=1Ck) ∩ V (C). Since G ′
is connected, let p be an elementary path in G ′ between u and v. We can assume
that u and v are the only vertices of C contained in p, otherwise we could replace
v by the first vertex of C encountered when traveling on p from u. C defines two
other vertex-disjoint paths between u and v: one even that we will call peven and
one odd that we will call podd . p being vertex disjoint with either peven or podd ,
by concatenating it with the one corresponding to its parity, we obtain an even
cycle of G, contradicting our hypothesis on G (cf. Fig. 3a, b). This yields that
|V (C) ∩ V (G ′)| = 1. From that we can conclude
• ∪n

i=1Ci = G,
• |V (∪i−1

k=1Ck) ∩ V (Ci )| = 1, ∀i ∈ �2, n�.
Hence G ∈ C odd .

	


3 Complexity and (in)approximability

In this section we prove the NP-completeness and inapproximability of our prob-
lem and give an approximation algorithm based on the special case of bipartite
graphs.
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Concerning the complexity of MaxIm, we show that the problem is NP-complete.
More precisely, that answering ifMaxIm(G) equals 2 for a graph G such that δG = 2
is NP-complete. For that purpose, we introduce a variant of the satisfiability problem
that we reduce to aMaxIm instance: the not-all-equal at most 3-SAT(3V).

Not-all-equal at most 3-SAT(3V) is a restriction of not-all-equal at most 3-SAT
which is itself a restriction of 3-SAT known to be NP-complete (Schaefer 1978),
where each clause contains at most three literals and in each clause, not all the literals
can be true. Since 2-SAT can be solved in polynomial time, we hereafter deal only
with formulas having at least one three-literals clause. The added restriction of not-
all-equal at most 3-SAT(3V) is that each variable (not literal) appears at most three
times in a formula. The resulting problem is still NP-complete.

Lemma 6 The not-all-equal at most 3-SAT(3V) problem is NP-complete.

Proof See ‘Appendix’. 	

Now we associate to a not-all-equal at most 3-SAT(3V) instance ϕ with n variables

{x1, . . . , xn} andm clauses {c1, . . . , cm} a graph Gϕ for which the value w.r.t.MaxIm
will give the answer to whether ϕ is satisfiable or not. If a variable xi occurs only in
positive literals (resp. only in negative literals), it follows that a satisfying assignment of
the variables of ϕ must necssarily give the value TRUE (resp. FALSE) to xi , therefore
xi can be removed from ϕ with conservation of the satisfiability. Thus, without loss of
generality, we can assume that in any not-all-equal at most 3-SAT(3V) formula, every
variable occurs at least once as a positive literal and at least once as a negative literal.
Gϕ consists of gadgets that mimic the variables and the clauses of ϕ and additional
edges that connect them together:

• the gadget corresponding to a variable xi consists of two vertices labeled xi and
¬xi and one edge connecting them;

• the gadget corresponding to a two-literals clause c j = (l1∨l2), where l1 and l2 are

its literals, consists in two vertices labeled a j
l1
and b j

l2
corresponding to l1 and l2

respectively (the index ”lk” of the vertices labels stands for the literal it represents,
i.e. xi if lk is the variable xi and ¬xi if lk is the negation of the variable xi ) and
one edge connecting them;

• the gadget corresponding to a three-literals clause gadget consists in six vertices
and six edges. For a clause c j = (l1 ∨ l2 ∨ l3), where l1, l2 and l3 are its literals

(the order is arbitrary), three vertices labeled a j
l1
, b j

l2
and b′ j

l3
correspond to l1, l2

and l3 respectively. Three additional vertices are labeled u j , v j and w j and the
gadgets’ edges are a j

l1
u j , a

j
l1
v j , u jw j , v jw j , w j b

j
l2
and w j b

′ j
l3
;

• ∀i ∈ �1, n�, the vertex labeled xi (resp.¬xi ) is connected to all the vertices labeled
a j
xi , b

j
xi or b

′ j
xi (resp. a

j
¬xi

, b j
¬xi

or b′ j
¬xi

), ∀ j ∈ �1,m�.

As an example, for a formula

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4), (2)

the corresponding graph Gϕ is represented in Fig. 4.
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x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

a1x1 b1¬x2
b 1
x3

a2¬x1 b2¬x3
b 2
x4

a3x1 b3¬x2
b 3
x4 a4x2 b4¬x4

v1 v2 v3

u1 u2 u3
w1 w2 w3 clause

gadgets

variable
gadgets

Fig. 4 Gϕ for ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4)

Theorem 7 A not-all-equal at most 3-SAT(3V) formula ϕ is satisfiable if and only if
MaxIm(Gϕ) = 2.

Proof • ⇒ Suppose ϕ is satisfiable and let v : {x1, . . . , xn} → {TRUE,FALSE}
be a satisfying assignment of x1, . . . , xn . We know that δGϕ = 2 which yields

MaxIm(Gϕ) ≤ 2. So let us build an orientation Λ ∈ −→
O (Gϕ) for which the

imbalance is greater than or equal to 2. First, we assign an orientation to the edges
of the variable gadget:

Λ(xi¬xi ) =
{−−−→
xi¬xi if v(xi ) = TRUE;−−−→¬xi xi otherwise.

For example, for the formula ϕ = (x1∨¬x2∨x3)∧(¬x1∨¬x3∨x4)∧(x1∨¬x2∨
x4)∧ (x2 ∨¬x4) satisfied by the assignment v(x1, x2, x3, x4) = (FALSE,TRUE,

TRUE,TRUE), the edges of the variable gadgets of graph Gϕ are oriented as
in Fig. 5a. Since each variable xi occurs at least once as a positive literal and
at least once as a negative literal, 2 ≤ dGϕ (xi ) ≤ 3 and 2 ≤ dGϕ (¬xi ) ≤
3, ∀i ∈ �1, n�. Then to ensure our objective on the imbalance of Λ, the orienta-
tion of the edges connecting vertex gadgets and clause gadgets must be such that
∀i ∈ �1, n�, |d+

Λ(xi )−d−
Λ(xi )| = dGϕ (xi ) and |d+

Λ(¬xi )−d−
Λ(¬xi )| = dGϕ (¬xi ).

In other words, for i ∈ �1, n�, if v(xi ) = TRUE (resp. v(xi ) = FALSE), then the
edges adjacent to the vertex xi are oriented from xi (resp. to xi ) and the edges
adjacent to the vertex ¬xi are oriented to ¬xi (resp. from ¬xi ), e.g. Fig. 5b.
So far, all the edges in the variables gadgets and the edges connecting the vertex
gadgets and the clause gadgets have been oriented and the vertices in the variables
gadgets have imbalance greater than or equal to 2. In order to complete our orien-
tation Λ we have to orient the edges in the clause gadgets.
Let c j = (l1 ∨ l2) be a two-literals clause. Since v satisfies ϕ, we know that
exactly one of the two literals is true w.r.t. v. Which, according to the way we
oriented edges so far, means that exactly one of a j

l1
and b j

l2
has one incoming

arc from a variable gadget and the other has one outgoing arc to a variable gad-
get. If a j

l1
is the one with the incoming arc from a variable gadget (meaning that
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v(l1) = TRUE), then we assign Λ(a j
l1
b j
l2

) =
−−−→
b j
l2
a j
l1
, otherwise the opposite. We

obtain |d+
Λ(a j

l1
) − d−

Λ(a j
l1

)| = |d+
Λ(b j

l2
) − d−

Λ(b j
l2

)| = 2.

Let c j = (l1 ∨ l2 ∨ l3) (the order is identical to the one chosen to build the

clause gadget, i.e. dGϕ (a j
l1
) = 3 and dGϕ (b j

l2
) = dGϕ (b′ j

l3
) = 2) be at three-literals

clause. If the edge connecting a j
l1
to a variable gadget is oriented to a j

l1
(mean-

ing that v(l1) = TRUE), then we assign Λ(a j
l1
u j ) =

−−→
u ja

j
l1
, Λ(a j

l1
v j ) =

−−→
v j a

j
l1
,

Λ(u jw j ) = −−→u jw j and Λ(v jw j ) = −−→v jw j . Since v(l1) = TRUE, either both
v(l2) and v(l3) are FALSE or exactly one of v(l2) and v(l3) is TRUE and
one is FALSE. If both are FALSE then b j

l2
and b′ j

l3
have an outgoing arc to a

variable gadget. In that case, we orient w j b
j
l2

and w j b
′ j
l3

to w j and we obtain

|d+
Λ(a j

l1
) − d−

Λ(a j
l1
)| = 3, |d+

Λ(b j
l2

) − d−
Λ(b j

l2
)| = |d+

Λ((b′ j
l3

) − d−
Λ((b′ j

l3
)| =

|d+
Λ(u j ) − d−

Λ(u j )| = |d+
Λ(v j ) − d−

Λ(v j )| = 2 and |d+
Λ(w j ) − d−

Λ(w j )| = 4.
If exactly one of v(l2) and v(l3) is TRUE and one is FALSE, then exactly one
of b j

l2
and b′ j

l3
has an incoming arc from a variable gadget and the other an out-

going arc to a variable gadget. If b j
l2

is the one with the incoming arc from a

variable gadget (meanings that v(l2) = TRUE and v(l3) = FALSE), then we

assign Λ(w j b
j
l2

) =
−−−→
w j b

j
l2

and Λ(w j b
′ j
l3

) =
−−−→
b′ j
l3

w j , otherwise the opposite. We

obtain |d+
Λ(a j

l1
)−d−

Λ(a j
l1
)| = 3 and |d+

Λ(b j
l2

)−d−
Λ(b j

l2
)| = |d+

Λ(b′ j
l3

)−d−
Λ(b′ j

l3
)| =

|d+
Λ(u j ) − d−

Λ(u j )| = |d+
Λ(v j ) − d−

Λ(v j )| = |d+
Λ(w j ) − d−

Λ(w j )| = 2.

If, on the other hand, the edge connecting a j
l1

to a variable gadget is oriented

from a j
l1

(meanings that v(l1) = FALSE), then we assign Λ(a j
l1
u j ) =

−−→
a j
l1
u j ,

Λ(a j
l1
v j ) =

−−→
a j
l1
v j , Λ(u jw j ) = −−→

w j u j and Λ(v jw j ) = −−→w jv j . By symmetry, we

conclude in the same way that |d+
Λ(a j

l1
)−d−

Λ(a j
l1
)| = 3 and |d+

Λ(b j
l2

)−d−
Λ(b j

l2
)| =

|d+
Λ(b′ j

l3
) − d−

Λ(b′ j
l3

)| = |d+
Λ(u j ) − d−

Λ(u j )| = |d+
Λ(v j ) − d−

Λ(v j )| = |d+
Λ(w j ) −

d−
Λ(w j )| = 2.
Consequently, the imbalance of the resulting orientation Λ is greater than or equal
to 2, e.g. Fig. 5c.

• ⇐ Now we assume that MaxIm(Gϕ) = 2, let Λ ∈ −→
O (Gϕ) with optimal imbal-

ance. Since all the vertices in the variable gadgets have degree atmost 3, each vertex
xi (or ¬xi ) is necessarily adjacent to only incoming arcs or only outgoing arcs
w.r.t. Λ. We will show that the assignment v : {x1, . . . , xn} → {TRUE,FALSE}
of x1, . . . , xn defined by

v(xi ) =
{
TRUE if d+

Λ(xi ) > d−
Λ(xi );

FALSE otherwise;

satisfies ϕ. Suppose ϕ does not satisfy a clause c j , j ∈ �1,m�. If c j is a
two-literals clause (l1 ∨ l2) then either v(l1) = v(l2) = TRUE or v(l1) =
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x1 ¬x1 x2 ¬x2 x3¬x3 x4¬x4

(x1 ∨¬x2 ∨ x3) (¬x1 ∨¬x3 ∨ x4) (x1 ∨¬x2 ∨ x4)

(x2 ∨¬x4)

(a) orientation of the edges in the variable
gadgets

x1 ¬x1 x2 ¬x2 x3¬x3 x4¬x4

(x1 ∨¬x2 ∨ x3) (¬x1 ∨¬x3 ∨ x4) (x1 ∨¬x2 ∨ x4)

(x2 ∨¬x4)

(b) orientation of the edges between the
variable gadgets and the clause gadgets

x1 ¬x1 x2 ¬x2 x3¬x3 x4¬x4

(x1 ∨¬x2 ∨ x3) (¬x1 ∨¬x3 ∨ x4) (x1 ∨¬x2 ∨ x4)

(x2 ∨¬x4)

(c) orientation of the edges in the clause
gadgets

Fig. 5 Gϕ corresponding to ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4)
satisfied by v(x1, x2, x3, x4) = (FALSE,TRUE,TRUE,TRUE)

v(l2) = FALSE, i.e. either both a j
l1

and b j
l2

have an incoming arc from a
variable gadget or both have an outgoing arc to a variable gadget and in both
cases, whichever is the orientation assigned to a j

l1
b j
l2

by Λ, either a j
l1

or b j
l2

has a zero imbalance which contradicts our assumption. So c j is a three-literals
clause (l1 ∨ l2 ∨ l3) (the order is identical to the one chosen to build the
clause gadget, i.e. dGϕ (a j

l1
) = 3 and dGϕ (b j

l2
) = dGϕ (b′ j

l3
) = 2). Then either

v(l1) = v(l2) = v(l3) = TRUE or v(l1) = v(l2) = v(l3) = FALSE, i.e. either
all a j

l1
, b j

l2
and b′ j

l3
have an incoming arc from a variable gadget or they all have an

outgoing arc to a variable gadget. In the first case, it implies Λ(a j
l1
u j ) =

−−→
u ja

j
l1
,

Λ(a j
l1
v j ) =

−−→
v j a

j
l1
, Λ(u jw j ) = −−→u jw j , Λ(v jw j ) = −−→v jw j , Λ(w j b

j
l2

) =
−−−→
w j b

j
l2
and

Λ(w j b
′ j
l3

) =
−−−→
w j b

′ j
l3
, and we obtain |d+

Λ(w j ) − d−
Λ(w j )| = 0 which contradicts

the optimality of Λ. Similarly, in the second case it implies that the orientations
assigned to the edges of the clause gadgets are the opposite from the previous
ones and we obtain the same contradiction. So we can conclude that v does
satisfy ϕ. 	


Corollary 8 MaxIm is NP-complete and inapproximable within 1
2 +ε where ε ∈ R

∗+,
unless P = NP.

Proof Let ε ∈ R
∗+, suppose that there exists a polynomial approximation algorithm

giving val ≥ ( 12 + ε)MaxIm(G) for an input graph G. Let ϕ be a not-all-equal at
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most 3-SAT(3V) formula and Gϕ its associated graph. Since Gϕ contains at least one
three-literals clause gadget, we know thatGϕ contains an even cycle and δGϕ = 2. This
leads toMaxIm(Gϕ) ∈ {1, 2} and since ( 12 + ε)MaxIm(Gϕ) ≤ val ≤ MaxIm(Gϕ),
if the polynomial approximation algorithm returns a value less than or equal to 1 then

(
1

2
+ ε

)
MaxIm(Gϕ) ≤ 1 ⇒ MaxIm(Gϕ) < 2 ⇒ MaxIm(Gϕ) = 1;

and if it returns a value greater than 1, thenMaxIm(Gϕ) is greater than 1 hence equal
to 2. In other words the polynomial approximation algorithm output answers whether
ϕ is satisfiable or not which implies P = NP. 	


Let us use cut (A) to denote the set of edges having only one endpoint in A. Now
we consider the case of bipartite graphs: if G = (V 1 ∪· V2, E) is a bipartite graph,
the orientation that consists in assigning to each edge in E the orientation from its
endpoint in V1 to its endpoint in V2 has an imbalance equal to δG , i.e. optimal. This
simple case permits us to obtain the following lower bound:

Theorem 9 For every graph G,

MaxIm(G) ≥ �δG

2
� − 1.

Proof Let (V1, V2) be a partition of V corresponding to a cut C = cut (V1) ⊂ E
such that we have |cut ({v}) ∩ C | ≥ � d(v)

2 �, ∀v ∈ V . Such a cut exists: for example
a maximum cardinality cut verifies this property, otherwise we could find a higher
cardinality cut by switching a vertex v ∈ V s.t. |cut ({v}) ∩ C | < � d(v)

2 � from V1 to
V2 (or the contrary). Moreover, if we iterated this process starting from a random k,
we would converge in polynomial time to such a cut. Now we define Λ ∈ −→

O (G) as
follows. We begin by orienting all edges in C from V1 to V2. Then for any i ∈ {1, 2},
we orient the edges of the induced subgraph G[Vi ]. We add a new vertex v0 and an
edge between v0 and each vertex with an odd degree in G[Vi ] if it is not eulerian
and we consider a decomposition of its edges into edge-disjoint cycles. We orient
each of these cycles as a directed cycle. Removing v0 if necessary, the imbalance
of each vertex in G[Vi ] is now in {−1, 0, 1} which implies that ∀v ∈ V we have
|d+

Λ(v) − d−
Λ(v)| ≥ � d(v)

2 � − 1, hence, MaxIm(G) ≥ � δG
2 � − 1. 	


From the proof proposed above, it is easy to see that when δG ≡ 0[4] then
MaxIm(G) ≥ δG

2 whileMaxIm(G) ≥ δG−1
2 when δG is odd andMaxIm(G) ≥ δG

2 −1
when δG ≡ 2[4]. This leads to an approximation algorithm whose ratio is 1

2 (resp.
1
2 − 1

2δ ,
1
2 − 1

δ
) when δG ≡ 0[4], (resp. δG is odd, δG ≡ 2[4]).

4 Exact algorithm for cacti

The class of graphs defined in the previous section is a special case of cacti. A cactus
is a connected simple graph for which every edge belongs to at most one simple
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S
(a) G a cactus and S.

(b) Its blocks: even cycles ( ), odd cycles ( ) and bridges ( ).

(c) And the block tree T : cut vertices ( ), even cycles ( ), odd cycles
( ) and bridges ( )

Fig. 6 Building the block tree

cycle. Equivalently, a cactus is a connected graph for which every block, or maximal
subgraph with no cut-vertex, is a single edge or a cycle. We will start by recalling the
structure induced by the blocks of a graph.

Definition 10 Let G = (V, E) be a graph, VB the set of its blocks and VC the set
of its cutvertices. The block tree of G is the graph T = (VB ∪· VC , E ′) where E ′ =
{Zu|Z ∈ VB, u ∈ VC and u ∈ V (Z)}.

Observe that the block tree of a connected graph is a tree (Diestel 2010).
In Fig. 6 we have an example of a cactus graph G (a), the isolation of its blocks (b)

and finally its block tree T (c).
The next lemma is related to the minimum degree of a cactus.

Lemma 11 Let G be a cactus graph,

δG ≤ 2.
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Proof LetG be a cactus graph and T its block tree. Let u ∈ V (T ) be a leaf of T . By the
definition of a cut vertex, u corresponds necessarily to a block of G. If u corresponds
to a bridge of G, then one of its endpoint (the one that is not a cutvertex) is a leaf of
G which implies δG=1. If u corresponds to a cycle of G, being a leaf of T , it contains
only one cutvertex of G and therefore the degree of its other vertices equals 2. 	


The previous lemma automatically provides an upper bound forMaxIm(G).

Proposition 12 Let G be a cactus,

MaxIm(G) ≤ 2.

Note that an edge of a cactus is a single edge block if and only if it is a bridge. We
have already characterized which of the cacti verifyMaxIm(G) = 0, and the previous
result states that the only two other possibilities are 1 or 2. The following will permit
us to determine which. Let G = (V, E) be a cactus and T = (VB ∪· VC , E ′) its block
tree, a subset A ∈ VB will hereafter refer to a subset of vertices of T as well as the
subgraph consisting in the union of the blocks of G corresponding to these vertices.
We define for a cactus G the smallest subset S ⊆ VB containing all even cycles of G
in addition to all vertices of T satisfying one the following conditions:

• If Y ∈ VB corresponds to an odd cycle of G that shares a cut-vertex with a cycle
or with two bridges contained in S, then Y ∈ S,

• if Y ∈ VB corresponds to a bridge of G that shares a cut-vertex with a block
contained in S, then Y ∈ S.

In Figs. 6a and 7 are examples of two cacti along with their subsets S.

Theorem 13 Let G be a cactus,

MaxIm(G) = 2 ⇐⇒ S = VB and δG = 2.

The idea of this result and its proof is that if we have a cactus G, we consider
the subgraph S0 of G consisting in the union of all the even cycles of G and that
can be oriented with imbalance at least 2. Then we can extend the orientation of

S=VB

Fig. 7 A graph G such that δG = 2 and S = VB
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Fig. 8 A graph G and a bridge
cc′

cc
Gc c Gc

S0 into an orientation of S, keeping an imbalance of at least two for each vertex
with at least two oriented edges. Now if δG = 2 and S = VB , we obtain an orien-
tation of G with imbalance at least 2. Moreover, for a cactus G, the subset S can
be computed in polynomial time by a basic search on the block tree of G which
means that we can derive a polynomial time algorithm solving MaxIm for any input
cactus.

In order to prove Theorem 13, we first show two lemmas that will be useful in the
proof of our theorem.

Lemma 14 Let G = (V, E) be a graph, cc′ ∈ E a bridge of G. Let us call Gc the
connected component of G\cc′ containing c and Gc′c the graph obtained by adding
c and cc′ to the connected component of G\cc′ containing c′ (see Fig. 8). Then

MaxIm(G) ≤ max
Λ∈−→

O (Gc)

min( min
v∈V (Gc)\{c}

|d+
Λ(v) − d−

Λ(v)|, |d+
Λ(c) − d−

Λ(c)| + 1).

Proof Let Λ ∈ −→
O (G) be an optimal orientation of G w.r.t. MaxIm. If d+

Λ|Gc′c
(c) −

d−
Λ|Gc′c

(c) and d+
Λ|Gc

(c) − d−
Λ|Gc

(c) do not have the same sign, then we switch the

assignment of Λ of the edges of Gc′c. Doing so, the imbalance of all the vertices of
G is unchanged except for that of c which got risen by 2 hence Λ is still optimal and
|d+

Λ(c) − d−
Λ(c)| ≤ |d+

Λ|Gc
(c) − d−

Λ|Gc
(c)| + 1. Moreover,

MaxIm(G) = min
v∈V |d+

Λ(v) − d−
Λ(v)| ≤ min

v∈V (Gc)\{c}
|d+

Λ|Gc
(v) − d−

Λ|Gc
(v)|

which yields

MaxIm(G) ≤ min( min
v∈V (Gc)\{c}

|d+
Λ|Gc

(v) − d−
Λ|Gc

(v)|, |d+
Λ|Gc

(c) − d−
Λ|Gc

(c)| + 1)

≤ max
Λ∈−→

O (Gc)

min( min
v∈V (Gc)\{c}

|d+
Λ(v) − d−

Λ(v)|, |d+
Λ(c) − d−

Λ(c)| + 1).

	

Lemma 15 Let G be a cactus such that δG = 2. Then there exists a cycle of G with
at most one gate (vertex adjacent to any vertex not belonging to the cycle).

Proof Let T be the block tree of G. If T has no leaf, then it is a vertex graph, hence G
is a cycle which necessarily has no gate. If T has a leaf l, it necessarily corresponds to
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a block of G. If l was a bridge, the degree of its endpoint in G which is not a cutvertex
would be 1, hence l is a cycle of G. And being a leaf in T , it has at most one gate in
G. 	

Proof of Theorem 13 • ⇐ We assume that S = VB and δG ≥ 2. From Proposition

12, we know that MaxIm(G) ≤ 2. We will build an orientation Λ ∈ −→
O (G) such

that minv∈V |d+
Λ(v)−d−

Λ(v)| = 2. We start by orienting the edges of the subgraph
S0 consisting in the union of all the even cycles of G. S0 having no odd cycles, it
is bipartite and we can therefore choose an orientation of the edges of S0 such that
|d+

Λ|S0
(v) − d−

Λ|S0
(v)| = dS0(v) ≥ 2, ∀v ∈ V (S0). We now recursively extend Λ

to the rest of the blocks in S ensuring an imbalance of at least 2 for each vertex
adjacent to at least two oriented edges. Let Z ∈ VB be an unoriented block of G
that is either:
• an odd cycle of G sharing a cut-vertex with an oriented cycle or two oriented
bridges,

• a bridge sharing a cut vertex with an oriented block.
If there was no such block and the graph G was not totally oriented, the set of
oriented blocks of G denoted by

−→
S would contradict the minimality of S.

If Z is an odd cycle, we choose a cut vertex c of Z adjacent to oriented edges and
name the vertices of B c = v1v2 · · · vk = c. We assign:

• Λ(vivi+1) =
{−−−→vivi+1 if i is odd;

−−−→vi+1vi otherwise
, ∀i ∈ �1, k − 1�.

Let us now consider the imbalance of the vertices of Z . Since c is adjacent to
either a cycle or two bridges in

−→
S , it is adjacent to at least two edges in

−→
S

and therefore |d+
Λ|−→S

(c) − d−
Λ|−→S

(c)| ≥ 2 according to our inductive hypothesis.

Since |d+
Λ|Z (c) − d−

Λ|Z (c)| = 0, |d+
Λ(c) − d−

Λ(c)| = |d+
Λ|−→S

(c) − d−
Λ|−→S

(c)| ≥ 2.

If there is another cut-vertex c′ of Z that is adjacent to a block in
−→
S such that

d+
Λ|−→S

(c′) − d−
Λ|−→S

(c′) and d+
Λ|Z (c′) − d−

Λ|Z (c′) do not have the same sign, then we

switch the assignment of Λ of the edges of the whole connected component of−→
S containing c′ for its opposite. Necessarily, c′ is the only vertex this connected
component shares with Z otherwise Z would be contained in a bigger block of
G. Then doing so, the imbalance of all vertices is left unchanged except for that
of c′ which is now equal to |d+

Λ|−→S
(c′) − d−

Λ|−→S
(c′)| + |d+

Λ|Z (c′) − d−
Λ|Z (c′)| =

|d+
Λ|−→S

(c′) − d−
Λ|−→S

(c′)| + 2.

This process is repeated for all the cut-vertices c′ of Z different from c adjacent
to a block in

−→
S to be such that |d+

Λ(c′) − d−
Λ(c′)| ≥ 2. If u ∈ V (Z) is not a

cut-vertex, then |d+
Λ(u) − d−

Λ(u)| = |d+
Λ|Z ](u) − d−

Λ|Z ](u)| = 2 and Λ becomes

an orientation of
−→
S ∪ {Z} with imbalance at least two for all the vertices of G

adjacent to at least two oriented edges.
If Z is a bridge, we take c one of its endpoints adjacent to an oriented edge, we
call u the other one and assign
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Λ(cu) =
{−→cu if d+

Λ|−→S
(c) > d−

Λ|−→S
(c);

−→uc otherwise.

Concerning the imbalance of c, by inductive hypothesis, |d+
Λ−→

S
(c)− d−

Λ−→
S
(c)| ≥ 1,

then |d+
Λ(c) − d−

Λ(c)| = |d+
Λ|−→S

(c) − d−
Λ|−→S

(c)| + |d+
Λ|Z (c) − d−

Λ|Z (c)| ≥ 2. If u is

adjacent to a block in
−→
S as well and d+

Λ|−→S
(u) − d−

Λ|−→S
(u) and d+

Λ|Z (u) − d−
Λ|Z (u)

do not have the same sign then we switch the assignment of Λ of the edges of the
whole connected component of

−→
S containing u for its opposite. This connected

component necessarily doesn’t contain c otherwise zwouldbe contained in abigger
block of G. Then doing so, the imbalance of all vertices is left unchanged except
for that of u which is now equal to |d+

Λ|−→S
(u) − d−

Λ|−→S
(u)| + |d+

Λ|Z (u) − d−
Λ|Z (u)| =

|d+
Λ|−→S

(u) − d−
Λ|−→S

(u)| + 1 ≥ 2. Λ thus becomes an orientation of
−→
S ∪ {Z} with

imbalance at least two for all the vertices of G adjacent to at least two oriented
edges.
We now add Z to

−→
S and proceed like this for all blocks Z in S\−→S until

−→
S = S.

Now since VB = S and δG = 2, we conclude that Λ is an orientation of all the
edges of G with an imbalance equal to 2.
In Fig. 9 can be found the orienting process of the cactus presented in Fig. 7. First,
the even cycles are oriented (Fig. 9a), then the blocks adjacent to the even cycles
(Fig. 9b) and then iteratively the unoriented blocks adjacent to oriented blocks

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Orienting the edges of G verifying δG = 2 and S = VB in such a way that MaxIm(G) = 2
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(Fig. 9c–f). In Fig. 9c, e, the vertices with imbalance zero are circled in red, and
in the next step, the orientation is reversed on one of the subtree where the circled
vertex is the root in order to ensure an orientation imbalance of at least 2.

• ⇒ If δG < 2 then MaxIm(G) < 2. So we assume that δG = 2 and S � VB . Let
c ∈ V (S̄) ∩ V (S). Belonging to both V (S) and V (S̄), c must belong to at least
two different blocks of G and is therefore a cutvertex of G. Let Z be a block in S
adjacent to c, Z is necessarily a bridge of G otherwise all the blocks adjacent to
Z would be in S thus contradicting c ∈ V (S̄), and for the same reason, Z is the
only bridge in S adjacent to c. Calling c′ the endpoint of Z that is not c and Gc the
subgraph of G obtained by taking the connected component of G\cc′ containing
c, we are in the conditions of Lemma 14 and thus we obtain

MaxIm(G) ≤ max
Λ∈−→

O (Gc)

min

(
min

v∈V (Gc)\{c}
|d+

Λ(v) − d−
Λ(v)|, |d+

Λ(c) − d−
Λ(c)|+1

)
.

Proceeding like this for all c ∈ V (S̄) ∩ V (S) yields that MaxIm(G) is smaller
than

max
Λ∈−→

O (S̄)

min

(
min

v∈V (S̄)\V (S)
|d+

Λ(v) − d−
Λ(v)|, min

v∈V (S̄)∩V (S)
|d+

Λ(v) − d−
Λ(v)| + 1

)
.

Now ifwe choose a connected component S̄0 of S̄weget thatMaxIm(G) is smaller
than

max
Λ∈−→

O (S̄0)
min

(
min

v∈V (S̄0)\V (S)
|d+

Λ(v) − d−
Λ(v)|, min

v∈V (S̄0)∩V (S)
|d+

Λ(v) − d−
Λ(v)| + 1

)
.

Now we show that the right-hand part of the previous inequality is lower than or
equal to 1. Suppose it equals 2 and let Λ ∈ −→

O (S̄0) satisfying

min

(
min

v∈V (S̄0)\V (S)
|d+

Λ(v) − d−
Λ(v)|, min

v∈V (S̄0)∩V (S)
|d+

Λ(v) − d−
Λ(v)| + 1

)
≥ 2.

(3)
Thus we have dS̄0(v) ≥ 2, ∀v ∈ V (S̄0)\V (S) and we know that for any v ∈
V (S̄0)∩V (S), all the blocks in S̄0 adjacent to v are odd cycles, hencedS̄0(v) ≥ 2. So
δS̄0 ≥ 2 and according toLemma15, there is a cycleC of S̄0 with atmost one gate. If
C has no gate then it means that S̄0 consists only ofC and sincewe know that all the
cycles of S̄0 are odd, it directly contradicts the existence ofΛ. HenceC has exactly
one gate g. So for all v ∈ V (C)\{g}, |d+

Λ(v) − d−
Λ(v)| = |d+

Λ|C (v) − d−
Λ|C (v)| and

if we name the vertices of C g = v1v2 · · · vk = g the assignment of Λ must be

– Λ(vivi+1) =
{−−−→vivi+1 if i is odd;

−−−→vi+1vi otherwise
, ∀i ∈ �1, k − 1�.
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or its reverse so that Λ satisfies our assumption. Thus we have

max
Λ∈−→

O (S̄0)
min

(
min

v∈V (S̄0)\V (S)
|d+

Λ(v) − d−
Λ(v)|, min

v∈V (S̄0)∩V (S)
|d+

Λ(v) − d−
Λ(v)|+1

)

= max
Λ∈−→

O (S̄0\C)

min

(
min

v∈V (S̄0\C)\V (S)
|d+

Λ(v) − d−
Λ(v)|,

min
v∈V (S̄0\C)∩V (S)

|d+
Λ(v) − d−

Λ(v)| + 1

)
.

If there exists a vertex of degree one in S̄0\C then it is adjacent to a bridge in S̄0 and
is thereofre in V (S̄\C)\V (S), thus contradicting (3). So we assume that δS̄0\C = 2
and we can reiterate the same process with another odd cycle with exactly one gate
until we are left with an odd cycle Cend with no gates and conclude that

max
Λ∈−→

O (Cend )

min

(
min

v∈V (Cend )\V (S)
|d+

Λ(v) − d−
Λ(v)|,

min
v∈V (Cend )∩V (S)

|d+
Λ(v) − d−

Λ(v)| + 1

)
≥ 2;

Since this is impossible for an odd cycle, we deduce that (3) is wrong. Hence,
MaxIm(G) ≤ 1. 	

As already mentioned, Theorem 13 leads to a simple polynomial-time algorithm to

computeMaxIm(G) for cacti. Starting from the set S0 of even cycles, we add blocks
to S using the two operations defined above: bridges sharing a cut-vertex with a block
in S, and odd cycles sharing a cut-vertex with either a cycle or two bridges that are
already in S, are added to S.

5 Mixed integer linear programming formulations

In this section, we gradually introduce two formulations for theMaxIm problem. For
our purposes, we shall consider the original graph G = (V, E) is directed (consider
any arbitrary orientation) and let B ∈ {−1, 0, 1}|V |×|E | stand for its incidence matrix,
i.e., the column corresponding to the arc uv (or, equivalently, to the edge uv directed
from node u to node v), has only nonzero entries in the rows corresponding to the
nodes u and v: Bu,uv = 1 and Bv,uv = −1, respectively.

In order to describe an orientation of the graph G, we take orientation variables x ∈
{−1, 1}|E | interpreted as follows. For each edge uv ∈ E which is originally directed
from node u to node v: if xuv = 1 then uv is directed from u to v (i.e., the orientation
is the same as the original one) and is directed from v to u otherwise (i.e., the edge is
“reversed” with respect to the original orientation). Then if we look at the product of B
with an orientation vector x ∈ {−1, 1}|E | we obtain Bvx = d+

x (v)−d−
x (v), ∀v ∈ V ,

where d+
x (v) (resp. d−

x (v)) is the outdegree (resp. indegree) of v ∈ V in G w.r.t. the
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orientation described by x and Bv denotes the row of the matrix B which corresponds
to node v. Hence the MaxIm problem can be expressed as the following non-linear
formulation.

⎧⎪⎪⎨
⎪⎪⎩
max h
s.t.
h ≤ |Bvx |, ∀v ∈ V
x ∈ {−1, 1}|E |.

Let us derive from the preceding non-linear formulation an equivalent linear formu-
lation. To that purpose, we remove the absolute value of the constraint by squaring
it : h2 ≤ (Bvx)2, ∀v ∈ V . Since it still is not linear, we have to consider variables
representing the product of two variables and for that we substitute the x variables by
their 0-1 version. So developing, we obtain

(Bv(2x − 1))2 =
( ∑
uv∈E

Bv,uv(2xuv − 1)

)2

=
∑
uv∈E

B2
v,uv(2xuv−1)2+2

∑
uv,wv∈E
uv �=wv

Bv,uvBv,wv(2xuv−1)(2xwv−1)

=
∑
uv∈E

(4x2uv − 4xuv + 1)

+2
∑

uv,wv∈E
uv �=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1)

= d(v) + 2
∑

uv,wv∈E
uv �=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1).

Furthermore, since maximizing h is equivalent to maximizing its square root, sub-
stituting h2 by h, we obtain the following formulation.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max h
s.t.
h ≤ d(v) + 2

∑
uv,wv∈E
uv �=wv

Bv,uvBv,wv(4xuvxwv − 2xuv − 2xwv + 1), ∀v ∈ V

x ∈ {0, 1}|E |.

In order to linearize it, we introduce product variables zuv,wp ∈ {0, 1}, uv,wp ∈
E, uv �= wp representing the variables product xuvxwp. For a pair of edges (uv,wp) ∈
E2, uv �= wp, we add the constraints zuv,wp ≤ xuv, zuv,wp ≤ xwp and zuv,wp ≥
xuv + xwp − 1 so as to force zuv,wp = xuvxwp. We can relax the integer constraint
on the z variables and we obtain the following mixed integer linear programming
formulation.
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(MIP1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max h
s.t.
h≤d(v)+2

∑
uv,wv∈E
uv �=wv

Bv,uvBv,wv(4zuv,wv−2xuv − 2xwv + 1), ∀v ∈ V

zuv,wp ≤ xuv

zuv,wp ≤ xwp

zuv,wp ≥ xuv + xwp − 1
, ∀uv,wp ∈ E, uv �= wp

x ∈ {0, 1}|E |, zuv,wp ≥ 0, uv,wp ∈ E, uv �= wp, h ∈ R.

Theorem 16 For any graph G,

MIP1(G) = MaxIm(G),

Where MIP1(G) is the square root optimal of the objective value ofMIP1 for G.

Proof x ∈ {0, 1}|E | covers all the possible orientations of G and for every vertex
v ∈ V , the first constraint is equivalent to h ≤ (d+

x (v) − d−
x (v))2. 	


Thuswehave afirstmixed integer linear programming formulation for our problems
with O(m2) variables, O(m) of which are integer variables and O(m2) constraints.

Let us take a look at the linear program obtained by relaxing the integer constraint
of MIP1 on an input graph G = (V, E), and let us consider the triplet (xlp, zlp, hlp)
where xlpuv = 1

2 , ∀uv ∈ E ; zlpuv,wp = 0 for all pairs of edges uv,wp ∈ E that share

no endpoint; zlpuv,wv = 1+Bv,uvBv,wv

4 for all pairs of edges uv,wv ∈ E (i.e. all pairs of
edges in E that share an endpoint), and hlp = δ2G .

Lemma 17 (xlp, zlp, hlp) is a feasible solution of the linear relaxation of MIP1whith
objective value δ2G.

Proof Observe that ∀uv,wp ∈ E ,

0 = xlpuv + xlpwp − 1 ≤ zlpuv,wp ≤ xlpuv = xlpwv = 1

2
.

Moreover, ∀v ∈ V ,

d(v) + 2
∑

uv,wv∈E
uv �=wv

Bv,uvBv,wv(4z
lp
uv,wv − 2xlpuv − 2xlpwv + 1)

= d(v) + 2
∑

uv,wv∈E
uv �=wv

Bv,uvBv,wv(1 + Bv,uvBv,wv − 1 − 1 + 1)

= d(v) + 2
∑

uv,wv∈E
uv �=wv

(Bv,uvBv,wv)
2

= d(v) + 2
∑

uv,wv∈E
uv �=wv

1
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= d(v) + (d(v) − 1)d(v)

= d(v)2 ≥ δ2G .

	

The previous lemma proves that the optimal value of the linear relaxation of MIP1

is at least the minimum degree of the input graph squared, which corresponds to the
trivial upper bound of MaxIm(G).

We present a second formulation with reduced number of variables and constraints.
This second formulation involves the same orientation variables x ∈ {−1, 1}|E | we
described earlier and a second type of variables that are binary: indicator variables
yv
k with v ∈ V a vertex of G and k ∈ �−d(v), d(v)�. They have the following
interpretation: yv

k = 1 if and only if Bvx = d+
x (v)− d−

x (v) = k, so that the following
equation trivially holds

∑
k∈�−d(v),d(v)�

kyv
k = Bvx,∀v ∈ V .

Given the interpretation for the variables y, among those of the form yv
k , for some

fixed node v ∈ V , exactly one of them has value 1. Thus, the following constraints
are satisfied ∑

k∈�−d(v),d(v)�
yv
k = 1, ∀v ∈ V .

Notice that for a vertex v ∈ V , the difference between its oudegree and indegree
w.r.t. any orientation and its degree have the same parity. Thus instead of running k
through �−d(v), d(v)�, we can limit to k ∈ �−d(v), d(v)�, s.t. k ≡ d(v)[2], i.e. the
only possible values of d+

x (v) − d−
x (v) when x runs through {−1, 1}|E |. Then we can

show the MaxIm problem may be formulated as the mixed integer program

(MIP2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max h

s.t.

h ≤ ∑
k∈�−d(v),d(v)�

k≡d(v)[2]
min(|k|, δG)yv

k , ∀v ∈ V

∑
k∈�−d(v),d(v)�

k≡d(v)[2]
yv
k = 1, ∀v ∈ V

∑
k∈�−d(v),d(v)�

k≡d(v)[2]
kyv

k = Bvx, ∀v ∈ V

x ∈ [−1; 1]|E |, yv
k ∈ {0, 1},∀(v, k) ∈ V × �−d(v), d(v)�, s.t. k ≡ d(v)[2], h ∈ R.

Theorem 18 For any graph G,

MIP2(G) = MaxIm(G),

Where MIP2(G) is the optimal objective value of MIP2 for G.
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Proof First, if the orientation variables x were constrained to be integers, since yv
k = 1

if and only if Bvx = d+
x (v) − d−

x (v) = k and x ∈ {0, 1}|E | covers all the possible
orientations of G and for every vertex v ∈ V , the first and third constraints lead to
h ≤ |d+

x (v) − d−
x (v)| and the optimal objective value of the resulting formulation

would equal MaxIm(G).
Nowwe know that the incidence matrix B is totally unimodular. Hence, there exists

an integer optimal solution (x�, y�, h�) ofMIP2. If x� ∈ {−1, 1}|E | then (x�, y�, h�) is
solution of the all-integer version ofMIP2 mentioned above and therefore optimal, i.e.
its objective value isMaxIm(G). Otherwise x� describes a partial orientation ofG, i.e.
for an edge uv ∈ E , if x�

uv = 1 then the original orientation of the edge is preserved,
if x�

uv = −1 then it is reversed and if x�
uv = 0 then the edge is left unoriented. We

know that for each vertex v ∈ V , Bvx� ≡ d(v)[2]. So the number of edges adjacent
to v on which x� is non-zero must have the same parity as the degree of v. In other
words, the number of edges adjacent to v on which x� is zero must be even. That is
to say, let E ′ = {uv ∈ E |x�

uv = 0} and G ′ = (V, E ′), dG ′(v) ≡ 0[2] for each vertex
v ∈ V . Since G ′ is eulerian, we can take a cycle of G ′, orient it in a way that does
not change the imbalance of any vertex, remove it and proceed like this until there
are no more edges in G ′. The resulting (complete) orientation can be described by
an orientation vector x ′ ∈ {−1, 1}|E | and the triplet (x ′, y�, h�) is a solution of the
all-integer version of MIP2 having the same objective value as (x�, y�, h�), hence it
is optimal and therefore equal to MaxIm(G). 	


We now have a second mixed integer linear programming formulation ofMaxImwith
O(m + n) variables, O(m) of which are integer variable and O(n) constraints.

Let us consider the triplet (xlp, ylp, hlp) where xlpuv = 0, ∀uv ∈ E ; yv,lp
k =

0, ∀(v, k) ∈ V × �−d(v) + 1, d(v) − 1�, s.t. k ≡ d(v)[2]; and yv,lp
−d(v) = yv,lp

d(v) =
1
2 , ∀v ∈ V . Observe that (xlp, ylp, hlp) is a feasible solution of the linear relaxation
of MIP2 whith objective value δG . In other words, the linear relaxation MIP2 is
generally weak. Let us then try to strengthen it using some valid inequalities.

Remember from Sect. 2 that it is easy to check whether MaxIm(G) = 0. One can
then set variables yv

0 to 0 when MaxIm(G) > 0. We also know from the discussion
at the end of Sect. 3 that MaxIm(G) can almost not be less than δG

2 . More precisely,

if δG ≡ 0[4] then MaxIm(G) ≥ δG
2 while MaxIm(G) ≥ δG−1

2 when δG is odd and

MaxIm(G) ≥ δG
2 − 1 when δG ≡ 2[4].

More generally, if l is a known lower bound for MaxIm(G), then all variables yv
k

for |k| < l can be fixed to 0. To find such a lower bound, we use a standard greedy
algorithm to find a locally maximum cut and orient edges as described in the proof of
Theorem 9.

Let u be an upper bound forMaxIm(G). We already know thatMaxIm(G) ≤ δG ,
so we can assume that u ≤ δG . Consider the following inequality

h ≤ u −
n∑

v=1

∑
k∈�0,u−1�
k≡d(v)[2]

λv
k (y

v
k + yv−k), ∀λ ∈ Λu (4)
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where the vertices of G are numbered from 1 to |V | = n, and

Λu

=
{
λ = (λv

k )(v,k)∈�1,n�×�0,u−1� ∈ N
nu

∣∣∣∣λv
k+1 ≤ λv

k , ∀(v, k) ∈ �1, n� × �0, u − 2�∑n
v=1 λv

k = u − k, ∀k ∈ �0, u − 1�

}
.

Observe that coefficients λv
k are non-negative integer numbers and are non increasing

in k. For each k, there exists only one v such that λv
k+1 = λv

k − 1 while λw
k+1 = λw

k
for any w �= v. Let us prove that inequalities (4) are valid inequalities for the convex
hull of feasible solutions of MIP2 denoted by P2.

Proposition 19 Inequalities (4) are valid for P2.

Proof Consider a feasible solution (x, y, h) of P2. If yv
k = 0 and yv−k = 0 for

any v ∈ �1, n� and any k ∈ �0, u − 1�, then
∑n

v=1
∑

k∈�0,u−1�
k≡d(v)[2]

λv
k (y

v
k + yv−k) = 0

and inequality (4) becomes h ≤ u. The last is valid since u is an upper bound for
MaxIm(G).

Let us now assume that h ≤ u − 1, then there exist v ∈ �1, n� and k ≤ u − 1 such
that either yv

k or yv−k is equal to 1 while yw
k′ = 0 for any w ∈ �1, n� and k′ such that

|k′| < k.
Using the fact that yw

k is non increasing, we deduce that
∑

k′∈�0,u−1�
k′≡d(w)[2]

λw
k′(yw

k′ +
yw
−k′) ≤ λw

k

∑
k′∈�k,u−1�
k′≡d(w)[2]

(yw
k′ + yw

−k′) ≤ λw
k . Summing up these inequalities for all w

and using the fact that
∑n

v=1 λv
k = u − k leads to h ≤ k which is valid by k definition.

	

Observe that the first family of inequalities included in MIP2 can be seen as a

special case of inequalities (4).
Let us now study the separation problem of inequalities (4).

Proposition 20 Inequalities (4) can be separated in polynomial time.

Proof Given a fractional solution (x, y, h), one can check whether an inequal-
ity of type (4) is violated by looking for coefficients λ ∈ Λu maximizing∑n

v=1
∑

k∈�0,u−1�
k≡d(v)[2]

λv
k (y

v
k + yv−k). Remember that for each k, there exists only one

v such that λv
k+1 = λv

k − 1 while λw
k+1 = λw

k for any w �= v. Let vk be such v. Then∑n
v=1

∑
k∈�0,u−1�
k≡d(v)[2]

λv
k (y

v
k + yv−k) can be written as

∑
k∈�0,u−1�

∑
k′∈�0,k�(y

vk
k′ + yvk

−k′).

This immediately leads to the following algorithm. First, all λv
k are initially set to 0.

Then, we select vu−1 maximizing
∑

k∈�0,u−1�
k≡d(v)[2]

(yv
k + yv−k) and we increment by 1 all

λ
vu−1
k : λvu−1

k = λ
vu−1
k + 1 for any k ≤ u − 1. More generally, for each w ∈ �0, u − 1�,

we select vw maximizing
∑

k∈�0,w�
k≡d(v)[2]

(yv
k + yv−k) and we increment by 1 all λ

vw

k for

k ≤ w. The algorithm has clearly a polynomial-time complexity. 	
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A second family of valid inequalities is defined for each vertex v, each integer
number p ∈ �1, d(v)� and each subset of p edges incident to v.

∑
{{v j1},...,{v ji },...,{v jp}}⊂cut ({v})

Bv,{v ji }x{v ji } +
∑

k∈�0,p−1�

2(p − k)yv
2k−d(v) ≤ p. (5)

Proposition 21 Inequalities (5) are valid for P2.

Proof If all variables yv
2k−d(v) are equal to 0 for k ∈ �0, p − 1�, then inequality (5) is

implied by the fact that x ∈ [−1; 1]|E |.
Assume that yv

2k0−d(v) = 1 for some k0 ∈ �0, p − 1�. This requires that among all
edges of cut ({v}) there are exactly k0 (resp. d(v)−k0) edges {v j} such that Bv,{v j}x{v j}
= 1 (resp. Bv,{v j}x{v j} = −1). Consequently

∑
{{v j1},...,{v ji },...,{v jp}}⊂cut ({v})

Bv,{v ji }x{v ji } is upper bounded by k0 − (p − k0) = 2k0 − p. Moreover, we have∑
k∈�0,p−1� 2(p − k)yv

2k−d(v) = 2(p − k0). Inequality (5) immediately follows. 	

The separation problem of inequalities (5) is also easy to solve.

Proposition 22 Inequalities (5) can be separated in polynomial time.

Proof Given a fractional solution (x, y, h), for each vertex v and any p ∈ �1, d(v)�,
we order the edges of cut ({v}) in descending order according to Bv,{v j}x{v j} and we
select the first p edges. Then a violated inequality can be detected by comparison of∑

{{v j1},...,{v ji },...,{v jp}}⊂cut ({v}) Bv,{v ji }x{v ji } + ∑
k∈�0,p−1� 2(p − k)yv

2k−d(v) with p. 	

Let us now consider any cycle C and the two following inequalities.

∑
v∈C

(2yv
d(v) + yv

d(v)−2) ≤ |C |, (6)

∑
v∈C

(2yv
−d(v) + yv

−d(v)+2) ≤ |C |. (7)

Proposition 23 Inequalities (6) and (7) are valid forP2.

Proof Let us focus on the validity of inequalities (6) [inequalities (7) being provable
in the same way]. After orientation of the edges of the cycle C , let C+ be the set
of vertices of C for which their two incident edges are oriented outward from these
vertices to their neighbours.We also defineC− in the sameway be considering vertices
having two edges of the cycle oriented from their neighbours to them. The remaining
set of vertices of the cycle is denoted by C ∗ (they have an incoming incident edge and
an outgoing incident edge). These definitions are illustrated on Fig. 10. It is now easy
to see that we always have |C+| = |C−|.

Suppose that yv
d(v) = 1, then v ∈ C+. Observe also that yv

d(v)−2 = 1 requires v to be
inC+∪C ∗. Consequently,

∑
v∈C (yv

d(v)+ yv
d(v)−2) ≤ |C+|+|C ∗| and∑

v∈C yv
d(v) ≤

|C+|. Summing up both inequalities leads to
∑

v∈C (2yv
d(v) + yv

d(v)−2) ≤ 2|C+| +
|C ∗| = |C+| + |C−| + |C ∗| = |C |. 	
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Fig. 10 A vertex of a cycle C is
respectively in C+, C− or C ∗ if
it has two, zero or one outgoing
incident edge(s) in C

C

+

− −

+
−∗

∗ +

Proposition 24 Inequalities (6) and (7) can be separated in polynomial time.

Proof Let us again focus on inequalities (6) since (7) can be separated in a similar way.
Given a fractional solution (x, y, h), we need an algorithm to either compute a cycle
C such that |C | − ∑

v∈C (2yv
d(v) + yv

d(v)−2) < 0 or to certify that such a cycle does

not exist. For each edge uv, let us consider a weight cuv = 1 − (yv
d(v) + 1

2 y
v
d(v)−2) −

(yud(u) + 1
2 y

u
d(u)−2). Then we clearly have

|C | −
∑
v∈C

(2yv
d(v) + yv

d(v)−2) =
∑

{uv}∈C
cuv.

We are then looking for an undirected cycle having a negative total weight. This can
be done, for example, by computing a minimum weight ∅-join, where the last is a set
of edge disjoint cycles. This can be done using the algorithm of Edmonds and Johnson
(1973). Notice that this algorithm can provide many negative weight cycles with some
0 weight cycles. If the total weight of the ∅-join is strictly negative, a negative weight
cycle can be easily extracted. A different algorithm can also be found in Ben-Ameur
and Hadji (2010) (see Sect. 6 of the reference). 	


Given any cliqueK and any number p ∈ �1, |K |�, we consider the two following
inequalities.

∑
v∈K

min(p−1,d(v))∑
k=0

(p − k)yv
d(v)−2k ≤ p(p + 1)

2
, ∀p ∈ �1, |K |�, (8)

∑
v∈K

min(p−1,d(v))∑
k=0

(p − k)yv
2k−d(v) ≤ p(p + 1)

2
, ∀p ∈ �1, |K |�. (9)

Inequalities (8) can be seen as a generalization of the obvious inequalities∑
v∈K yv

d(v) ≤ 1 obtained when p = 1.

Proposition 25 Inequalities (8) and (9) are valid forP2.

Proof We can focus on inequalities (8). To maximize the left hand side of (8), we
can assume that all edges in cut (K ) are oriented from K to outside (this is due to
the fact that the coefficient p − k increases when k decreases). Then, yv

d(v)−2k = 1 is
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equivalent to say that exactly k edges, inside K and incident to v, are oriented from
v to outside.
Observe that inequality (8) is equivalent to

p
∑
v∈K

min(p−1,d(v))∑
k=0

yv
d(v)−2k ≤

∑
v∈K

min(p−1,d(v))∑
k=0

kyv
d(v)−2k + p(p + 1)

2
. (10)

Let q be the number of vertices ofK whose outdegree (in the graph induced byK ) is
atmost p−1after orientation.The left hand sideof (10) is givenby pq. The sumof theq
lowest outdegrees is exactly given by

∑
v∈K

∑min(p−1,d(v))
k=0 kyv

d(v)−2k . Using landau’s

theorem for tournaments (Landau 1953), we can write that
∑

v∈K
∑min(p−1,d(v))

k=0

kyv
d(v)−2k ≥ q(q−1)

2 . Adding p(p+1)
2 to both sides, we get

∑
v∈K

∑min(p−1,d(v))
k=0

kyv
d(v)−2k + p(p+1)

2 ≥ p2+q2+p−q
2 . Moreover, from (q − p)2 ≥ q − p, we get that

p2+q2+p−q
2 ≥ pq proving (10). 	


To separate inequalities (8), the following heuristic is used. Given a fractional
solution (x, y, h), for each vertex v and any p ∈ �1, d(v) + 1�, we use a greedy
approach to find a locally maximum-weight clique where the weight of any vertex
u ∈ V is

∑min(p−1,d(u))
k=0 (p−k)yud(u)−2k .We start withK := {v} and then recursively

find u = argmax{∑min(p−1,d(w))
k=0 (p−k)yw

d(w)−2k |w ∈ ∩v′∈K NG(v′)}, where NG(v)

denotes the set of the neighbours of v in G, and add it toK until ∩v′∈K NG(v′) = ∅.
Then if |K | ≥ p we can derive the inequality (8) corresponding toK .

6 Computational results

In order to assess the performance of formulations MIP1 and MIP2, we present some
computational results related to a wide variety of graphs. All algorithms were written
inC++ calling IBM’s ILOGCPLEXoptimizer©and experiments have been performed
using a processor 1.9GHzx4, 15.6GB RAM with four cores.

While the implementation of MIP1 is pretty straightforward: the model is
created with all inequalities described in Sect. 5 and then the mixed-integer-linear-
programming solver of CPLEX is run with default parameters, the implementation of
MIP2 needs to be detailed.

First of all, an initial solution is determined by computing a locally maximum cut
using the standard greedy algorithm described in the proof of Theorem 9. A starting
integer solution is then known for both formulations MIP1 and MIP2.

For both formulations and each instance, we set a limited total processing time of
15min (900s). If this limit is reached, then the process is interrupted and returns both
the objective value of the current best integer solution LMIP1 or LMIP2 and the current
best upper bound UMIP1 or UMIP2.

For formulation MIP2, a cutting-plane algorithm is implemented based on the
inequalities of Sect. 5. Inequalities are generated in the following order:
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• We look for a violated inequality of the type (4) according to the proof of Propo-
sition 20.

• We generate cliques using the heuristic described in the end of Sect. 5 and check
for a violated inequalities of the types (8) and (9).

• We search for a cycle with minimum weight with a simple flow formula-
tion solved as mixed integer program where each edge vw ∈ E has weight
1
2 (2y

v
d(v) + yv

d(v)−2 + yw
d(w) + yw

d(w)−2). If we find a negative weighted cycle,
then corresponding inequality of the type (6) is violated. We do the same with
the weight 1

2 (2y
v
−d(v) + yv

2−d(v) + yw
−d(w) + yw

2−d(w)) for an edge vw to find a
violated inequality of the type (7). For the sake of simplicity, inequalities (6) and
(7) are not separated using the algorithms of Edmonds and Johnson (1973) and
Ben-Ameur and Hadji (2010) but using a simple integer linear program computing
a minimum-weight cycle.

After various experimentations, we chose not to put the inequalities of type (5)
in the cutting-plane phase because when included, while the number of generated
inequalities increases excessively with the size of the graph, the optimal objective
value of the linear program is left unimproved.

After the addition of violated inequalities, the linear relaxation is solved to get a
fractional (x, y, h) solution and the process is repeated until no more violated inequal-
ities can be found. The optimal objective value of the last LP is denoted by vLP2. Notice
that the cutting-plane phase is intentionally limited to less than 10min (600s). Thus,
if either no more valid inequalities can be generated or the time spent in the cutting-
plane phase reaches 10min, we switch to branch and bound. The time spent in the
cutting-plane phase us denoted by tLP2.

CPLEX’s mixed integer programming solver is used with default parameters to
solve MaxIm. Notice that some automatic internal cuts are generated by the solver
to accelerate the branch and bound. As already mentioned, the total running time is
limited to 15min. The time spent in the branch and bound phase is denoted by tMIP2
while the best lower and upper bounds are respectively denoted by LMIP2 and UMIP2.

For each of the instances we report LMIP1, UMIP1, tMIP1, vLP2, tLP2, LMIP2, UMIP2,
and tMIP2, where tLP2, tMIP1 and tMIP2 are expressed in seconds. We also report nb(4),
nb(8,9) and nb(6,7), respectively the number of inequalities of the type (4), (8) and (9)
and (6) and (7) generated for each instance G = (V, E) along with |V |,|E | and δG .

The graph instances used for the computations are denoted as follows:

• Kn : the complete graph with n vertices,
• Gn

k : the n-dimensional grid of length k, i.e. the cartesian product of n paths graphs
of length k: •ni=1Lk , where Lk is a path graph of length k,

• G2
n1,n2 : the 2-dimensional grid, i.e. the cartesian product of two path graphs of

length n1 and n2: Ln1 • Ln2 ,
• tGn

k : the n-dimensional toroidal grid of length k, i.e. the cartesian product of n
cycless of length k: •ni=1Ck , where Ck is a cycle of length k,

• tG2
n1,n2 : the 2-dimensional toroidal grid, i.e. the cartesian product of cycles of

length n1 and n2: Cn1 • Cn2 ,
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• Pn,m : a randomly generated planar graph with n vertices and m edges,
• Rn,m : a randomly generated graph with n vertices and m edges.

More about the toroidal grids can be found in Degraaf and Schrijver (1994).
Table 1 shows that formulation MIP2 has a significantly better performance than

MIP1. On many instances we can observe that the cutting plane algorithm of MIP2
drastically improved the upper bound δG , sometimes so far as to the optimal objective
value as can be seen for example on the complete graphs, the planar graphs or most
of the n-dimensional toroidal grids. while the number and nature of the generated
inequalities varies a lot, it seems to never grow excessively. We can see that as soon as
the size of the instance becomes substantial, formulation MIP1 seems to degenerate,
needing too much time and/or memory to be processed, while MIP2 shows its ability
to handle large size graphs.

7 Further research

While computing the most imbalanced orientation of a graph is generally difficult,
the problem turns out to be easy for cacti. It may be the same for other graph classes.
Characterizing such graph classes would be interesting.

Two mixed integer linear programming formulations of MaxIm have been pre-
sented. Several families of valid inequalities have been presented to strengthen one
of the two formulations. Exhibition of other families of valid inequalities might be
helpful to solve larger size problems.

Finally, one can also the study the weighted version of the most imbalanced orien-
tation problem.

Acknowledgements The authors wish to thank the associate editor and the anonymous referees for many
valuable comments and suggestions that have led to a substantially improved paper.

Appendix 1: Proof of Lemma 6

Let ϕ be a not-all-equal at most 3-SAT formula with n variables {x1, . . . , xn} and m
clauses {c1, . . . , cm} and for all i ∈ �1, n�, let ki ∈ N be the number of occurences of
xi in ϕ. We assume that there is at least one variable xi that has at least 4 occurences in
ϕ (otherwise ϕ is already a not-all-equal at most 3-SAT(3V) formula) andwewill build
from ϕ a not-all-equal at most 3-SAT(3V) ϕ′ such that ϕ and ϕ′ are equisatisfiable as
follows.

• For all i ∈ �1, n�, if ki ≥ 4 then we introduce ki new variables {x1i , . . . , xkii } and
for l ∈ �1, ki � we replace the l-th occurence of xi in ϕ with xli .

• For all i ∈ �1, n�, if ki ≥ 4 then we add ki new clauses {c1xi , . . . , ckixi } where for
l ∈ �1, ki − 1�, clxi = (xli ∨ ¬xl+1

i ) and clxi = (xli ∨ ¬x1i ).

Suppose there exists an assignment v : {x1, . . . , xn} → {TRUE,FALSE} of
x1, . . . , xn satisfying ϕ. Then
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v′ : xi �→ v(xi ) ∀i ∈ �1, n� s.t. ki ≤ 3;
xli �→ v(xi ) ∀i ∈ �1, n� s.t. ki ≥ 4 and ∀l ∈ �1, ki �;

is an assignment of the variables xi and xli satisfying ϕ′ for
• ∀ j ∈ �1,m�, the values of the literals of c j w.r.t. v and v′ are piecewise equal so

v′(c j ) = v(c j ) = TRUE and v′ is not-all-equal for c j as well as v is;

• ∀i ∈ �1, n� s.t. ki ≥ 4, ∀l ∈ �1, ki − 1�, v′(xli ) = v′(xl+1
i ) = v(xi ) and v′(xkii ) =

v′(x1i ) = v(xi ) so we directly have ∀l ∈ �1, ki − 1�, v′(clxi ) = TRUE and

v′(ckixi ) = TRUE and v′ is not-all-equal for each of these clauses since they all
consist of two literals having opposite values w.r.t. v′.

As an example, for a formula

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

∧(x1 ∨ x3),

where x1 occurs five times and x3 four so we add nine new variables x11 , x
2
1 , x

3
1 , x

4
1 ,

x51 , x
1
3 , x

2
3 , x

3
3 and x43 and nine new clauses:

ϕ′ =(x11 ∨ ¬x2 ∨ x13) ∧ (¬x21 ∨ ¬x23 ∨ x4) ∧ (x31 ∨ ¬x2) ∧ (¬x41 ∨ ¬x33 ∨ ¬x4)

∧ (x51 ∨ x43 ) ∧ (x11 ∨ ¬x21 ) ∧ (x21 ∨ ¬x31) ∧ (x31 ∨ ¬x41) ∧ (x41 ∨ ¬x51)

∧ (x51 ∨ ¬x11) ∧ (x13 ∨ ¬x23 ) ∧ (x23 ∨ ¬x33) ∧ (x33 ∨ ¬x43 ) ∧ (x43 ∨ ¬x13).

Now suppose there exists an assignment v′ of the xi and xli satisfying ϕ′ and let

i ∈ �1, n� such that ki ≥ 4. If we take a look at the clauses c1xi , . . . , c
ki
xi , we notice that if

v′(x1i ) = FALSE then for c1xi to be satisfied, v
′(¬x2i ) = TRUE, i.e. v′(x2i ) = FALSE,

then for c2xi to be satisfied, v′(¬x3i ) = TRUE …etc. Repeating this argument, we

obtain that if v′(x1i ) = FALSE then v′(x1i ) = v′(x2i ) = · · · = v′(xkii ) = FALSE.

Similarly, if v′(xkii ) = TRUE then for ckixi to be satisfied, v′(¬xki−1
i ) = FALSE, i.e.

v′(xki−1
i ) = TRUE, then for cki−1

xi to be satisfied, v′(¬xki−2
i ) = FALSE…etc. Hence

if v′(xkii ) = TRUE then v′(xkii ) = v′(xki−1
i ) = · · · = v′(x1i ) = TRUE. This yields

that

∀i ∈ �1, n� s.t. ki ≥ 4, v′(x1i ) = v′(x2i ) = · · · = v′(xkii ).

Hence for all i ∈ �1, n� such that ki ≥ 4, we can replace x1i , . . . , x
ki
i by a unique

variable xi and doing so the clauses c1xi , . . . , c
ki
xi become trivial and can be removed

and only ϕ remains. So the following assignment of x1, . . . , xn :

v : xi �→ v′(xi ) ∀i ∈ �1, n� s.t. ki ≤ 3;
xi �→ v′(x1i ) ∀i ∈ �1, n� s.t. ki ≥ 4;

satisfies ϕ. We have just shown that ϕ and ϕ′ are equisatisfiable.
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