
J Comb Optim (2017) 34:426–432
DOI 10.1007/s10878-016-9997-8

Equitable vertex arboricity of 5-degenerate graphs

Guantao Chen1 · Yuping Gao2 · Songling Shan3 ·
Guanghui Wang2 · Jianliang Wu2

Published online: 20 February 2016
© Springer Science+Business Media New York 2016

Abstract Wu et al. (Discret Math 313:2696–2701, 2013) conjectured that the vertex
set of any simple graph G can be equitably partitioned into m subsets so that each
subset induces a forest, where �(G) is the maximum degree of G and m is an integer
with m ≥ ��(G)+1

2 �. This conjecture is verified for 5-degenerate graphs in this paper.

Keywords Graph · Equitable coloring · Vertex arboricity · Equitable vertex
arboricity · 5-Degenerate graph

1 Introduction

All graphs considered in this article are simple. Let G be a graph. We use
V (G), E(G), |G|, e(G),�(G) and δ(G) to denote the vertex set, edge set, order,
size, maximum degree and minimum degree of G, respectively. Denote by G\{xy}
the graph obtained from G by deleting the edge xy but keeping two end vertices. For
any vertex v ∈ V (G), let NG(v) be the set of all neighbors of v in G. The degree of
v, denoted by dG(v), is equal to |NG(v)|. We use d(v) instead of dG(v) if no con-
fusion arises. For two disjoint subsets U and W of V (G), the set of edges with one
end in U and the other end in W is denoted by E(U,W ) and e(U,W ) = |E(U,W )|.
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In particular, e(v,W ) = dW (v) denotes the number of neighbors of v in W . Define
NW (u), u ∈ U as the set of neighbors of u in W and NW (U ) = ⋃

u∈U
NW (u). We

denote by G[U ] the subgraph of G induced by U .
We associate positive integers 1, 2, . . . , k with colors and call f a k-coloring of

G if f is a mapping from V (G) to {1, 2, . . . , k}. A k-coloring f of G is equitable if
every color class has size � |G|

k � or � |G|
k �. A coloring f is said to be proper if every

two adjacent vertices receive different colors. The equitable chromatic number of
a graph G, denoted by χ=(G), is the minimum integer k such that G has a proper
equitable k-coloring. Note that a graph G which is equitably k-colorable may not
be equitably k′-colorable for k′ > k. The smallest k such that G has proper equi-
table colorings for any number of colors greater than or equal to k is called the
equitable chromatic threshold of G, and is denoted by χ≡(G). Erdős (1964)
conjectured that any graph with maximum degree �(G) ≤ r has a proper equi-
table (r + 1)-coloring. The conjecture was proved by Hajnal and Szemerédi (1970).
Recently, Kierstead and Kostochka (2008) gave a simpler proof of this theorem. There
are two well-known conjectures regarding proper equitable colorings.

Conjecture 1 (Meyer 1973) For any connected graph G, χ=(G) ≤ �(G), with the
exception that G is a complete graph or an odd cycle.

Conjecture 2 (Chen et al. 1994) For any connected graph G, χ≡(G) ≤ �(G), with
the exception that G is a complete graph, an odd cycle or a complete bipartite graph
K2m+1,2m+1.

Note that Conjecture 2 is stronger than Conjecture 1 and has been verified for many
classes of graphs, such as graphs with �(G) ≤ 4, see Chen et al. (1994), Chen and
Yen (2012) and Kierstead and Kostochka (2012) or �(G) ≥ |G|

3 + 1, see Chen et al.
(1994), Chen and Yen (2012) and Yap and Zhang (1997), bipartite graphs (Lih andWu
1996), outerplanar graphs (Yap and Zhang 1997), series-parallel graphs (Zhang and
Wu 2011) and planar graphs with�(G) ≥ 9, see Zhang and Yap (1998) and Nakprasit
(2012).

Here we consider a relaxed version of equitable coloring which is equitable tree-
coloring. A k-coloring of a graph G is said to be a k-tree coloring if the induced
subgraph G[Vi ] is a forest, where Vi denotes the set of vertices colored by i for each
i = 1, 2, . . . , k. The vertex arborici t y, or point arborici t y va(G) of a graph
G is the minimum integer k such that G admits a k-tree coloring. It is proved that
va(G) ≤ ��(G)+1

2 � for any graph (Kronk and Mitchem 1975) and va(G) ≤ 3 for
every planar graph (Chartrand and Kronk 1969). The minimum integer k such that
G has an equitable k-tree coloring is the equitable vertex arborici t y of G, and
is denoted by vaeq(G). The strong equitable vertex arborici t y of G, denoted by
va∗

eq(G), is the smallest m such that G has an equitable m′-tree coloring for every
m′ ≥ m. It is easy to see that va∗

eq(G) ≥ vaeq(G). In Wu et al. (2013), Wu, Zhang
and Li posed the following conjectures.

Conjecture 3 (Wu et al. 2013) va∗
eq(G) ≤ ��(G)+1

2 � for every graph G.

Conjecture 4 (Wu et al. 2013) There is a constant ζ such that va∗
eq(G) ≤ ζ for every

planar graph G.
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Conjecture 3 has been verified for graphs with �(G) ≥ |V (G)|
2 in Zhang and Wu

(2014). In Wu et al. (2013), Wu, Zhang and Li proved that va∗
eq(G) ≤ 3 for every

planar graph with g(G) ≥ 5 and va∗
eq(G) ≤ 2 for every outerplanar graph and

planar graph with g(G) ≥ 6, where g(G) denotes the girth of G. Zhang in 2015
proved that va∗

eq(G) ≤ 3 for any planar graph such that all cycles of length at most
4 are independent and planar graph without 3-cycles and adjacent 4-cycles. Recently,
Esperet, Lemoine and Maffray proved that va∗

eq(G) ≤ 4 for every planar graph G
(Esperet et al. 2015), which confirms Conjecture 4.

A d-degenerate graph is a graph G in which every subgraph has a vertex with
degree at most d. In this paper, we confirm Conjecture 3 for 5-degenerate graphs.
Clearly, since every planar graph has a vertex with degree at most 5, every planar
graph is 5-degenerate. So the family of 5-degenerate graphs is a natural extension
of the family of planar graphs. One strategy to tackle Conjecture 3 is to verify it for
special classes of graphs. The family of planar graphs has been one of the candidates.

Theorem 5 Let G be a 5-degenerate graph. Then va∗
eq(G) ≤ ��(G)+1

2 �.

2 Proof of Theorem 5

Proof �

Claim 1 Let m ≥ 1 be a fixed integer and G be the class of 5-degenerate graphs.
Suppose that any graph G in G of order mt is equitably m-tree colorable for any
integer t ≥ 1. Then all graphs G in G are also equitably m-tree colorable.

Proof We prove this Claim by induction on the order n of G. By the assumption, we
may assume that mt < n < m(t + 1). If m ≤ 2, then n = m(t + 1) − 1. Now we
consider the case that m ≥ 3. Let u ∈ V (G), d(u) = δ(G) ≤ 5. By the induction
hypothesis, G − u has an equitable m-tree coloring φ. Let the color classes of φ be
V1, V2, . . . , Vm , where |Vi | = t or t +1 for all i ≥ 1. Since d(u) ≤ 5, we assume each
of 3, . . . ,m appears at most once in the colors of N (u). If |Vi | = t for some i ≥ 3,
then by adding u to Vi , we get an equitable m-tree coloring of G (having color classes
V1, . . . , Vi−1, Vi

⋃{u}, Vi+1, . . . , Vm). Hence we can assume that |Vi | = t +1 for all
i ≥ 3 and we also have n = m(t + 1) − 1. Let G ′ = G

⋃
K1. Then G ′ is a graph of

orderm(t+1) and δ(G ′) ≤ 5, thus by the assumption,G ′ is equitablym-tree colorable
(and so is G). �


By Claim 1, we only need to show that |G| = mt , where m ≥ ��(G)+1
2 � and t are

positive integers.Weprove this theoremby induction onm. It is true form = 1 trivially.
Now we consider the case when m ≥ 2. Let G be an edge-minimal 5-degenerate
graph that is not equitably m-tree colorable with |G| = mt . Let x ∈ V (G) such that
d(x) = δ(G) = d ≤ 5. Let x1, x2, . . . , xd ∈ N (x). By edge-minimality of G, the
graphG\{xx1}has an equitablem-tree coloringφ having color classesV1, V2, . . . , Vm .
Then there exists a cycle C of G passing through the edge xx1 such that all vertices on
C are colored with the same color, for otherwise φ is also an equitablem-tree coloring
of G. Without loss of generality, we assume that x, x1, x2 ∈ V1, |N (x)

⋂
V2| ≤ 2,

123



J Comb Optim (2017) 34:426–432 429

|N (x)
⋂

Vi | ≤ 1(3 ≤ i ≤ m). Let V ′
1 = V1\({x} ⋃{v | v ∈ V1, N (v) ⊆

m⋃

i=2
Vi }).

Then |V ′
1| ≤ t − 1. Since x1, x2 ∈ V ′

1, V
′
1 �= ∅. We say a vertex v ∈ A is movable

to a set B if G[B ⋃{v}] contains no cycle, otherwise v is not movable to B, where
A, B ⊆ V (G) and A

⋂
B = ∅. So if v is not movable to B, then dB(v) ≥ 2 and there

is a vertex u ∈ NB(v) such that dB(u) ≥ 1.
We first consider the case when δ(G) ≤ 3.

In this case, |N (x)
⋂

Vi | ≤ 1(2 ≤ i ≤ m). If for each v ∈
m⋃

i=2
Vi , dV ′

1
(v) ≥ 2,

then e(
m⋃

i=2
Vi , V ′

1) ≥ 2(m − 1)t . However, this contradicts with e(
m⋃

i=2
Vi , V ′

1) ≤ (� −
1)(t − 1) and m ≥ ��(G)+1

2 �. Therefore, there exists v ∈ Vi for some i ∈ {2, . . . ,m}
such that dV ′

1
(v) ≤ 1. Then we get an equitablem-tree coloring ofG with color classes

(V1\{x})⋃{v}, V2, . . . , Vi−1, (Vi\{v})⋃{x}, Vi+1, . . . , Vm , a contradiction, too.
In the following, we deal with the case when 4 ≤ δ(G) ≤ 5.

Claim 2 No vertex v in
m⋃

i=3
Vi is movable to V ′

1.

Proof Suppose that there is v ∈ Vi (3 ≤ i ≤ m)which ismovable toV ′
1. Thenweget an

equitable m-tree coloring of G with color classes (V1\{x})⋃{v}, V2, . . . , Vi−1, (Vi\
{v})⋃{x}, Vi+1, . . . , Vm , a contradiction. �

Claim 3 There exists a vertex w ∈ V2 such that w is movable to V ′

1.

Proof By Claim 2, for each v ∈
m⋃

i=3
Vi , dV ′

1
(v) ≥ 2. Hence e(V ′

1,
m⋃

i=3
Vi ) ≥ 2(m −

2)t . Suppose that for any w ∈ V2, w is not movable to V ′
1, then dV ′

1
(w) ≥ 2 and

e(V ′
1,

m⋃

i=2
Vi ) ≥ 2(m − 1)t . This contradicts with e(V ′

1,
m⋃

i=2
Vi ) ≤ (� − 1)(t − 1) and

m ≥ ��(G)+1
2 �. �


Claim 4 No vertex v in
m⋃

i=3
Vi is movable to V ′

2, where V
′
2 = V2\{w}.

Proof Suppose that there exists v ∈
m⋃

i=3
Vi , such that v is movable to V ′

2. Then we

get an equitable m-tree coloring of G with color classes (V1\{x})⋃{w}, V ′
2

⋃{v},
V3, . . . , Vi−1, (Vi\{v})⋃{x}, Vi+1, . . . , Vm , a contradiction. �

Case 1 m = 3. Then �(G) ≤ 5.

We say a vertex z ∈ V ′
2 is replaceable by a vertex y ∈ V3 if yz ∈ E(G) and y is

movable to V ′
2\{z}.

Claim 5 For every vertex y ∈ V3, there is a vertex z in V ′
2 such that z is replaceable

by y.
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Proof For any y ∈ V3, we know that 2 ≤ dV ′
1
(y) ≤ 3 and 2 ≤ dV ′

2
(y) ≤ 3. If

dV ′
2
(y) = 2, any neighbor of y in V ′

2 is replaceable by y. So assume that dV ′
2
(y) = 3

and NV ′
2
(y) = {z1, z2, z3}. If there is no path connecting zi and z j for some i, j ∈

{1, 2, 3}, i �= j , then {z1, z2, z3}\{zi , z j } is replaceable by y. Therefore, there are
paths P1, P2, P3 connecting z1 and z2, z1 and z3, z2 and z3, respectively. Because
G[V ′

2] is a forest, there is a common vertex z ∈ V (P1)
⋂

V (P2)
⋂

V (P3). Then z is
replaceable by y. �

Claim 6 If z ∈ V ′

2 is replaceable by a vertex y ∈ V3, then z is not movable to V ′
1.

Proof Suppose that z ∈ V ′
2 is replaceable by vertex y ∈ V3 and z is mov-

able to V ′
1. Then we get an equitable 3-tree coloring of G with color classes

(V1\{x})⋃{z}, (V2\{z})⋃{y}, (V3\{y})⋃{x}, a contradiction. �

Since |V ′

2| ≤ t − 1, |V3| = t , by Claim 5, there exists a vertex z ∈ V ′
2 such that z

is replaceable by at least two vertices in V3. By Claim 6, dV ′
1
(z) ≥ 2 and dV ′

2
(z) ≥ 1.

So dV3(z) ≤ 2. If z is replaceable by at least three vertices in V3, then at least two
of them, say y1, y2 are not adjacent. Note that there are paths connecting z to y1, y2,
so z has at most neighbor in V3\{y1, y2}. Then we get an equitable 3-tree color-
ing with color classes (V1\{x})⋃{w}, (V2\{z, w})⋃{y1, y2}, (V3\{y1, y2})⋃{z, x},
a contradiction. Therefore, z is replaceable by exactly two vertices in V3, say y1, y2.
If y1y2 /∈ E(G) or G[(V ′

2\{z})
⋃{y1, y2}] is a forest, then we obtain an equitable

3-tree coloring of G as previously. So y1y2 ∈ E(G) and there exist z1, z2 ∈ V ′
2 such

that either (a) y1z1, y2z2 ∈ E(G) and there is a path P connecting z1 and z2 or (b)
z1 = z2. If (a) holds, since z is replaceable by y1 and y2, there are paths P1, P2
connecting z to z1, z2 in V ′

2, respectively. Since G[V ′
2] is a forest, there is a vertex

z′ ∈ V (P)
⋂

V (P1)
⋂

V (P2). If (b) holds, let z1 = z2 = z′. Since dV ′
1
(yi ) ≥ 2

and y1y2 ∈ E(G), hence dV ′
2
(yi ) = 2, i = 1, 2. So in both cases, z′ is replaceable

by y1 and y2. If z′ is replaceable by y3 ∈ V3\{y1, y2}, then y1y3 /∈ E(G), we can
get an equitable 3-tree coloring of G as previously, a contradiction. Hence z′ is not
replaceable by any vertex in V3\{y1, y2}. This means that we can assign the vertices
in V ′

2 such that each of them is replaceable by at most one vertex in V3. However, this
contradicts with |V ′

2| < |V3|.
Case 2 m ≥ 4.

Claim 7 For every vertex v ∈ Vi , i ∈ {3, . . . ,m}, if dV ′
2
(v) = 2, then each vertex

u ∈ NV ′
2
(v) is not movable to V ′

1 and dV ′
2
(u) ≥ 1.

Proof Suppose that there exists u ∈ NV ′
2
(v) which is movable to V ′

1. Then we get an
equitable m-tree coloring with color classes (V1\{x})⋃{u}, (V2\{u})⋃{v}, V3, . . . ,
Vi−1, (Vi\{v})⋃{x}, Vi+1, . . . , Vm , a contradiction. By Claim 4, v is not movable to
V ′
2, so dV ′

2
(u) ≥ 1. �


Define by V ′
i = {v ∈ Vi | dV ′

2
(v) = 2}, i ∈ {3, . . . ,m}. Let V ′

k =
{
V ′
m−1, if |V ′

m−1| ≥ |V ′
m |;

V ′
m, otherwise.

We assume without loss of generality V ′
k = V ′

m .
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Claim 8 |V ′
m | ≥ 3. Furthermore, there exists a vertex z ∈ NV ′

2
(V ′

m) such that
dV ′

m
(z) ≥ 3.

Proof Let V ′
21 = {v ∈ V ′

2 | v ∈ NV ′
2
(
m⋃

i=3
Vi ) and v has at least one neighbor in V ′

2}
and V ′′

21 = V ′
21

⋃{v ∈ V ′
2 | there is a path connecting v to some vertex u ∈ V ′

21 in V
′
2}.

Suppose that |V ′
m | ≤ 2. Then by the former arguments and Claim 7

�(G)|V ′′
21| ≥

∑

v∈V ′′
21

d(v)

≥ |V ′′
21| + 2(m − 4)t + 2(|V ′

m−1| + |V ′
m |) + 3(t − |V ′

m−1| + t − |V ′
m |)

+ 2max{|NV ′
2
(V ′

m−1)|, |NV ′
2
(V ′

m)|}
≥ |V ′′

21| + (2m − 2)t,

which is a contradiction with m ≥ ��(G)+1
2 � and |V ′′

21| < t .
Suppose that for any vertex z ∈ NV ′

2
(V ′

m) we have dV ′
m
(z) ≤ 2. Since for each

vertex v ∈ V ′
m , e(v, V ′

2) = 2, then |NV ′
2
(V ′

m)| ≥ |V ′
m |. Therefore,

�(G)|V ′′
21| ≥

∑

v∈V ′′
21

d(v)

≥ |V ′′
21| + 2(m − 4)t + 2(|V ′

m−1| + |V ′
m |) + 3(t − |V ′

m−1| + t − |V ′
m |)

+ 2max{|NV ′
2
(V ′

m−1)|, |NV ′
2
(V ′

m)|}
≥ |V ′′

21| + 2(m − 4)t + 2(|V ′
m−1| + |V ′

m |) + 3(t − |V ′
m−1| + t − |V ′

m |) + 2|V ′
m |

≥ |V ′′
21| + (2m − 2)t,

which is a contradiction with m ≥ ��(G)+1
2 � and |V ′′

21| < t . �

ByClaim8, there exists z ∈ V ′

2 with dV ′
m
(z) ≥ 3. SinceG[V ′

m] is a forest, we assume
that y1, y2 ∈ NV ′

m
(z) and y1y2 /∈ E(G). Then (V1\{x})⋃{w}, (V2\{z, w})⋃{y1, y2}

is an equitable 2-tree coloring of the graph G[(V1\{x})⋃{w} ⋃
(V2\{z, w})⋃

{y1, y2}]. Let G1 = G\G[(V1\{x})⋃{w} ⋃
(V2\{z, w})⋃{y1, y2}]. Then we can

see that �(G1) ≤ �(G) − 4 = 2(�(G)+1
2 − 2) − 1 ≤ 2(m − 2) − 1. Then we

have m − 2 ≥ ��(G1)+1
2 �. By induction hypothesis, G1 has an equitable (m − 2)-tree

coloring. So we can get an equitable m-tree coloring of G, a contradiction.
We complete the proof of the theorem.
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