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Abstract A (proper) total-k-coloring of a graphG is a mapping φ : V (G)∪E(G) �→
{1, 2, . . . , k} such that any two adjacent elements in V (G) ∪ E(G) receive different
colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident
edges of v. A total-k-adjacent vertex distinguishing-coloring ofG is a total-k-coloring
of G such that for each edge uv ∈ E(G), C(u) �= C(v). We denote the smallest value
k in such a coloring of G by χ ′′

a (G). It is known that χ ′′
a (G) ≤ �(G) + 3 for any

planar graph with �(G) ≥ 11. In this paper, we show that if G is a planar graph
with �(G) ≥ 10, then χ ′′

a (G) ≤ �(G) + 3. Our approach is based on Combinatorial
Nullstellensatz and the discharging method.

Keywords Adjacent vertex distinguishing total coloring · Planar graph ·
Maximum degree

1 Introduction

Let G be a simple, undirected graph. Denote the vertex set, edge set, maximum degree
and minimum degree of G by V (G), E(G), �(G) and δ(G) (or simply V, E,� and
δ), respectively. The terminology and notation used but undefined in this paper can be
found in Bondy and Murty (1976).
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A (proper) total-k-coloring of a graph G is a coloring of V ∪ E using k colors
such that no two adjacent or incident elements receive the same color. A graph G is
total-k-colorable if it admits a total-k-coloring. The total chromatic number χ ′′(G)

of G is the smallest integer k such that G is total-k-colorable.
Given a total-k-coloring φ of G, let Cφ(v) denote the set of the color of v and the

colors of the edges incident with v. If Cφ(u) is different from Cφ(v) for each edge
uv, then this total-k-coloring is called adjacent vertex distinguishing, or total-k-avd-
coloring for short. The smallest k is called the adjacent vertex distinguishing total
chromatic number, denoted by χ ′′

a (G).
Let χ(G) and χ ′(G) denote the vertex chromatic number and the edge chromatic

number of G respectively. Then we have the following relation:

Proposition 1 For any graph G, χ ′′
a (G) ≤ χ(G) + χ ′(G).

Suppose that G is a planar graph. Then χ(G) ≤ 4 by the Four-Color Theorem (Appel
and Haken 1977; Appel et al. 1977) and �(G) ≤ χ ′(G) ≤ �(G) + 1 by Vizing
(1964). So χ ′′

a (G) ≤ �(G) + 5. Particularly, since χ ′(G) = �(G) when �(G) ≥ 7
by Sanders and Zhao (2001), χ ′′

a (G) ≤ �(G)+4. Zhang et al. proposed the following
conjecture in Zhang et al. (2005):

Conjecture 1 (Zhang et al. 2005)For any graphG with at least two vertices,χ ′′
a (G) ≤

�(G) + 3.

Coker and Johannson (2012) used a probabilistic method to establish an upper
bound �(G) + c for χ ′′

a (G), where c > 0 is a constant. Later, Huang et al. (2012)
proved that χ ′′

a (G) ≤ 2�(G) for any graph G with maximum degree �(G) ≥ 3.
Conjecture 1 was confirmed for graphs with maximum degree at most three by Chen
(2008) and independently byWang (2007).Wang andWang proved that this conjecture
holds for outerplanar graphs (Wang andWang 2010) and K4-minor free graphs (Wang
and Wang 2009). Huang and Wang proved that χ ′′

a (G) ≤ �(G) + 2 for planar graphs
with maximum degree at least 14 in Wang and Huang (2014), and they also proved
the following result:

Theorem 1 (Huang and Wang 2012) Let G be a planar graph with maximum degree
�(G) ≥ 11. Then χ ′′

a (G) ≤ �(G) + 3.

In this paper, we prove the following result, which improves the bound in Huang
and Wang (2012).

Theorem 2 Let G be a planar graph with maximum degree �(G) ≥ 10. Then
χ ′′
a (G) ≤ �(G) + 3.

Recently the adjacent vertex distinguishing total coloring by sums has been con-
sidered. For a total-k-coloring φ of G, let mφ(v) denote the total sum of colors of the
edges incident with v and the color of v. Ifmφ(u) �= mφ(v) for each edge uv, then this
total-k-coloring is called a total-k-neighbor sum distinguishing-coloring. The smallest
number k is called the neighbor sum distinguishing total chromatic number. For this
coloring, see Cheng et al. (2015), Ding et al. (2014), Dong and Wang (2014), Li et al.
(2015), Li et al. (2013), Pilśniak and Woźniak (2015).
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2 Notations and preliminaries

For a given planar graph G, a vertex of degree k (at least k, at most k) is called a
k-vertex (k+-vertex, k−-vertex). A face of degree k (at least k, at most k) is called a k-
face (k+-face, k−-face). Denote the set of faces ofG by F(G). For x ∈ V (G)∪F(G),
let dG(x) denote the degree of x inG. For a vertex v ∈ V (G), we use NG

k (v) to denote
the set of k-vertices adjacent to v in G, and let nGk (v) = |NG

k (v)|. Similarly, we define
nGk+(v) and nGk−(v). If there is no confusion in the context, we usually write nGk (x),
nGk+(x) and nGk−(x) as nk(x), nk+(x) and nk−(x) respectively.

Suppose that φ is a total-k-avd-coloring of a planar graph G and v ∈ V . Recall
Cφ(v) is the set of the color of v and the colors of the edges incident with v and
mφ(v) is the total sum of colors in Cφ(v). Obviously, for two adjacent vertices u and
v, if mφ(u) �= mφ(v), then Cφ(u) �= Cφ(v). We call two adjacent vertices u and v

conflict on φ if Cφ(u) = Cφ(v). Let Dφ(v) denote the union of Cφ(v) and the colors
of vertices adjacent to v. Now we state the Combinatorial Nullstellensatz.

Lemma 1 (Alon (1999), Combinatorial Nullstellensatz) Let F be an arbitrary field,
and let P = P(x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the degree
deg(P) of P equals

∑n
i=1 ki , where each ki is a non-negative integer, and suppose

the coefficient of xk11 · · · xknn in P is non-zero. Then if S1, . . . , Sn are subsets of F with
|Si | > ki , i = 1, . . . , n, there exist s1 ∈ S1, . . . , sn ∈ Sn so that P(s1, . . . , sn) �= 0.

3 Proof of the main theorem

From Theorem 1 we know that if G is a planar graph with �(G) ≥ 11, then χ ′′
a (G) ≤

�+3, sowe only need to consider�(G) = 10. LetG be a counterexample of Theorem
2 such that |V (G)| + |E(G)| is as small as possible. Obviously, G is connected.

Let e be any edge of G and H = G − e. If �(H) = �(G) = 10, then by the
minimality of G, χ ′′

a (H) ≤ 13. If �(H) = �(G) − 1 = 9, then by Proposition 1,
χ ′′
a (H) ≤ �(H) + 4 = 13. Therefore, χ ′′

a (H) ≤ 13 for both cases.
Note that if P(x1, x2, . . . , xm) is a polynomial with deg(P) = n, k1, k2, . . . , km

are non-negative integers with
m∑

i=1
ki = n and cP (xk11 xk22 · · · xkmm ) is the coefficient

of monomial xk11 xk22 · · · xkmm in P , then ∂n P

∂x
k1
1 ∂x

k2
2 ···∂xkmm

= cP (xk11 xk22 · · · xkmm )
∏m

i=1 ki !.
In the following, we always use MATLAB to calculate the coefficients of specific
monomials. The codes are listed in Appendix.

3.1 Unavoidable configurations

Claim 1 There is no edge uv ∈ E(G) such that d(v) ≤ 6 and d(u) ≤ 5.

Proof Assume to the contrary that G contains an edge uv such that d(v) = t ≤ 6
and d(u) = s ≤ 5, and s ≤ t . Let H = G − uv. Then there exists a total-13-avd-
coloring ψ of H by the above analysis. Without loss of generality, we assume that
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Fig. 1 Configurations in the proof of Claim 1

C = {1, 2, . . . , 13} is the set of all colors used in ψ . Let u1, u2, . . . , us−1 be the
neighbors of u other than v, and v1, v2, . . . , vt−1 be the neighbors of v other than u.
Case 1 t ≤ 5. Without loss of generality, we may assume that s = t = 5 (We can
get an easier proof for other cases). Erase the colors of u, v and denote this partial
total-13-avd-coloring by φ′. Let S1 = C \ Dφ′(u), S2 = C \ (Cφ′(u) ∪ Cφ′(v)) and
S3 = C \ Dφ′(v). Then |Si | ≥ 5 for i = 1, 2, 3. Now we extend φ′ to G. We will color
u, uv, v with the colors si ∈ Si , i = 1, 2, 3 respectively (see Fig. 1(1)). Let φ denote
the coloring after u, uv, v are colored. If si − s j �= 0 for 1 ≤ i < j ≤ 3, then φ is
a proper total coloring. If mφ(u) �= mφ(ui ), mφ(v) �= mφ(vi ) for i = 1, 2, 3, 4, and
mφ(u) �= mφ(v), then φ is an adjacent vertex distinguishing coloring. Hence φ would
be a total-13-avd-coloring if there exist si ∈ Si , i = 1, 2, 3 such that P(s1, s2, s3) �= 0,
where

P(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3)(x1 + mφ′(u) − (x3 + mφ′(v)))

4∏

i=1

(x1 + x2 + mφ′(u) − mφ′(ui ))
4∏

i=1

(x3 + x2 + mφ′(v) − mφ′(vi )).

By MATLAB, we obtain that cP (x41 x
4
2 x

4
3) = cQ(x41 x

4
2 x

4
3) = 20 �= 0, where

Q(x1, x2, x3) = (x1 − x2)(x1 − x3)2(x2 − x3)(x1 + x2)4(x2 + x3)4. According to
Lemma 1, since deg(P) = 12 and |Si | ≥ 5, i = 1, 2, 3, there exist si ∈ Si , i = 1, 2, 3
such that P(s1, s2, s3) �= 0. Coloring u, uv, v with s1, s2, s3 respectively and then we
obtain a total-13-avd-coloring of G, which is a contradiction.
Case 2 t = 6.Without loss of generality, wemay assume that s = 5 and t = 6 (We can
get an easier proof for other cases). Erase the color of u.We conclude that d(ui ) �= d(u)

for any i ∈ {1, 2, 3, 4} by Case 1. Suppose that ψ(v) = 1, ψ(vvi ) = i + 1 for i ∈
{1, 2, . . . , 5}, andψ(uu j ) = a j for j ∈ {1, 2, 3, 4}.Without loss of generality, assume
{a1, a2, a3, a4} ⊆ {1, 2, . . . , 10} (see Fig. 1(2)). If there exists a color x ∈ {11, 12, 13}
such that coloring uv with x cannot result in conflicting vertices, then we color uv

with the color x . Otherwise, without loss of generality, we can assume the conflicting
vertices are v1, v2, v3 respectively, which means that Cψ(vi ) = {1, 2, . . . , 6, i + 10}
for i = 1, 2, 3. Recolor v with a color a ∈ {7, 8, 9, 10}\{ψ(v4), ψ(v5)}. Since now the
possible conflicting vertices of v are v4 and v5, we can choose a color in {11, 12, 13}
to color uv such that v does not conflict with v4 and v5. Finally, we color u. Since
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d(ui ) �= d(u), i = 1, 2, 3, 4, u have at most 10 forbidden colors. Thus we can color
u safely and then we obtain a total-13-avd-coloring of G, which is a contradiction. ��

Suppose φ is a partial total-13-avd-coloring of G. We call φ to be a nice total-13-
avd-coloring of G if only some 5−-vertices are not colored. Observe that every nice
total-13-avd-coloring can be greedily extended to a total-13-avd-coloring of G since
each 5−-vertex v has at most 10 forbidden colors by Claim 1.

Claim 2 If v is a 7-vertex of G, then n5−(v) ≤ 2. Moreover, if n3−(v) ≥ 1, then
n5−(v) = 1.

Proof Let v1, v2, . . . , v7 be the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(v7).
(1) Suppose to the contrary that n5−(v) ≥ 3. Then d(v1) ≤ d(v2) ≤ d(v3) ≤ 5.

Let H = G − vv1 − vv2 − vv3. Thus there exists a total-13-avd-coloring of H by the
minimality of G. Erase the colors of v, v1, v2, v3 and denote this partial total-13-avd-
coloring by φ′. Let C denote the set of all colors used in φ′. Let Si = C \ (Cφ′(v) ∪
Cφ′(vi )) for i = 1, 2, 3, and let S4 = C \ Dφ′(v). Then |Si | ≥ 5 for i = 1, 2, 3, 4.
We will color vvi with the color si ∈ Si for i = 1, 2, 3 and color v with the color
s4 ∈ S4. Let φ denote the partial coloring after vv1, vv2, vv3 and v are colored. If
si − s j �= 0 for 1 ≤ i < j ≤ 4, then φ is a proper total coloring. If mφ(v) �= mφ(vi ),
i.e.,

∑4
t=1 st + mφ′(v) − mφ′(vi ) �= 0 for i = 4, 5, 6, 7, then φ is an adjacent vertex

distinguishing coloring. Hence φ would be a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2, 3, 4 such that P(s1, s2, s3, s4) �= 0, where

P(x1, x2, x3, x4) =
∏

1≤i< j≤4

(xi − x j )
7∏

i=4

(
4∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

By MATLAB, cP (x41 x
3
2 x

2
3 x4) = cQ(x41 x

3
2 x

2
3 x4) = 1 �= 0, where Q(x1, x2, x3, x4)

= ∏
1≤i< j≤4(xi − x j )(

∑4
t=1 xt )

4. According to Lemma 1, since deg(P) = 10
and |Si | ≥ 5 for i = 1, 2, 3, 4, there exist si ∈ Si , i = 1, 2, 3, 4 such that
P(s1, s2, s3, s4) �= 0. Coloring vv1, vv2, vv3, v with s1, s2, s3, s4 respectively and
then we obtain a nice total-13-avd-coloring, which is a contradiction.

(2) Suppose n5−(v) ≥ 2 when n3−(v) ≥ 1. Then d(v1) ≤ 3 and d(v2) ≤ 5. Let
H = G−vv1−vv2. Then there exists a total-13-avd-coloring of H by the minimality
of G. Erase the colors of v1, v2 and denote this partial total-13-avd-coloring by φ′.
Let C denote the set of all colors used in φ′ and let Si = C \ (Cφ′(v) ∪ Cφ′(vi ))
for i = 1, 2. Obviously, |S1| ≥ 5 and |S2| ≥ 3. Now we extend φ′ to G and let φ

denote the coloring after vv1 and vv2 are colored. Let s1, s2 correspond to the colors
of vv1, vv2 respectively. Similar to (1), φ is a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2 such that P(s1, s2) �= 0, where

P(x1, x2) = (x1 − x2)
∏

3≤i≤7

(x1 + x2 + mφ′(v) − mφ′(vi )).

ByMATLAB, cP (x41 x
2
2 ) = cQ(x41 x

2
2 ) = 5, where Q(x1, x2) = (x1−x2)(x1+x2)5.

According to Lemma 1, since deg(P) = 6, |S1| ≥ 5 and |S2| ≥ 3, there exist
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si ∈ Si , i = 1, 2 such that P(s1, s2) �= 0. Coloring vv1, vv2 with s1, s2 respectively
and then we obtain a nice total-13-avd-coloring, which is a contradiction. ��
Claim 3 Suppose v is an 8-vertex of G. If n4−(v) ≥ 1, then n5−(v) ≤ 3. Moreover, if
n3−(v) ≥ 2, then n5−(v) = 2.

Proof Let v1, v2, . . . , v8 be the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(v8).
(1) Suppose to the contrary that n5−(v) ≥ 4 when n4−(v) ≥ 1. Then d(v1) ≤ 4 and

d(v2) ≤ d(v3) ≤ d(v4) ≤ 5. Let H = G − vv1 − vv2 − vv3 − vv4. Then there exists
a total-13-avd-coloring of H by the minimality of G. Erase the colors of v1, v2, v3
and v4 and denote this partial total-13-avd-coloring by φ′. Let C denote the set of all
colors used in φ′ and let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, 3, 4. Obviously,
|S1| ≥ 5 and |Si | ≥ 4 for i = 2, 3, 4. Now we extend φ′ to G and let φ denote
the coloring after vv1, vv2, vv3 and vv4 are colored. Let s1, s2, s3, s4 correspond to
the colors of vv1, vv2, vv3, vv4 respectively. Similar to Claim 2(1), φ is a nice total-
13-avd-coloring, if there exist si ∈ Si , i = 1, 2, 3, 4 such that P(s1, s2, s3, s4) �= 0,
where

P(x1, x2, x3, x4) =
∏

1≤i< j≤4

(xi − x j )
∏

5≤i≤8

(
4∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

By MATLAB, cP (x41 x
3
2 x

2
3 x4) = cQ(x41 x

3
2 x

2
3 x4) = 1, where Q(x1, x2, x3, x4) =

∏
1≤i< j≤4(xi − x j )(

∑4
t=1 xt )

4. According to Lemma 1, since deg(P) = 10, |S1| ≥ 5
and |Si | ≥ 4 for i = 2, 3, 4, there exist si ∈ Si , i = 1, 2, 3, 4 such that
P(s1, s2, s3, s4) �= 0. Coloring vv1, vv2, vv3, vv4 with s1, s2, s3, s4 respectively and
then we obtain a nice total-13-avd-coloring, which is a contradiction.

(2) Suppose to the contrary that n5−(v) ≥ 3 when n3−(v) ≥ 2. Then d(v1) ≤
d(v2) ≤ 3 and d(v3) ≤ 5. Let H = G − vv1 − vv2 − vv3. Then there exists a
total-13-avd-coloring of H by the minimality of G. Erase the colors of v1, v2 and
v3 and denote this partial total-13-avd-coloring by φ′. Let C denote the set of all
colors used in φ′ and let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, 3. Then |S1| ≥ 5,
|S2| ≥ 5 and |S3| ≥ 3. Now we extend φ′ to G and let φ denote the coloring after
vv1, vv2 and vv3 are colored. Let s1, s2, s3 correspond to the colors of vv1, vv2, vv3
respectively. Similar to Claim 2(1), φ is a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2, 3 such that P(s1, s2, s3) �= 0, where

P(x1, x2, x3) =
∏

1≤i< j≤3

(xi − x j )
∏

4≤i≤8

(
3∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

By MATLAB, cP (x41 x
3
2 x3) = cQ(x41 x

3
2 x3) = 5, where Q(x1, x2, x3) = ∏

1≤i< j≤3

(xi − x j )(
∑3

t=1 xt )
5. According to Lemma 1, since deg(P) = 8, |S1| ≥ 5, |S2| ≥ 5

and |S3| ≥ 3, there exist si ∈ Si , i = 1, 2, 3 such that P(s1, s2, s3) �= 0. Coloring
vv1, vv2, vv3 with s1, s2, s3 respectively and then we obtain a nice total-13-avd-
coloring, a contradiction. ��
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Claim 4 Suppose v is a 9-vertex of G. If n4−(v) ≥ 1 then n5−(v) ≤ 6. Moreover, if
n3−(v) ≥ 1 and n4−(v) ≥ 2, then n5−(v) ≤ 3.

Proof Let v1, v2, . . . , v9 be the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(v9).
(1) Suppose to the contrary that n5−(v) ≥ 7 when n4−(v) ≥ 1. Then d(v1) ≤ 4

and d(v2) ≤ d(v3) ≤ · · · ≤ d(v7) ≤ 5. Let H = G − vv1 − vv2 − · · · − vv7.
Thus there is a total-13-avd-coloring of H by the minimality of G. Erase the colors
of v, v1, v2, . . . , v7 and denote this partial total-13-avd-coloring by φ′. Let C denote
the set of all colors used in φ′. Let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, . . . , 7
and let S8 = C \ Dφ′(v). Then |S1| ≥ 8, |Si | ≥ 7 for i = 2, 3, . . . , 7 and |S8| ≥ 9.
Nowwe extend φ′ to G and let φ denote the coloring after vv1, vv2, . . . , vv7 and v are
colored. Let s1, s2, . . . , s7 and s8 correspond to the colors of vv1, vv2, . . . , vv7 and
v respectively. Similar to Claim 2(1), φ is a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2, . . . , 8 such that P(s1, s2, . . . , s8) �= 0, where

P(x1, x2, . . . , x8) =
∏

1≤i< j≤8

(xi − x j )
∏

8≤i≤9

(
8∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

By MATLAB, cP (x71 x
5
2 x

4
3 x

3
4 x

2
5 x6x

8
8) = cQ(x71 x

5
2 x

4
3 x

3
4 x

2
5 x6x

8
8) = −1, where

Q(x1, x2, . . . , x8) = ∏
1≤i< j≤8(xi − x j )(

∑8
t=1 xt )

2. According to Lemma 1, since
deg(P) = 30, |S1| ≥ 8, |Si | ≥ 7 for i = 2, 3, . . . , 7 and |S8| ≥ 9, there exist
si ∈ Si , i = 1, 2, . . . , 8 such that P(s1, s2, . . . , s8) �= 0. Coloring vv1, vv2 . . . , vv7
and v with s1, s2, . . . , s7 and s8 respectively and then we obtain a nice total-13-avd-
coloring, a contradiction.

(2) Suppose to the contrary that n5−(v) ≥ 4when n3−(v) ≥ 1 and n4−(v) ≥ 2. Then
d(v1) ≤ 3, d(v2) ≤ 4 and d(v3) ≤ d(v4) ≤ 5. Let H = G − vv1 − vv2 − vv3 − vv4.
Thus there is a total-13-avd-coloring of H by the minimality of G. Erase the colors
of v, v1, v2, v3, v4 and denote this partial total-13-avd-coloring by φ′. Let C denote
the set of all colors used in φ′. Let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, 3, 4
and let S5 = C \ Dφ′(v). Then |S1| ≥ 6, |S2| ≥ 5, |S3| ≥ 4, |S4| ≥ 4 and |S5| ≥ 3.
Now we extend φ′ to G and let φ denote the coloring after vv1, vv2, vv3, vv4 and v

are colored. Let s1, s2, s3, s4 and s5 correspond to the colors of vv1, vv2, vv3, vv4 and
v respectively. Similar to Claim 2(1), φ is a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2, . . . , 5 such that P(s1, s2, . . . , s5) �= 0, where

P(x1, x2, . . . , x5) =
∏

1≤i< j≤5

(xi − x j )
∏

5≤i≤9

(
5∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

ByMATLAB, cP (x51 x
4
2 x

3
3 x

2
4 x5) = cQ(x51 x

4
2 x

3
3 x

2
4 x5) = 1, where Q(x1, x2, . . . , x5) =

∏
1≤i< j≤5(xi − x j )(

∑5
t=1 xt )

5. According to Lemma 1, since deg(P) = 15, |S1| ≥ 6,
|S2| ≥ 5, |S3| ≥ 4, |S4| ≥ 4 and |S5| ≥ 3, there exist si ∈ Si , i = 1, 2, . . . , 5 such that
P(s1, s2, . . . , s5) �= 0. Thus we obtain a nice total-13-avd-coloring, a contradiction.

��
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Claim 5 Suppose v is a 10-vertex of G and n2−(v) ≥ 1. Then n5−(v) ≤ 7. Moreover,
if n3−(v) ≥ 2 and n4−(v) ≥ 3, then n5−(v) ≤ 4.

Proof Let v1, v2, . . . , v10 be the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(v10).
(1) Suppose to the contrary that n5−(v) ≥ 8 when n2−(v) ≥ 1. Then d(v1) ≤ 2

and d(v2) ≤ d(v3) ≤ · · · ≤ d(v8) ≤ 5. Let H = G − vv1 − vv2 − · · · − vv8.
Thus there is a total-13-avd-coloring of H by the minimality of G. Erase the colors
of v, v1, v2, . . . , v8 and denote this partial total-13-avd-coloring by φ′. Let C denote
the set of all colors used in φ′. Let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, . . . , 8
and let S9 = C \ Dφ′(v). Then |S1| ≥ 10, |Si | ≥ 7 for i = 2, 3, . . . , 8 and |S9| ≥ 9.
Nowwe extend φ′ to G and let φ denote the coloring after vv1, vv2, . . . , vv8 and v are
colored. Let s1, s2, . . . , s8 and s9 correspond to the colors of vv1, vv2, . . . , vv8 and
v respectively. Similar to Claim 2(1), φ is a nice total-13-avd-coloring, if there exist
si ∈ Si , i = 1, 2, . . . , 9 such that P(s1, s2, . . . , s9) �= 0, where

P(x1, x2, . . . , x9) =
∏

1≤i< j≤9

(xi − x j )
∏

9≤i≤10

(
9∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

Since cP (x91 x
6
2 x

5
3 x

4
4 x

3
5 x

2
6 x7x

8
9) = cQ(x91 x

6
2 x

5
3 x

4
4 x

3
5 x

2
6 x7x

8
9) = −1, where Q(x1, x2,

. . . , x9) = ∏
1≤i< j≤9(xi − x j )(

∑9
t=1 xt )

2. According to Lemma 1, since deg(P) =
38, |S1| ≥ 10, |Si | ≥ 7 for i = 2, 3, . . . , 8 and |S9| ≥ 9, there exist si ∈ Si , i =
1, 2, . . . , 9 such that P(s1, s2, . . . , s9) �= 0. Thus we obtain a nice total-13-avd-
coloring, a contradiction.

(2) Suppose to the contrary that n5−(v) ≥ 5. Then d(v1) ≤ 2, d(v2) ≤ 3, d(v3) ≤ 4
and d(v4) ≤ d(v5) ≤ 5. Let H = G − vv1 − vv2 − · · · − vv5. Thus there is a total-
13-avd-coloring of H by the minimality of G. Erase the colors of v1, v2, . . . , v5 and
denote this partial total-13-avd-coloring by φ′. Let C denote the set of all colors used
in φ′ and let Si = C \ (Cφ′(v) ∪ Cφ′(vi )) for i = 1, 2, . . . , 5. Obviously, |S1| ≥ 6,
|S2| ≥ 5, |S3| ≥ 4, |S4| ≥ 3 and |S5| ≥ 3. Now we extend φ′ to G and let φ denote
the coloring after vv1, vv2, . . . , vv5 are colored. Let s1, s2, . . . , s5 correspond to the
colors of vv1, vv2, . . . , vv5 respectively. Similar toClaim2(1),φ is a nice total-13-avd-
coloring, if there exist si ∈ Si , i = 1, 2, . . . , 5 such that P(s1, s2, . . . , s5) �= 0, where

P(x1, x2, . . . , x5) =
∏

1≤i< j≤5

(xi − x j )
∏

6≤i≤10

(
5∑

t=1

xt + mφ′(v) − mφ′(vi )

)

.

ByMATLAB, cP (x51 x
4
2 x

3
3 x

2
4 x5) = cQ(x51 x

4
2 x

3
3 x

2
4 x5) = 1, where Q(x1, x2, . . . , x5) =

∏
1≤i< j≤5(xi − x j )(

∑5
t=1 xt )

5. According to Lemma 1, since deg(P) = 15, |S1| ≥ 6,
|S2| ≥ 5, |S3| ≥ 4, |S4| ≥ 3 and |S5| ≥ 3, there exist si ∈ Si , i = 1, 2, . . . , 5 such that
P(s1, s2, . . . , s5) �= 0. Thus we obtain a nice total-13-avd-coloring, a contradiction.
��

Suppose uv is an edge of G. We call u is strong neighbor of v, if d(v) = 10,
d(u) = 3 and uv is incident with at least two 3-cycles. We use nGstr (v) to denote the
number of strong neighbors of v in G.
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Fig. 2 Configurations in the
proof of Claim 6

v
v1

vx

vy

v2 v3

v4

u1 w1
u2

w2

v5...

Claim 6 Suppose v is a 10-vertex of G. If n3−(v) ≥ 4 and nGstr (v) �= 0, then n5−(v) =
4.

Proof Let v1, v2, . . . , v10 be the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(v10).
Since n3−(v) ≥ 4, if n2−(v) �= 0, then n5−(v) = 4 by Claim 5. So we assume

n2−(v) = 0. Suppose to the contrary that n5−(v) ≥ 5. Then d(v1) = d(v2) =
d(v3) = d(v4) = 3 and d(v5) ≤ 5. Assume v1 is a strong neighbor of v and vx , vy
are common neighbors of v and v1. Let u1, u2 be the neighbors of v2 other than v

and w1, w2 be the neighbors of v3 other than v (see Fig. 2). Let H = G − vv1.
Thus there is a total-13-avd-coloring of H by the minimality of G. Erase the colors of
vv2, vv3, vv4, vv5, v1, v2, v3, v4, v5 anddenote this partial total-13-avd-coloringbyφ.
Let C denote the set of all colors used in φ. Since φ(v2u1) �= φ(v2u2), without loss of
generality, we assume φ(v1vx ) �= φ(v2u1). SinceC \ (Cφ(v)∪{φ(v2u2)}) has at least
six colors and then has at least six 5-element subsets, there exists at least one 5-element
subset C ′, such that Cφ(v) ∪C ′ is different from any Cφ(v j ), j = 6, 7, 8, 9, 10. Now
we will color vv1, . . . , vv5 with C ′ properly to obtain a nice total-13-avd-coloring of
G, which is a contradiction.

Case 1 φ(v1vy) /∈ C ′. Since d(v5) ≤ 5, |Cφ(v5)| ≤ 4, we can color vv5 with a color
a5 ∈ C ′ \Cφ(v5). Since d(vi ) ≤ 3 for 3 ≤ i ≤ 4, |Cφ(vi )| = 2, we can color vv4 with
a color a4 ∈ (C ′\{a5})\Cφ(v4) and color vv3 with a color a3 ∈ (C ′\{a5, a4})\Cφ(v3).
Notice that φ(v1vy) /∈ C ′ \ {a3, a4, a5}, φ(v2u2) /∈ C ′ \ {a3, a4, a5} and φ(v1vx ) �=
φ(v2u1), therefore we can color vv1 and vv2 with a1 and a2 respectively such that
{a1, a2} = C ′ \ {a3, a4, a5} and a1 �= φ(v1vx ), a2 �= φ(v2u1).

Case 2 φ(v1vy) ∈ C ′. Notice that φ(v1vy) /∈ Cφ(v).

Case 2.1 φ(v1vy) �= φ(v2u1). We color vv5, vv4, vv3 with a5, a4, a3 successively
such that ai ∈ (C ′ \ {a5, . . . , ai+1}) \ Cφ(vi ) for 3 ≤ i ≤ 5, and if there exists
an i ∈ {3, 4, 5} such that φ(v1vy) ∈ (C ′ \ {a5, . . . , ai+1}) \ Cφ(vi ), then set ai =
φ(v1vy); If there exists an i ∈ {3, 4, 5} such that φ(v1vy) /∈ (C ′ \ {a5, . . . , ai+1}) \
Cφ(vi ) and φ(v1vx ) ∈ (C ′ \ {a5, . . . , ai+1}) \ Cφ(vi ), then set ai = φ(v1vx ). If
{φ(v1vy), φ(v1vx )} �= C ′ \ {a5, a4, a3}, say φ(v1vy) /∈ C ′ \ {a5, a4, a3}, then similar
to Case 1, we can color vv2 and vv1 with the colors in C ′ \ {a5, a4, a3} safely. So
we only consider the case that {φ(v1vy), φ(v1vx )} = C ′ \ {a5, a4, a3}. In this case,
we have {φ(v1vy), φ(v1vx )} ⊆ Cφ(vi ) for every i ∈ {3, 4, 5}. Particularly, Cφ(v3) =
{φ(v1vy), φ(v1vx )}. Assume φ(v3w1) = φ(v1vx ) and φ(v3w2) = φ(v1vy). Now we
erase the colors of vv3, vv4, vv5.
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Case 2.1.1 φ(v1vx ) �= φ(vvy). Firstly, we exchange the colors of v1vy and vvy .
Since φ(v1vy) /∈ Cφ(v), we obtain a partial total-13-avd-coloring, denoted by φ′.
We can find at least one set C ′′ ⊆ C\(Cφ′(v) ∪ {φ′(v2u2)}) such that |C ′′| = 5 and
coloring vv1, . . . , vv5 with the colors in C ′′ (based on φ′) will not lead to the conflicts
of v with its neighbors. Observe φ′(v3w2) = φ′(vvy) /∈ C ′′. We color vvi with a
color bi ∈ (C ′′ \ {b5, . . . , bi+1}) \ Cφ′(vi ) for 4 ≤ i ≤ 5, and then color vv1 with
a color b1 ∈ (C ′′ \ {b5, b4}) \ Cφ′(v1). Since φ′(v3w2) /∈ C ′′, φ′(v2u2) /∈ C ′′ and
φ′(v3w1) = φ′(v1vx ) �= φ′(v2u1), therefore we can color vv2 and vv3 with b2 and b3
respectively such that {b2, b3} = C ′′ \{b1, b4, b5} and b2 �= φ′(v2u1), b3 �= φ′(v3w1).

Case 2.1.2 φ(v1vx ) = φ(vvy). We exchange the colors of v1vy and vvy , and the
colors of v1vx and vvx at the same time. Since φ(v1vy) /∈ Cφ(v) and φ(v1vx ) /∈
Cφ(v) \ {φ(vvy)}, we obtain a partial total-13-avd-coloring φ′′. We can find at least
one set Ĉ ⊆ C\(Cφ′′(v) ∪ {φ′′(v2u2)}) such that |Ĉ | = 5 and coloring vv1, . . . , vv5

with the colors in Ĉ (based on φ′′) will not lead to the conflicts of v with its neighbors.
Now we color vvi with a color ci ∈ (Ĉ \ {c5, . . . , ci+1}) \ Cφ′′(vi ) for 4 ≤ i ≤ 5,
and then color vv1 with a color c1 ∈ (Ĉ \ {c5, c4}) \ Cφ′′(v1). Since φ′′(v2u2) /∈ Ĉ ,
we can color vv2 with a color c2 ∈ (Ĉ \ {c5, c4, c1}) \Cφ′′(v2). Finally, we color vv3.
Since φ′′(v3w2) = φ′′(vvy) /∈ Ĉ and φ′′(v3w1) = φ′′(vvx ) /∈ Ĉ , we can find a color
c3 ∈ (Ĉ \ {c5, c4, c1, c2}) \ Cφ′′(v3) to color vv3.

Case 2.2 φ(v1vy) = φ(v2u1). Since φ(v1uy) /∈ Cφ(v), we have φ(v2u1) �=
φ(vvx ). If φ(v1vx ) �= φ(vvy), we only exchange the colors of v1vy and vvy , and
if φ(v1vx ) = φ(vvy), we exchange the colors of v1vy and vvy , and the colors of
v1vx and vvx at the same time. Denote the new partial total-13-avd-coloring by ψ .
Then ψ(v1vy) �= ψ(v2u1), since φ(v1vx ) �= φ(v2u1) and φ(vvx ) �= φ(v2u1), we
claim that in both cases we have ψ(v1vx ) �= ψ(v2u1). We can find at least one set
C̃ ⊆ C\(Cψ(v) ∪ {ψ(v2u2)}) such that |C̃ | = 5 and coloring vv1, . . . , vv5 with the
colors in C̃ (based on ψ) will not lead to the conflicts of v with its neighbors. If
ψ(v1vy) /∈ C̃ , it becomes Case 1. Otherwise it becomes Case 2.1. ��

3.2 Discharging process

We put all the 1-vertices and 2-vertices of G in V1. Let V2 = V \ V1 and H = G[V2].
For H , we have the following result:

Claim 7 Let v be a vertex of H. Then the following properties hold:

(1) δ(H) ≥ 3;
(2) For any k ∈ {3, 4, 5}, nH

k (v) = nGk (v);
(3) There is no edge uv ∈ E(H) such that dH (v) ≤ 6 and dH (u) ≤ 5.

Proof Let v be a vertex of H . If dG(v) ≤ 6, then nG2−(v) = 0 byClaim 1. If dG(v) = 7,
then nG2−(v) ≤ 1 by Claim 2. If dG(v) = 8, then nG2−(v) ≤ 2 by Claim 3. If dG(v) = 9,
then nG2−(v) ≤ 3 by Claim 4. If dG(v) = 10, then nG2−(v) ≤ 4 by Claim 5. So we
conclude that if dG(v) ≤ 5, then dH (v) = dG(v); If dG(v) ≥ 6, then dH (v) =
dG(v) − nG2−(v) ≥ 6.

123



J Comb Optim (2017) 34:383–397 393

(1) Suppose to the contrary that there is a vertex v ∈ V (H) such that dH (v) ≤ 2.
Obviously, dG(v) ≥ 3. If dG(v) ≤ 5, then dH (v) = dG(v) ≥ 3, if dG(v) ≥ 6, then
dH (v) = dG(v) − nG2−(v) ≥ 6, which is a contradiction.

(2) Suppose u is a neighbor of v in H and dH (u) = k, where k ∈ {3, 4, 5}. If
dG(u) �= k, then we have dG(v) ≥ 6 by the above analysis, and then dH (v) ≥ 6,
which is a contradiction. So dG(u) = k and nH

k (v) ≤ nGk (v). On the other hand, if u
is a neighbor of v in G and dG(u) = k, where k ∈ {3, 4, 5}, then dH (u) = k by the
above analysis, so nGk (v) ≤ nH

k (v). Thus we conclude nH
k (v) = nGk (v).

(3) Suppose to the contrary that there is an edge uv ∈ E(H) such that dH (v) ≤ 6
and dH (u) ≤ 5. Consider the degree of v inG. If dG(v) ≤ 6, then dG(u) ≥ 6 by Claim
1, so dH (u) ≥ 6, a contradiction. If dG(v) = 7, then nG2−(v) = dG(v) − dH (v) ≥ 1.
So nG5−(v) = nG2−(v) = 1 by Claim 2, that means v has no other neighbors with degree
less than 6 in G. Thus dG(u) ≥ 6, so dH (u) ≥ 6, a contradiction. Similarly, we can
also can obtain a contradiction when dG(v) = 8, 9, 10 by Claims 3, 4 and 5. ��

Due to Claim 7, we obtain the following observation:

Observation 1 For any f ∈ F(H), f is incident with at most 
 dH ( f )
2 � vertices of

degree at most 5.

Observation 1 can be easily deduced from Claim 7,
Let uv be an edge of H and d(u) = k, we call u a bad k-neighbor of v if the

edge uv belongs to two 3-faces, and call u a special k-neighbor of v if the edge uv

belongs to exactly one 3-face. We use NH
kb(v) and NH

ks (v) to denote the number of
bad k-neighbors and number of special k-neighbors of v in H respectively, and let
nH
kb(v) = |NH

kb(v)| and nH
ks(v) = |NH

ks (v)|.
Observation 2 Let v be a 10-vertex of H. Then

(1) nH
3s(v) ≤ 6;

(2) nH
3b(v) + nH

4b(v) + nH
5b(v) ≤ 1

2 (10 − nH
3s(v)).

Proof (1) Suppose that nH
3s(v) ≥ 7. Then the number of 3-faces incident with v and

its special 3-neighbors is at least 7. So v must incident with three consecutive such
3-faces. According to the definition of special 3-neighbors, the second 3-face can not
incident with special 3-neighbors of v, a contradiction.

(2) Since H is planar graph, we use v0, v1, . . . , v9 to denote the neighbors of v in H
in clockwise order. For 0 ≤ i ≤ 9, we call vi and v j consecutive if j = i + 1 modulo
10. Notice that the number of neighbors of v which are not special 3-neighbors is at
most 10−nH

3s(v). Suppose that nH
3b(v)+nH

4b(v)+nH
5b(v) > 1

2 (10−nH
3s(v)), then there

exist two consecutive vertices u and w such that {u, w} ⊆ NH
3b(v)∪ NH

4b(v)∪ NH
5b(v).

According to the definition of bad k-neighbors, u must be incident with w, which is
contradict with Claim 7(3).

Using Euler’s formula |V (H)| − |E(H)| + |F(H)| = 2 and the relation∑
v∈V (H) dH (v) = ∑

f ∈F(H) dH ( f ) = 2|E(H)|, we have
∑

v∈V (H)

(dH (v) − 6) +
∑

f ∈F(H)

(2dH ( f ) − 6) = −12.
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That is

∑

v∈V (H)

(dG(v) − nG2−(v) − 6) +
∑

f ∈F(H)

(2dH ( f ) − 6) = −12.

We use the discharging method. First, we give an initial charge function w(v) =
dG(v) − dG2−(v) − 6 for every v ∈ V (H), and w( f ) = 2dH ( f ) − 6 for every f ∈
F(H). Next, we design a discharging rule and redistribute weights accordingly. Let
w′ be the new charge after the discharging. We will show that w′(x) ≥ 0 for all
x ∈ V (H) ∪ F(H). This leads to the following obvious contradiction:

0 ≤
∑

x∈V (H)∪F(H)

w′(x) =
∑

x∈V (H)∪F(H)

w(x) = −12 < 0,

hence demonstrates that no such a counterexample can exist.
The discharging rules are defined as follows:

R1 If v is a bad 3-neighbor of u in H , then u gives 1 to v.
R2 If v is a special 3-neighbor of u in H , then u gives 1

2 to v.
R3 If v is a bad 4-neighbor of u in H , then u gives 1

2 to v.
R4 If v is a bad 5-neighbor of u in H , then u gives 1

5 to v.
R5 If f ∈ F(H) is a 4-face, then f gives 1 to each incident 5−-vertex.
R6 If the degree of f ∈ F(H) is at least 5, then f gives 2 to each incident 5−-vertex.

Now let us begin our analysis.
Let f be a face of H . Note that only vertices of degree at most 5 might receive

weights from f . Suppose dH ( f ) = 3. Then no rule applies to f , so w′( f ) = 0.
Suppose dH ( f ) = 4. Then there are at most two vertices of degree at most 5 on its
boundary byObservation 1, sow′( f ) ≥ 2×4−6−2 = 0 by R5. Suppose dH ( f ) ≥ 5.
Then w′( f ) ≥ 2dH ( f ) − 6 − 2
 dH ( f )

2 � ≥ 0 by Observation 1 and R6.
Let v be a vertex of H . Obviously, dG(v) ≥ dH (v) ≥ 3.
Suppose dG(v) = 3. By Claim 1, nG5−(v) = 0 and w(v) = −3. Then we have

nH
5−(v) = 0 by Observation 1. So v gives no charge to its neighbors. We consider the

faces incident with v in H . If v is incident with three 3-faces, thenw′(v) = −3+3 = 0
by R1. If v is incident with exactly two 3-faces, thenw′(v) ≥ −3+1+2× 1

2 +1 = 0
by R1, R2, R5 and R6. If v is incident with exactly one 3-face, then w′(v) ≥ −3 +
2 × 1

2 + 2 × 1 = 0 by R2, R5 and R6. Otherwise, v is incident with three 4+-faces.
So w′(v) ≥ −3 + 3 × 1 = 0 by R5 and R6.

Suppose dG(v) = 4. By Claim 1, nG5−(v) = 0 and w(v) = −2. Then we have
nH
5−(v) = 0 by Observation 1. So v gives no charge to its neighbors. If all the faces

incident with v are 3-faces, then w′(v) ≥ −2 + 4 × 1
2 = 0 by R3. If v is incident

with exactly one 4+-face, then w′(v) ≥ −2 + 2 × 1
2 + 1 = 0 by R3, R5 and R6.

Otherwise, v receives at least 2× 1 = 2 from the incident 4+-faces by R5 and R6, so
w′(v) ≥ −2 + 2 = 0.

Suppose dG(v) = 5. By Claim 1, nG5−(v) = 0 and w(v) = −1. Then we have
nH
5−(v) = 0 by Observation 1. So v gives no charge to its neighbors. If all the faces
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incident with v are 3-faces, then w′(v) ≥ −1 + 5 × 1
5 = 0 by R4. Otherwise, v

receives at least 1 from the incident 4+-faces by R5 and R6, so w′(v) ≥ −1+ 1 = 0.
Suppose dG(v) = 6. By Claim 1, nG5−(v) = 0 and w(v) = 0. Then we have

nH
5−(v) = 0 by Observation 1. So v gives no charge to its neighbors. Thus w′(v) =

w(v) = 0.
Suppose dG(v) = 7. Then by Claim 2, if nG3−(v) ≥ 1, then nG5−(v) = 1, so

w′(v) ≥ dG(v) − 6 − nG2−(v) − nH
3 (v) − nH

4 (v) − nH
5 (v) = 1 − nG5−(v) = 0 by

Claim 7(2) and R1− R4. Otherwise, nG3−(v) = 0 and nG5−(v) ≤ 2, and then nG2−(v) +
nH
3 (v) = nG3−(v) = 0 and nH

4 (v) + nH
5 (v) = nG5−(v) − nG3−(v) ≤ 2 by Claim 7(2). So

w′(v) ≥ 7 − 6 − 1
2 × (nH

4 (v) + nH
5 (v)) ≥ 0 by Claim 7(2) and R1–R4.

Suppose dG(v) = 8. According to Claim 3, Claim 7(2) and discharging rules, if
nG3−(v) ≥ 2, then nG5−(v) = 2, w′(v) ≥ 8− 6− nG2−(v) − nH

3 (v) − nH
4 (v) − nH

5 (v) =
2−nG5−(v) = 0; IfnG3−(v) = 1, thennG5−(v) ≤ 3, sow′(v) ≥ 8−6−(nG2−(v)+nH

3 (v))−
1
2 (n

H
4 (v) + nH

5 (v)) = 2 − nG3−(v) − 1
2 (n

G
5−(v) − nG3−(v)) ≥ 0; If nG3−(v) = 0 and

nG4 (v) ≥ 1, then nG5−(v) ≤ 3, so w′(v) ≥ 8− 6− nG3−(v) − 1
2 (n

G
5−(v) − nG3−(v)) > 0;

Otherwise, nG4−(v) = 0 and nG5 (v) ≤ 8, so w′(v) ≥ 8 − 6 − (nG2−(v) + nH
3 (v) +

nH
4 (v)) − 1

5n
H
5 (v) = 2 − nG4−(v) − 1

5n
H
5 (v) > 0.

Suppose dG(v) = 9. According to Claim 4, Claim 7(2) and discharging rules, if
nG3−(v) �= 0 and nG4−(v) ≥ 2, then nG5−(v) ≤ 3, so w′(v) ≥ 9− 6− 1× nG5−(v) ≥ 0; If
nG3−(v) = 1 and nG4 (v) = 0, then nG5−(v) ≤ 6, sow′(v) ≥ 9−6− (nG2−(v)+nH

3 (v))−
1
2n

H
4 (v)− 1

5n
H
5 (v) = 3−nG3−(v)− 1

2n
G
4 (v)− 1

5 (n
G
5−(v)−nG4−(v)) > 0; If nG3−(v) = 0

andnG4 (v) �= 0, thennG5−(v) ≤ 6, sow′(v) ≥ 9−6−nG3−(v)− 1
2 (n

G
5−(v)−nG3−(v)) ≥ 0;

Otherwise, nG4−(v) = 0 and nG5 (v) ≤ 9, so w′(v) ≥ 9 − 6 − nG4−(v) − 1
5n

G
5 (v) > 0.

Suppose dG(v) = 10. We consider two cases.

Case 1 nG2−(v) �= 0. According to Claim 5, Claim 7(2) and discharging rules, if
nG3−(v) ≥ 2 and nG4−(v) ≥ 3, then nG5−(v) ≤ 4, so w′(v) ≥ 10 − 6 − 1 × nG5−(v) ≥ 0;
If nG3−(v) = 2 and nG4 (v) = 0, then nG5−(v) ≤ 7, so w′(v) ≥ 10 − 6 − nG3−(v) −
1
2n

G
4 (v) − 1

5 (n
G
5−(v) − nG4−(v)) > 0; If nG3−(v) = 1, then nG5−(v) ≤ 7, so w′(v) ≥

10 − 6 − nG3−(v) − 1
2 (n

G
5−(v) − nG3−(v)) ≥ 0.

Case 2 nG2−(v) = 0. If nG3 (v) ≤ 3, then nH
3 (v) ≤ 3 by Claim 7(2). According

to Observation 2(2), nH
3b(v) + nH

4b(v) + nH
5b(v) ≤ 1

2 (10 − nH
3s(v)) ≤ 5. So w′(v) ≥

10 − 6 − (nH
3b(v) + 1

2 (n
H
3s(v) + nH

4b(v) + nH
5b(v))) ≥ 4 − 1

2 (n
H
3b(v) + nH

3s(v)) −
1
2 (n

H
3b(v) + nH

4b(v) + nH
5b(v)) ≥ 4 − 1

2n
H
3 (v) − 1

2 × 5 = 1
2 (3 − nH

3 (v)) ≥ 0 by
R1 − R4; If nG3 (v) ≥ 4 and nGstr (v) �= 0, then nG5−(v) = 4 by Claim 6. So w′(v) ≥
10 − 6 − (nH

3b(v) + nH
3s(v) + nH

4b(v) + nH
5b(v)) ≥ 4 − nH

5−(v) ≥ 4 − nG5−(v) = 0
by Claim 7(2) and R1 − R4; Otherwise, nG3 (v) ≥ 4 and nGstr (v) = 0. Obviously,
nH
3b(v) = 0. Since nH

3s(v) ≤ 6 and nH
4b(v) + nH

5b(v) ≤ 1
2 (10− nH

3s(v)) by Observation
2,w′(v) ≥ 10−6− 1

2n
H
3s(v)− 1

2 (n
H
4b(v)+nH

5b(v)) ≥ 4− 1
2n

H
3s(v)− 1

2× 1
2 (10−nH

3s(v)) ≥
1
4 (6 − nH

3s(v)) ≥ 0 by R2 − R4.
This completes the whole proof of our theorem.
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Appendix

%input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9
%Claim1
Q1=(x1−x2)∗(x1−x3)^2∗(x2−x3)∗(x1+x2)^4∗(x2+x3)^4;
C1=diff ( diff ( diff (Q1,x1,4) ,x2,4) ,x3,4) / factorial (4) / factorial (4) /

factorial (4)
%Claim2(1)
Q21=(x1−x2)∗(x1−x3)∗(x2−x3)∗(x1−x4)∗(x2−x4)∗(x3−x4)∗(x1+x2+x3+x4)^4;
C21=diff ( diff ( diff ( diff (Q21,x1,4) ,x2,3) ,x3,2) ,x4,1) / factorial (4) /

factorial (3) /2/1
%Claim2(2)
Q22=(x1−x2)∗(x1+x2)^5;
C22=diff ( diff (Q22,x1,4) ,x2,2) / factorial (4) /2
%Claim3(1)
Q31=(x1−x2)∗(x1−x3)∗(x2−x3)∗(x1−x4)∗(x2−x4)∗(x3−x4)∗(x1+x2+x3+x4)^4;
C31=diff ( diff ( diff ( diff (Q31,x1,4) ,x2,3) ,x3,2) ,x4,1) / factorial (4) /

factorial (3) /2/1
%Claim3(2)
Q32=(x1−x2)∗(x2−x3)∗(x1−x3)∗(x1+x2+x3)^5;
C32=diff ( diff ( diff (Q32,x1,4) ,x2,3) ,x3,1) / factorial (4) / factorial (3) /1
%Claim4(1)
Q41=(x1−x2)∗(x1−x3)∗(x1−x4)∗(x1−x5)∗(x1−x6)∗(x1−x7)∗(x1−x8)∗(x2−x3)∗(x2−

x4)∗(x2−x5)∗(x2−x6)∗(x2−x7)∗(x2−x8)∗(x3−x4)∗(x3−x5)∗(x3−x6)∗(x3−x7)∗
(x3−x8)∗(x4−x5)∗(x4−x6)∗(x4−x7)∗(x4−x8)∗(x5−x6)∗(x5−x7)∗(x5−x8)∗
(x6−x7)∗(x6−x8)∗(x7−x8)∗(x1+x2+x3+x4+x5+x6+x7+x8)^2;C41=diff ( diff
( diff ( diff ( diff ( diff ( diff (Q41,x1,7) ,x2,5) ,x3,4) ,x4,3) ,x5,2) ,x6,1) ,
x8,8) / factorial (8) / factorial (7) / factorial (5) / factorial (4) / factorial
(3) /2/1

%Claim4(2)
Q42=(x1−x2)∗(x1−x3)∗(x2−x3)∗(x1−x4)∗(x2−x4)∗(x3−x4)∗(x1−x5)∗(x2−x5)∗(x3−

x5)∗(x4−x5)∗(x1+x2+x3+x4+x5)^5;C42=diff ( diff ( diff ( diff ( diff (Q42,x1,
5) ,x2,4) ,x3,3) ,x4,2) ,x5,1) / factorial (5) / factorial (4) / factorial (3) /
2/1

%Claim5(1)
Q51=(x1−x2)∗(x1−x3)∗(x1−x4)∗(x1−x5)∗(x1−x6)∗(x1−x7)∗(x1−x8)∗(x1−x9)∗(x2−

x3)∗(x2−x4)∗(x2−x5)∗(x2−x6)∗(x2−x7)∗(x2−x8)∗(x2−x9)∗(x3−x4)∗(x3−x5)
∗(x3−x6)∗(x3−x7)∗(x3−x8)∗(x3−x9)∗(x4−x5)∗(x4−x6)∗(x4−x7)∗(x4−x8)∗
(x4−x9)∗(x5−x6)∗(x5−x7)∗(x5−x8)∗(x5−x9)∗(x6−x7)∗(x6−x8)∗(x6−x9)∗(x7
−x8)∗(x7−x9)∗(x8−x9)∗(x1+x2+x3+x4+x5+x6+x7+x8+x9)^2;
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C51=diff ( diff ( diff ( diff ( diff ( diff ( diff ( diff (Q51,x1,9) ,x2,6) ,x3,5) ,x4,4) ,
x5,3) ,x6,2) ,x7,1) ,x9,8) / factorial (9) / factorial (8) / factorial (6) /
factorial (5) / factorial (4) / factorial (3) /2/1

%Claim5(2)
Q52=(x1−x2)∗(x1−x3)∗(x2−x3)∗(x1−x4)∗(x2−x4)∗(x3−x4)∗(x1−x5)∗(x2−x5)∗(x3−

x5)∗(x4−x5)∗(x1+x2+x3+x4+x5)^5;C52=diff ( diff ( diff ( diff ( diff (Q52,x1,
5) ,x2,4) ,x3,3) ,x4,2) ,x5,1) / factorial (5) / factorial (4) / factorial (3) /
2/1

%output
C1=20 C21=1 C22=5 C31=1 C32=5 C41=−1 C42=1 C51=−1 C52=1
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