J Comb Optim (2016) 32:531-549 @ CrossMark
DOI 10.1007/510878-016-9990-2

Solving the maximum vertex weight clique problem via
binary quadratic programming

Yang Wang! - Jin-Kao Hao*? . Fred Glover* -
Zhipeng Lii® - Qinghua Wu®

Published online: 21 January 2016
© Springer Science+Business Media New York 2016

Abstract In recent years, the general binary quadratic programming (BQP) model
has been widely applied to solve a number of combinatorial optimization problems.
In this paper, we recast the maximum vertex weight clique problem (MVWCP) into
this model which is then solved by a probabilistic tabu search algorithm designed for
the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W

In memory of Professor Wenqi Huang for his pioneer work on nature-inspired optimization methods.

B Jin-Kao Hao
jin-kao.hao @univ-angers.fr

Yang Wang
yangw @nwpu.edu.cn

Fred Glover
glover@opttek.com

Zhipeng Lii
zhipeng.lui @ gmail.com

Qinghua Wu

qinghuawu1005 @ gmail.com

School of Management, Northwestern Polytechnical University, 127 Youyi West Road,
710072 Xi’an, China

2 LERIA, Université d’ Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Institut Universitaire de France, Paris, France

4 OptTek Systems, Inc, 2241 17th Street, Boulder, CO 80302, USA

School of Computer Science and Technology, Huazhong University of Science and Technology,
430074 Wuhan, China

School of Management, Huazhong University of Science and Technology, 430074 Wuhan, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-016-9990-2&domain=pdf

532 J Comb Optim (2016) 32:531-549

benchmark instances demonstrate that this general approach is viable for solving the
MVWCP problem.

Keywords Maximum vertex weight clique - Binary quadratic programming -
Probabilistic tabu search

1 Introduction

Given an undirected graph G = (V, E) with vertex set V and edge set E, aclique is a
set of vertices C C V such that every pair of distinct vertices of C is connected with an
edgein G, i.e., the subgraph generated by C is complete. The maximum clique problem
(MCP) is to find a clique of maximum cardinality. An important generalization of the
MCP, known as the maximum vertex weight clique problem (MVWCP), arises when
each vertex i in G is associated with a positive weight w;. The MVWCP aims to find
a clique of G with the maximum » ;- w;. It is clear that the MCP is a special case
of the MVWCP with w; = 1 for each vertex.

The MCP is computationally difficult given that its associated decision problem is
known to be NP-complete (Garey and Johnson 1979). As a generalization of the MCP,
the MVWCP has at least as the same computational complexity as the MCP. Like the
MCP, the MVWCP has important applications in many domains like computer vision,
pattern recognition and robotics (Ballard and Brown 1983).

To solve these clique problems, a variety of solution algorithms have been reported
in the literature. Examples of exact methods based on the general Branch-and-Bound
(B&B) or Branch-and-Cut methods for the MCP (or its equivalent maximum sta-
ble set problem) can be found in Carraghan and Pardalos (1990), Konc and Janézi¢
(2007), Li and Quan (2010), Macreesh and Prosser (2013), Ostergard (2002), Reben-
nack et al. (2011), Rebennack et al. (2012), Segundo et al. (2011), and Tomita and
Kameda (2007). For the MVWCP, some exact algorithms are tightly related to the
corresponding algorithms designed for the MCP (Babel 1994; Ostergard 2001) while
other B&B based methods can be found in Warren and Hicks (2006). On the other
hand, a number of heuristic algorithm have also been proposed to find sub-optimal
solutions to the MVWCP, including an augmentation algorithm (Manninno and Ste-
fanutti 1999), a distributed computational network algorithm (Bomze et al. 2000),
a trust region technique algorithm (Busygin 2006), a phased local search algorithm
(Pullan 2008), a multi-neighborhood tabu search algorithm (Wu et al. 2012), and a
breakout local search algorithm (Benlic and Hao 2013). For an updated recent review
of algorithms for these clique problems, the reader is referred to Wu and Hao (2015).

During the past decade, binary quadratic programming (BQP) has emerged as a
unified model for numerous combinatorial optimization problems, such as max-cut
(Kochenberger et al. 2013; Wang et al. 2013), set partitioning (Lewis et al. 2008), set
packing (Alidaee et al. 2008), generalized independent set (Kochenberger et al. 2007)
and maximum edge weight clique (Alidaee et al. 2007). A review of the additional
applications and the reformulation procedures can be found in Kochenberger et al.
(2004, 2014). Using the BQP model to solve the targeted problem has the advantage
of directly applying an algorithm designed for the BQP rather than resorting to a

@ Springer

J Comb Optim (2016) 32:531-549 533

specialized solution method. Moreover, this approach proves to be competitive for
several problems compared to specifically designed algorithms (Alidaee et al. 2007;
Kochenberger et al. 2013; Lewis et al. 2008; Wang et al. 2013).

There exists several studies on the application of the BQP model to solve the
classic MCP (Kochenberger et al. 2014; Pajouh et al. 2013; Pardalos and Rodgers
1992). However, for the more general MVWCP, no computational study has been
reported in the literature using the BQP model. In this paper, we investigate for the
first time the application of the BQP model to the MVWCP and solve the resulting
BQP problem with the probabilistic tabu search algorithm (BQP-PTS) designed for
the BQP (Wang et al. 2013). Experimental results on 80 challenging DIMACS-W
and 40 BHOSLIB-W instances demonstrate that this general BQP approach with the
PTS algorithm performs quite well in terms of solution quality at the price of more
computing time for some benchmark instances.

The rest of this paper is organized as follows. Section 2 illustrates how to transform
the MVWCP into the form of the BQP. Section 3 presents our probabilistic tabu search
algorithm to solve the transformed BQP model. Section 4 report the computational
results and comparisons with other state-of-the-art algorithms in the literature. The
paper concludes with Sect. 5.

2 Transformation to the BQP model
2.1 Linear model for the MVWCP

Given an undirected graph G = (V, E) with vertex set V and edge set E, each vertex
associated with a positive weight w;, the binary linear programming model for the
MVWCP can be formulated as follows (Sengor et al. 1999):

Max f(x)= i w; X;
i=1

subjectto: x; +x; < 1, Y{v;,v;} € E
X e(0.1)ie(l,. . .n)

ey

where n = |V, x; is the binary variable associated to vertex v;, E denotes the edge
set of the complementary graph G.

Notice that if w; = 1 (i € {1, ..., n}), Eq. (1) turns into the linear model of the
classic maximum clique problem.

2.2 Nonlinear BQP alternative

The linear model of the MVWCP can be recast into the form of the BQP by utilizing
the quadratic penalty function g(x) = Px;x; (x; is binary, i € {1, ..., n}) to replace
the inequality constraint of the MVWCP where P is a negative penalty scalar. Since
the inequality constraint x; + x; < 1 implies that x; and x; cannot receive value 1 at
the same time, the infeasibility penalty function g(x) will equal to O if the inequality

@ Springer

534 J Comb Optim (2016) 32:531-549

constraint is satisfied; otherwise g(x) will take a large penalty value 2 P. To construct
the nonlinear BQP model, each inequality constraint is replaced by the penalty function
g(x) which is added to the linear objective of Eq. (1) and the nonlinear BQP model
can be formulated as follows:

n

n n
Max xQx = Y wix; + Z Z w,-jxixj
i=1j=1,

i=1

x; € {0,1},ie{l,. }

@)

where w;; = P if {v;, v;} € E and 0 otherwise.

This formulation is one of many nonlinear reformulations of the MVWCP and
has been studied in previous work like Horst et al. (1995). The quadratic function
will have the same objective value as the linear form subject to all penalty items
equaling to O, indicating that all constraints are satisfied. According to Eq. (2), any
violated constraint, i.e., for each {v;, v;} € E, in a solution will add a penalty value
2P to the objective value. Thus, simply setting | P| > 0.5 Zi::l w;, where each linear
objective function coefficient w; > 0, will enable an infeasible solution to get a
large penalty value. Actually it suffices to set a smaller |P| > 0.5w™ (w™ is the
maximal value among all w;, i € {1, ..., n}). Under this setting, a good decision for
improving an infeasible solution would be to remove vertices associated with violated
constraints, making constraints gradually reduced and finally an infeasible solution
become feasible. Consider that the quadratic penalty function should be negative under
the case of a maximal objective, we select P = —1000 for the MVWCP benchmark
instances tested in our experiments. With this choice, for any optimal solution x of
problem (2), g(x) = 0holds. In other words, the subgraph constructed by the variables
with the assignment of 1 in the optimized solution x forms a clique. An illustrative
example of this transformation is given in Appendix. Since Eq. (2) corresponds to the
well-known BQP model, any algorithm designed for solving the BQP can be readily
used to solve the MVWCP. In our case, we apply a probabilistic tabu search algorithm
described in the next section.

3 Probabilistic tabu search algorithm

Metaheuristics are often used to solve hard optimization problems, such as quasi-
human based heuristics (He and Huang 2010; Wu et al. 2002), variable neighborhood
search (Hansen and Mladenovi¢ 2001), ant colony algorithm (Dorigo 1997), prob-
abilistic tabu search (Glover 1989; Xu et al. 1996), etc. In this paper, we solve the
MVWCEP directly in the nonlinear BQP form as expressed in Eq. (2) by adapting our
previous probabilistic tabu search algorithm (BQP-PTS) designed for the BQP (Wang
et al. 2013). BQP-PTS is a multistart procedure, consisting of a greedy probabilistic
solution construction phase and a sequel tabu search phase to optimize the objective
function. These two phases proceed iteratively until a stopping condition is satisfied.
Below we summarize the main ingredients of the BQP-PTS algorithm.

@ Springer

J Comb Optim (2016) 32:531-549 535

3.1 Greedy probabilistic construction of initial solutions

We construct a new solution for the general BQP model according to a greedy proba-
bilistic construction heuristic. The construction procedure consists of two phases: one
is to adaptively and iteratively select some variables to receive the value 1; the other is
to assign the value 0 to the remaining variables. The pseudo-code of this construction
procedure is shown in Algorithm 1.

Algorithm 1 Outline of the greedy probabilistic construction heuristic

1: Let px denote the partial solution and V'S denote variables not in the partial solution, initialize px = @,
VS ={x1,x2,...,xn}

2: repeat

3: Construct a candidate list CL C VS where each variable Xj ' in CL has a positive objective function

increment O F1, calculated as OF1; = w; + ZA ep

Choose randomly one variable x trom CL witha probablhty of 1/|CL|and set xy = 1

Enlarge the partial solution with px = px U {xs}

Update VS with VS = V.S \ {x4}

7 until CL =0

8: Setx; =0forVx; e VS

AN

First, the partial solution is set to be empty and all the variables of the problem
instance are put into the set of the remaining variables V' S. At each iteration we
construct a candidate list C L such that CL is a subset of V'S and each variable in CL
has a positive objective function increment O F'I. Then we choose one variable from
CL with a probability of 1/|CL| and assign it with the value 1. This variable with
its assignment value is added into the partial solution and is removed from V S. This
process continues until CL becomes empty. The last step is to assign the remaining
variables in V'S with value 0.

To quickly compute the objective function increment O F'I, we maintain a vector
1V, with each entry /'V; recording the objective function increment when putting a
variable x; with the value 1 into the partial solution. Initially, /V is computed as w;
since the initial partial solution is empty. Once a variable x; joins into the partial
solution, then each such entry /'V; with its corresponding variable belonging to the
set of the remaining variables V'S is updated as I V; = I'V; + 2wy;. Because of this
additional vector, the complexity of this construction procedure is bounded by O (1)?.

Although this strategy is much simpler than that used in the original algorithm
(Wang et al. 2013), it was experimentally demonstrated to be effective. Notice that
seen from the side of the MVWCP, CL is the set of vertices which form a clique
with those in the partial solution. This strategy of constructing an initial solution is
consistent with many specific maximum clique algorithms in the literature.

3.2 Tabu search
For each initial solution generated by the greedy probabilistic construction, we apply an

extended version of the tabu search algorithm described in Wang et al. (2013) to further
improve its quality. The tabu search algorithm in Wang et al. (2013) uses a simple one-

@ Springer

536 J Comb Optim (2016) 32:531-549

flip move (flipping the value of a single variable x; to its complementary value 1 — x;)
to conduct the neighborhood search. Here we not only exploit the one-flip move but
also incorporate a two-flip move (flipping the values of a pair of variables (x;, x;) to
their corresponding complementary values (1 — x;, 1 — x;)) (Glover and Hao 2010).
The above two types of moves constitute the neighborhood structures N1 and N2.

One drawback of an N2 move is the amount of time it consumes. Considerable effort
is required to evaluate all the two-flip moves because the neighborhood structure N2
generates n(n — 1) /2 solutions at each iteration. To overcome this obstacle, we employ
an instance of the Successive Filter candidate list strategy of Glover and Laguna (1997)
by restricting our attention to moves in N2 that can be obtained as follows. The first
step is to examine all the one-flip moves of the current solution x, and if any of these
moves is improving we go ahead and select it. But if no one-flip move is improving,
we limit attention to one-flip moves that produce an objective function value no worse
than f(x) 4+ 2P, where f(x) is the objective function value of x. (Recall that we are
maximizing and the penalty P is negative. This implies that the candidate one-flip
moves can violate at most a single additional constraint beyond those violated by x,
since a single constraint is penalized as Px;; + Px;; and hence incurs a penalty of
2P.) Finally, only the one-flip moves that pass this filtering criterion are allowed to
serve as the source of potential two-flip moves.

Tabu search typically introduces a tabu list to assure that solutions visited within a
certain number of iterations, called the tabu tenure, will not be revisited (Glover and
Laguna 1997). In the present study, each time a variable x; is flipped, this variable
enters into the tabu list and cannot be flipped for the next TabuT enure iterations. For
the neighborhood structure N1, our tabu search algorithm then restricts consideration
to variables not forbidden by the tabu list. For the neighborhood structure N2, we
consider a move to be non-tabu only if both variables associated with this move are
not in the tabu list and only such moves are considered during the search process.
According to preliminary experiments, we set TabuT enure(i) = 7+ rand(5) where
rand(5) produces a random integer from 1 to 5.

For each iteration in our tabu search procedure, a non-tabu move is chosen according
to the following rules: (1) if the best move from N1 leads to a solution better than the
best solution obtained in this round of tabu search, we select the best move from N1,
thus bypassing consideration of N2; (2) if no such move in N1 exists, we select the best
move from the combined pool of N1 and N2. A simple aspiration criterion is applied
that permits a move to be selected in spite of being tabu if it leads to a solution better
than the current best solution. The tabu search procedure stops when the best solution
cannot be improved within a given number . of moves and we call this number the
improvement cutoff. According to a preliminary experiment on parameter tuning, u is
set to be 5000 for all the instances except for san instances for which u = 10. In fact,
it was observed that for some san instances, it is more effective to restart the search
than to make long tabu iterations.

In order to quickly calculate the gains of performing a move, we maintain a vector
A which is initialized as follows:

@ Springer

J Comb Optim (2016) 32:531-549 537

A= [w,‘ + Z?‘:l,j;ﬁi 2wijx; (x; =0) 3)

w; — Z?:l,j#_i Zwijxj (x,' = 1)

Then if a move corresponding to a one-flip move x; is performed, then we update
the set of variables affected by this move using the following scheme (Glover and Hao
2010):

—Ay (k=1)
Ay = 1 A = 2wk (k # i, x = x;) 4)
Ap + 2w (k #i,xp =1—x;)

If a move corresponding to a two-flip move (x;, x;) from the neighborhood N2
is performed, then we update the set of variables affected by this move using the
following scheme (Glover and Hao 2010):

—Ak—Zwij k=iork=})
A = Ak — 2w + 2w (k #i k # j,xp =xi, x =1 —x;) (5
A+ 2w —2wjx (k#ik#jxk=xj,x=1-x)

Given the fact that the BQP-PTS algorithm is designed for the general BQP model
(instead of the MVWCP model studied in the paper), the above presentation of BQP-
PTS does not refer to the MVWCP. However, it is possible to give an interpretation
of some operators used by BQP-PTS related to the MVWCP. For instance, the one-
flip move for the BQP model can be considered as moving a single vertex in or out
the current solution (clique). On the other hand, such an interpretation will change
depending on the target problem under consideration.

4 Experimental results
4.1 Benchmark instances

We used two sets of benchmark instances for our computational assessments. The
first set concerns 80 DIMACS-W instances proposed in Pullan (2008), which were
adapted from the well-known DIMACS instances' for benchmark purpose to eval-
uate maximum clique algorithms. The second set is composed of 40 BHOSLIB-W
instances,?> which were adapted from the BHOSLIB benchmarks with hidden opti-
mum solutions (Benlic and Hao 2013). The weighting method is to allocate weights
to vertices according to the following scheme: for each vertex i, w; is set equal to
i mod 200 + 1, which enables us to exactly replicate the instances without difficulty.

The DIMACS benchmarks comprise the following families of graphs: Random
graphs (Cx.y and DSJCx.y of size x and density 0.y), Steiner triple graphs (MANNx

1 http://cs.hbg.psu.edu/txn131/clique.html.
2 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

@ Springer

http://cs.hbg.psu.edu/txn131/clique.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

538 J Comb Optim (2016) 32:531-549

Algorithm 2 Outline of the tabu search algorithm

1: Input: a given solution x with its solution value f(x)

2: Output: the local optimal solution x* with its solution value f(x™*)

3: T L: an n-dimensional vector for maintaining the tabu list A: an n-dimensional vector for recording the
move gain of performing each one-flip move

4: Initialize A according to Eq. (3), TL; =0 foralli =1ton

5: Set NonImp =0, Iter =0

6

7

: while NonImp < p (p is called improvement cutoff) do
Identify the best non-tabu one-flip move or the best one-flip move that is tabu but satisfies the aspiration
rule from the neighborhood N1, say this move corresponds to flipping x;
8 if f(x)+ A; > f(x*) then
90 xi=1-x, fx)=f)+4;
10: Update A according to Eq. (4)
11: Update Tabu List by setting TL; = Iter + TabuT enure;

12: else

13: Identify the best non-tabu move or the best tabu move that satisfies the aspiration rule from the
neighborhood N1 and N2

14: if this move corresponds to flipping x; then

15: xi=1-ux;,f(x)=fx)+ 4

16: Update A according to Eq. (4)

17: Update Tabu List by setting TL; = Iter + TabuT enure;

18: end if

19: if this move corresponds to flipping x; and x; then

20: xi:l—xi,xj:1—Xj,f(x):f'(x)+Al~+Aj+2wij

21: Update A according to Eq. (5)

22: Update Tabu List by setting TL; = Iter + TabuTenure;, TL; = Iter + TabuTenure;

23: end if

24: endif

25: if f(x) > f(x*) then
26: x*=x, f(x*) = f(x), NonImp =0

27: else
28: Nonlmp = Nonlmp + 1
29: end if

30: [ter = Iter + 1
31: end while

with up to 3321 nodes and 5,506,380 edges), Brockington graphs with hidden optimal
cliques (brockx_1, brockx_2, brockx_3, brockx_4 of size x), Gen random graphs with a
unique known optimal solution (genx_p0.9_z of size x), Hamming and Johnson graphs
stemming from the coding theory, Keller graphs based on Keller’s conjecture on tilings
using hypercubes (with up to 3361 verices and 4,619,898 edges), P-hat graphs (p_hatx-
z of size x), San random graphs (sanx_y_z of size x and density 0.y) and Sanr random
graphs (sanrx-z with size x and density z). The BHOSLIB-W benchmarks have sizes
ranging from 450 vertices and 17,794 edges up to 1534 vertices and 127,011 edges.

4.2 Experimental protocol
Our probabilistic tabu search algorithm for the BQP model was programmed in C++
and compiled using GNU GCC on a PC with Pentium 2.83 GHz CPU and 2 GB RAM.

We used the CPU clocks as the stop condition of our algorithm. Given the stochastic
nature of BQP-PTS, each problem instance was independently solved 100 times.

@ Springer

J Comb Optim (2016) 32:531-549 539

For the DIMACS-W benchmarks, the time limit for a single run was set as follows:
1 min for instances of hamming, gen, c-fat, johnson, p_hat, sanr, keller except keller6
and mann_a9; 5 min for instances of brock, dsjc, san and C families except C2000.5,
C2000.9, C4000.5; 60 min for C2000.5, C2000.9 and keller6; 600 min for C4000.5,
mann_a27, mann_a45, mann_a81. For the BHOSLIB benchmarks, the time limit was
set as 60 min.

4.3 Experimental results

In this section, we verify the effectiveness of our BQP approach with the BQP-PTS
algorithm on the 80 DIMACS-W instances and 40 BHOSLIB-W instances. Further-
more, we compare this general BQP approach with three recent and powerful heuristics
which are specially dedicated to the MVWCP: the PLSy algorithm (Pullan 2008), the
multi-neighborhood tabu search algorithm MN/TS (Wu et al. 2012) and the breakout
local search BLS (Benlic and Hao 2013).

Table 1 presents the experimental results for the DIMACS-W benchmarks, where
the columns under headings of BQP-PTS, PLSy,, MN/TS and BLS list respectively
the best solution values Best obtained by each algorithm, number of times to reach
Best over 100 runs Succ., and the average CPU time Time (in seconds) to reach
Best. Notice that an entry with <e signifies the average CPU time was less than 0.01
second and N A signifies the results are unavailable. The solution values inferior to
the best known ones are marked in bold.

From Table 1, we observe that BQP-PTS obtains 76 best solutions for the evaluated
80 instances, better than 67 of PLSy and competitive with 77 of MN/TS and 78 of
BLS. For the 2 failed cases, BQP-PTS achieves the second best solutions. In addition,
BQP-PTS has a success rate of 100 % to reach the best solutions for 64 instances, 12
more than PLSy but 4 and 5 less than MN/TS and BLS, respectively. Finally, BQP-
PTS reaches the best known results within a reasonable time (less than 30 min) for most
instances, except for 7 instances of C and MANN families. The long computing time
for these instances could be attributed to their difficulty (in fact, the reference MVWCP
heuristics also need longer time to attain their best solutions for these instances than
for other instances). In particular, PLSy can only attain its indicated best values for
some of these C and MANN instances (as well as some other instances) under a
long and relaxed time condition (indicated by ‘—’ in Table 1). Moreover, unlike the
dedicated MVWCP algorithms which incorporate problem specific implementation
to ensure their search efficiency, BQP-PTS, as a general solver, does not benefit from
such advantages.

Table 2 shows the results of the BQP-PTS approach compared to those of the MN/TS
and BLS algorithms for the BHOSLIB-W benchmarks (the PLSy algorithm does not
report results for the BHOSLIB-W benchmarks). Table 2 lists the best solution values
Best, number of times hitting Best over 100 runs Succ., the average solution values
and the average CPU time T'ime (in seconds) to reach Best for each algorithm. From
Table 2, we observe that BQP-PTS is able to attain the best known results for all
the 40 instances as BLS does while MN/TS misses two best values (frb56-25-2 and
frb56-25-5). In addition, BQP-PTS has a success rate of 100 % to reach the best known

@ Springer

J Comb Optim (2016) 32:531-549

540

VN VN VN 0c0 001 981¢C 9L'LY 001 981¢C [4491! 18 981¢C §000121Sd
VN VN VN ¥0'0 001 SCLL S6'0 001 SeLl (423 001 SCLl §008D18d
68°6L1 001 T6LT 9¢°08 001 6LT - - CTOLT LL'T06°61 6l T6LT 7]
8LCSIT YL 66601 11°891 cC 666°01 - - 82001 L6'T1LC L 666 ‘01 6'000CO
1c 001 99¥C 8l 001 99¥¢C LTTIL 81 9917¢ 16°99¢1 1L 99¥¢C §'000CO
€eCl 001 ¥$C6 06’8 001 5C6 VLYYE S £968 0S'Le 001 ¥$C6 600010
§To 001 $S69 L00 001 $S69 - - 789 120 001 $S69 600D
900 001 °60S 900 001 608 69°LYC Ll 2608 S00 001 60S 6°0SCO
100 001 6CST 00 001 6CST 808 001 6¢sT 200 00T 6CST 6'SCID
LO'6EE 001 1L6T oL'6¥ 001 1L6T LLe 001 1L6C £6°601 8 1L6T ¥ 008¥°01q
0s0 001 9L0¢ 80°0 001 9L0¢ ge'e 001 9L0€ [1a] 001 9L0¢ € 008201
IS0 69 £v0€ 0c0 001 £v0€ rees 69 £v0e 6CCy 001 £v0e T 008¥201q
€r'o 001 |¥483 S0'0 001 IcIe o'le 001 ICle S6'c 001 Icle 170082019
09°L 001 979¢ 0Ly 001 979¢ S00 001 979¢ 10v 001 909¢ ¥ 0013°01q
90 001 ILve €00 001 1LvE ¥0'Cl 001 ILvE LSO 001 ILvE € 00p1001q
800 001 0sce €00 19 0see S6'Sly 19 0see 00°1 001 0sce T 0013°01q
SO0 001 (4443 €00 [43 ive 6l'LEY [43 (4443 Lo 00T ive 100110019
100 001 LO1T > 001 LOIT 0L°0 001 LOTCT o 00T LOIT ¥ 00232019
100 001 90T > 001 90T 100 001 790¢ 600 001 90T € 0021201
€00 001 8¢l > 001 8Tyl 00 001 8crl 80°0 001 8crl T 002¥201q
> 001 128¢ > 001 128¢C 610 001 128¢ 00 001 128¢C 1700212019

oy, oong 150g quy, oong 19g iy, *oong 19g quy, oong 150g
S1d SI/NIN MsTd SLd-dOd QdUE)SUL

SQOUBISUT M -SOVIANIC JO 398 oy} uo swypros[e ST pue SI/SIN ‘STd oU im yoeoxdde §14-JOF oy Jo suostredwoos feuoneindwo) | I[qey,

pringer

As

541

J Comb Optim (2016) 32:531-549

VN VN VN €L°0 001 PSET > 001 PSET 0T°0 001 PSET 1-00$1e3-2
VN VN VN 700 001 L88S > 001 L88S 020 001 L88S S-00C1e)-2
VN VN VN 90°0 001 1% >> 001 1% €0 001 8874 2-0071e)-0
VN VN VN ¥1°0 001 ¥8C1 >> 001 #8C1 100 001 #8C1 1-0071e)-2
3 40] 001 9008 88°0 001 9008 > 001 9008 L9°0 001 9008 SL™6'0d 0opues
S0°0 001 0769 ¥0°0 001 069 6L°00C 14 SE€69 110 001 069 $96°0d00tue3
81°0 4 81L9 S1°0 001 81L9 11°0¥¢ T 81L9 80 001 81L9 S 6°0d00tues
SLT 001 91¥S €€°0 001 91¥¢ S0'0 001 91¥S €0 001 91¥¢ ¢S 6°0d00cues
100 001 £70S >> 001 €70S vy 001 €70S 200 001 £70S ¥ 6°0d”00zuss
98'9C 001 6C1S 17T 001 6C1S LO'EERT I 980S 6v'C¢ 8 6C1S -0 Suruey
799 001 TIS0S 60 001 71508 > 001 T15°08 LY'¥T L9 TIS0S Z-01Suruey
>> 001 Lyl >> 001 Lyl >> 001 Lyl >> 001 Lyl p-gSuruurey
Tro 001 9L6°01 >> 001 9L6°0T >> 001 9L601 080 001 9L601 7-8Suruurey
> 001 vEl >> 001 ¥El > 001 ¥El > 001 ¥El p-9Suruurey
> 001 TLOT > 001 TLOT > 001 TLOT > 001 TLOT ¢-9Suruurey
¥STr6T I LETTII YTTes I STI‘TII - - $9S°0OTT 8CT°L919 I LET'TIT 188" NNVIN
11626 I 6TTYE 85°06€ I T61PE - - 6CIvE SOVCSLI C 170829 Se NNVIN
85°96€ 91 18T°C1 87’88 I 182°C1 - - Y9I 18'%98°CC 12 LLTTL LTE"NNVIN
VN VN VN > 001 TLE > 001 TLe 100 001 TLe 68 NNVIA
91'0861 a4 7908 S1°909 S 7908 - - T8EL 9¢'81H¢ 4 7908 9Io[[Y
S9°0 001 LIgE LT'E 001 LIgE 1ZAON 001 Ligg ve's 001 LIgE GIo[[Y
¥0°0 001 €511 €00 001 €ST1 700 001 €ST1 S0°0 001 €ST1 FIOT[Y
uilg, ‘oong 189¢g auig, *oong 189g Quiry, *oong 1859g QL] *oong 189g
s1d SIL/NIN MQTd SLd-dOd Qoue)su|

panunuod | Jqe],

pringer

as

J Comb Optim (2016) 32:531-549

542

8L'1 001 12€°01 8¢'881 96 12€°01 - - $10°01 yIve 6 12€°01 €-005 ey d
810 001 09¢L 0 001 09¢L 619501 % 8TEL 19°¢ 001 09¢L z-00s ey d
10 001 6191 900 001 6191 16'8¥ 001 6191 STLI S6 6191 1-00S 1vey d
170 001 1118 €l 001 1118 - - 986L §9°0 001 1118 €-0001vey d
¥0°0 L8 LLLS 110 L8 LLLS 9016 L8 LLLS 600 001 LLLS z-00017ey d
L00 001 459! 80°0 00T 459! 19°L 001 yIST 8L'E 001 459! 1-0001ey d
[AN0] 001 SoSL 8¢°0 001 SoSL 0¥'8IL cl SoSL L0C 001 SoSL ¢-ooLwey d
00 001 06Cs 00 001 06CS 16°8L 001 06¢S €00 001 06CS z-ooLvey d
100 001 847! €00 001 847! 0C0 001 824! 0€0 001 847! 1-00Lveyd
S00 001 SLES 010 001 SLES - - 19¢€ 9¢0 001 SLES €-00srey d
100 001 0Z6¢ > 001 0Z6¢ - - Scoe > 001 0T6¢ z-00swey d
¥0°0 001 Ieel €00 001 Ieel wo 001 1ect LT°0 001 Ieel 1-00seyd
100 Ly VLLE 00 Ly VLLE I8ly Ly YLLE 700 001 VLLE €-00¢rey d
00 001 L8YC 3> 001 L8YC 9¢'6l 001 L8YC 00 001 L8YC z-0ogrey d
100 001 LSOT 00 001 LSOT 100 00T LSOT €00 001 LSOT 1-00¢rey d
8¥°0 001 £€0C €50 001 £€0C 89ty 001 ££0C 1L9¢ or ££0C #-g-gguosuyol
100 001 %Y €0 001 %Y > 001 8¢S > 001 %Y -9 1uosuyol
> 001 IS > 001 IS > 001 IS > 001 IS -p-guosuyol
> 001 99 > 001 99 > 001 99 > 001 99 -g-guosuyol
VN VN VN 900 001 98S°I1 > 001 98S°T1 6C'1 001 98S°I1 01-0057¥3-2
VN VN VN 710 001 I8¢ 3> 001 1178¢ SI'T 001 I8¢ G-0087e3->
VN VN VN €€0 001 879¢C 100 00T 879¢C or'e 001 879¢C 2-0087%4-2
oy, ‘oong 180g iy, ‘oong 180g g, oong 150g owig, ‘oong 180g

S1d SIL/NIA Mg1d SLd-dOd duejsuf

panunuod | Jqe],

pringer

as

543

J Comb Optim (2016) 32:531-549

€00 001 66T > 001 °66¢ 0S'Iv1 001 66¢ L¥'0 001 °66¢ L'0-00t1ues
00 001 cesl 00 001 Gesl L9°0 001 gesl 71 001 Sesl S'0-00t1ues
> 001 9TIs > 001 9IS 681 S 9IS > 001 9IS 6'0-00T1ues
100 001 geee > 001 geee w90 001 geee 80°0 001 geee L’0-00c1ues
Y6’y 00T 91LT 10°€1 001 91LY - - 91LY £6'0% 001 91LY 000TUES
§T9 001 9LL6 6C'1 001 9LL6 > 001 9LL6 1€°0 001 9LL6 1" 6°0 0otues
00 001 ILLT 00 001 ILLT vy 001 ILLT 1244 66 ILLT € L0 00pues
991 €€ orre yeey 001 orre S0'0 001 orre 189 001 orre T L0 oopues
- 86 1v9¢ 89°¢l 001 I76¢ €00 001 I76¢ ¥9'C 001 176€ 17L°0 00pues
o 001 9941 900 001 9941 ¥¥'00C 001 9941 LS 001 9941 1760 0opues
200 001 8YLy > <L 8Ly 89°61C <L 8YLy ¥9°0 001 8Ly € 6'0 0oTues
610 001 809 120 001 809 > 001 809 00 001 809 T 60 00cues
89°¢C 001 6789 (AN} 001 G789 > 001 G789 00 001 G789 1760 00cues
100 001 we w00 001 e 8€°L6E 99 e 7’0 001 e T L0 oocues
§9°0¢ 001 0LEE LT°0 001 0LEE > 001 0LEE 90°0 001 0LgE I L0 00cues

aurp, "0ong 1sog aury, 00ng 1sog aur, 2ong)sog aury, 0ng 1sog
S1d SI/NIN Mg1d SLd-d0d duejsup

panunuod | I[qe],

pringer

As

J Comb Optim (2016) 32:531-549

544

0990¢ 6LLY 001 6LLY 8°¢61 8C'LLLY 78 6LLY LT'YE 6LLY 001 6LLY S-1T-Sva4
089LS YT L6LY 96 66LY ELYLY I CLLY (34 66LY SIesy 66LY 001 66LY P-1T-Sva3
€0' 179 9L YILY 88 SoLY Se'sel 6'9SLY 9 SoLY ¥9°0S1 SoLY 001 SoLY €-1C-Sva4
90°L0E 8Ly 001 8Ly £0'8CC 98°SLLY Ly 8Ly ¥6°C6 8Ly 001 8Ly T 1T-Sval
€786 £YSLY 8¢ 09L¥ 9C'9tl1 99°8vLY ¥ 09Ly §T'968 09L¥ 001 09Ly [-12-S¥a13
[4: %943 LY 88 8I1Y 68°8LI1 9LIlY 06 8I1Y £9'96 8I1Y 001 8I1Y S-61-0794
68'¢EE w6'SElY 86 ocly §9'96 96 SElY 68 ocly 8'8SL ocly 001 ocly ¥-61-0vq13
SL'SLL LIy 9% S1Ty 86°SIT €'801Y 61 STy LO'TLT STy 001 S11¥ €-61-0v9%
18°6¢Y (48184 00T (4844 8SvEl OT'111Y L8 (4844 6€9L (4844 00T (4844 T61-0¥9
y1°16T 8790t 96 £90% LS'S8 S1°290t €8 £90% TLL8 £90% 001 £90% 1-61-0794
00°0¢ 989¢ 001 989¢ 60'8 989¢ 001 989¢ €L'e 989¢ 001 989¢ S-L1-S€9%
9¢'CeT £89¢ 001 £89¢ €016 1€°8L9¢ LL £89¢ 09°S £89¢ 001 £89¢ P-L1-6€q13
8S°T1 9ILE 001 9lILE L 9ILE 001 9ILE yS61 9ILE 001 9lILE €-L1-S€q4
L6l 8ELE 001 8ELE 60°CL ¥8°9¢LE 96 8ELE L1781 8ELE 001 8ELE C-L1-6€q13
S¥'89 059¢ 001 059¢ 08°6¢ 059¢ 001 059¢ 659 059¢ 001 059¢ 1-L1-S€q13
¥9°¢ 110€ 001 110€ 10°€ 110€ 001 110€ €1'e 110€ 001 110¢ G-S1-0€94
£€°0 [43]3 001 [430]3 cro e0e 001 [430]3 y0'1 [43]3 001 (4303 P-61-0€q13
L9T1 S66¢ 001 S66C wy $66T 001 S66¢ 08°S S66¢ 001 S66¢ €-S1-0€94
S1'8 900¢ 001 900¢ Sv'e 900¢ 001 900¢ 861 900¢ 001 900¢ ¢-S1-0€93
4! 066¢ 001 066C Se0 066C 001 066¢ 06t 066¢ 001 066¢ [-S1-0€94
oury, Say oong)sog aur, Ay "0ng 1s0g aury, 3ay "ong)sog
S1d SL/NIA S1d-dOd saduejsuf

seoueISUl M\ -gTISOHE JO 198) uo sunpose STg pue SI/SIA o s yoeordde §14-dOF 2y Jo suostredwod reuoneindwo) g d[qe,

pringer

As

545

J Comb Optim (2016) 32:531-549

60°CIST ¥6'9¥7S9 S 7859 Ly 191 LSTCS9 I 859 08°Ly7L SS¥SS9 6 7859 $-9C-6594
YECs6 §9¢s9 9 2659 6¢'8I¢ LE86Y9 I 2659 ¥9°CCee SEES9 S 2659 7-9¢-6594
£6'L0S YL'TrS9 1 8099 LLTET 8I'vIS9 I 8099 91°196¢ GS'L9S9 I 8099 €-9C-6594
£6'vE81 £2099 €l S¥99 6v'CIC LO'L9S9 € S¥99 96°0C81 Sy’ v199 oy S99 C-9T-65913
66°SEV1 91LS9 LT 1659 0C'991 €5°LYS9 € 1659 1T'8cee S0°689 L9 1659 1-92-6591)
09°98¢y Y0'L8LS 1 €686 0L'Cce 6£'89LS I 6£8S LS 6¥SE ST18S ! €686 G-6C-95943
06'95C1 98°098¢ cl °68¢S 86 ¥01 91'6£8S € 685 CCOSLL £'698¢ S 685 y-6¢-9594)
8¥°'101 1185 I 658S €6°181 8E'66LS I 658S (444 9'1€8¢ I 658S £€-67-9¢943
G8°¢l0l 96'8¢8¢ 1 988¢ STeL L*LO8S I L8S 81'8¢yl £€'198¢ € 988¢ C-6C-9¢94
L8VILI 8°098¢ S 9168 06'80¢ G8'9¢8¢ € 916S 00°c€01 € LL8S 61 916S 1-62-96q4
16'8LC S Tros % 659¢ 00'¥6C LL™8T9S S 659¢ £8°208¢ S0°€S9¢ 9 659S S-C-€sqy
087091 91°'9L9¢ €l VILS 6L 67y 19°$¥9¢ L VILS 9€'eCLI SL00LS S¢ VILS Yre-ecqy
£5'1786 8€°609S 8y 098 6L°SIC 6L°019¢ Sl 0198 YT o8yl SE'6£9S 06 0¥9¢ €VC-€sqy
oLyl 7E'689¢ € LOLS [4494! 96°9L9¢ 9 LOLS 0L°69C1 £'769¢ S¢ LOLS TYC-ecq
89501 817CS9S €l 0L9S TTeeT Y6°'LE9S S 0L9S £€'186 §€'099¢ 94 0L9¢ I-vC-€6q1y
81'88¢ 8675 001 8675 G801l L'S6vS 68 86¥S P8'1SL 8675 001 867S G-€C-0594
ey 0611 4R %9%Y 4! 12949 I 9L1 69°15¥S 6 12949 T LS6! [R34%Y 8¢ 12949 y-€¢-0594
96°LES 86°C8YS 86 9817S 1L°8C1 6C 08175 €S 98¥¢ e8Iy 98¥¢ 001 9817S €-€C-0594
YL LEYT Corrs S (4149 99°6171 YIvers € wors 01'8¢eC SOCSYS Sl [€1%% C-€C-0s94
L Ieel [¥7°98vS I Y617S 79981 YL ¥8¥S 9 14949 6v'I161 06°L8YS 0C Y61S 1-€2-0694
oy, Say -oong 10g oy, Say -oong 150g oy, Say oong 180g
s1d SI/NIN SLd-dOd sedue)suy

ponunuod g Jqel,

pringer

as

546 J Comb Optim (2016) 32:531-549

results for 22 instances, better than MN/T'S for 8 instances and BLS for 14 instances.
Moreover, BQP-PTS obtains better average solution values than MN/TS and BLS
for 32 and 26 instances, while requiring slightly more computing time, particularly
compared to MN/TS.

Finally, we also evaluated our BQP-PTS approach for the (unweighted) maximum
clique instances. Without bothering to show tabulated results, we observed that BQP-
PTS was able to attain the best known results for 77 of 80 DIMACS instances except
for C2000.9 (79 vs 80), MANNa_45 (344 vs 345), MANNa_81 (1098 vs 1100) and for
all the 40 BHOSLIB instances. Such a performance can be considered as quite good
even compared to the best performing MCP algorithms presented in the recent review
(Wu and Hao 2015). However, our BQP-PTS algorithm requires more computing
time than specific MCP algorithms, in particular when it is applied to solve some very
difficult instances.

5 Conclusion

We recast the maximum vertex weight clique problem (MVWCP) into the binary
quadratic programming (BQP) model, which was solved by a probabilistic tabu search
algorithm. Experiments on two sets of challenging DIMACS-W and BHOSLIB-
W benchmarks indicate that this general BQP approach is viable for solving the
MVWCP problem. In particular, without incorporation of domain specific knowledge,
this approach was able to attain the best known results for 76 out of 80 DIMACS-
W instances and for all the 40 BHOSLIB-W instances within reasonable computing
times. For the conventional maximum clique problem, the BQP approach achieved
similar performances by attaining the best known results for 77 out of 80 DIMACS
instances and for all the 40 BHOSLIB instances. However, our BQP approach is more
time consuming than specific algorithms especially for some very difficult instances
and some parameters need to be tuned to achieving its best performance. These compu-
tational outcomes demonstrate that the general BQP model constitutes an interesting
alternative to solve these clique problems without calling for specific heuristics.

For future consideration, it would be interesting to explore using the probabilistic
tabu search design not only within the restart part of our method, but also periodically
within the improving part of our method which currently consists of a relatively sim-
ple form of tabu search. Another interesting research line is to investigate automatic
parameter tuning techniques to obtain a general and parameter free BQP solver.

Acknowledgments We are grateful to the reviewers and the editors for their comments which help
us to improve the paper. This work was supported by National Natural Science Foundation of China
(Grant Nos. 71501157, 71172124), China Postdoctoral Science Foundation (Grant No. 2015M580873) and
Northwestern Polytechnical University (Grant No. 3102015RW007).

Appendix

To illustrate the transformation from the MVWCP to the BQP, we consider the fol-
lowing graph (see Fig. 1):

@ Springer

J Comb Optim (2016) 32:531-549 547

w2=3 w3=4 w3=4 wi1=2 wa=5

6

w5=2 w4=5 w5=2 w6=3 w2=3
Original graph GO Complement graph of GO

Fig. 1 A graph sample

Its linear formulation according to Eq. (1) is:

Max f(x) =2x1 4+ 3x3 + 4x3 + 5x4 + 2x5 + 3x6

s.t. x1+x3 <1; X1+ x4 <1;
x1 +x6 < 1 X2+ x4 < 1 (6)
x2+x6 < I x3+xs5 < I
x3+x6 < 1; x5 +x6 < 1.

Choosing the scalar penalty P = —15, we obtain the following BQP model:

Max f(x) = 2x1 + 3x2 +4x3 + Sx4 + 2x5 + 3x6 — 30x1x3 — 30x1x4
—30x1x6 — 30x2x4 — 30x2x6 — 30x3x5 — 30x3x6 — 30x5%6 (7)

which can be re-written as:

2 0 —15-15 0 -—15 X1
0O 3 0O —15 0 -—15 X2
—-15 0 4 0 —-15-15 X3

(JC] x2x3x4x5x6)x 15-15 0 5 0 0 X Y ®)
0O 0 —-15 0 2 -15 X5
—-15-15-15 0 —-15 3 X6

Solving this BQP problem yields x3 = x4 = 1 (all other variables equal zero) and
the optimal objective function value is 9.

References

Alidaee B, Glover F, Kochenberger GA, Wang H (2007) Solving the maximum edge weight clique problem
via unconstrained quadratic programming. Eur J Oper Res 181:592-597

Alidaee B, Kochenberger GA, Lewis K, Lewis M, Wang H (2008) A new approach for modeling and solving
set packing problem. Eur J Oper Res 86(2):504-512

Babel L (1994) A fast algorithm for the maximum weight clique problem. Computing 52(1):31-38

Ballard D, Brown C (1983) Computer vision. Prentice-Hall, Englewood Cliffs

Benlic U, Hao JK (2013) Breakout local search for maximum clique problems. Comput Oper Res 40(1):192—
206

Bomze IM, Pelillo M, Stix V (2000) Approximating the maximum weight clique using replicator dynamics.
IEEE Trans Neural Netw 11:1228-1241

@ Springer

548 J Comb Optim (2016) 32:531-549

Busygin S (2006) A new trust region technique for the maximum weight clique problem. Discret Appl Math
154:2080-2096

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett
9(6):375-382

Dorigo M (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem.
IEEE Trans Evolut Comput 1(1):53-66

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-Completeness.
Freeman, San Francisco

Glover F (1989) Tabu search—Part I. ORSA J Comput 1(3):190-206

Glover F, Hao JK (2010) Efficient evaluation for solving 0—1 unconstrained quadratic optimization problems.
Int J Metaheuristics 1(1):3-10

Glover F, Hao JK (2010) Fast 2-flip move evaluations for binary unconstrained quadratic optimization
problems. Int J Metaheuristics 1(2):100-107

Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell

Hansen P, Mladenovi¢ N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res
130(3):449-467

He K, Huang W (2010) A quasi-human algorithm for solving the three-dimensional rectangular packing
problem. Sci China Inf Sci 53(12):2389-2398

Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization, nonconvex optimization and
its applications, vol 3. Kluwer Academic Publishers, Norwell

Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling and solution framework for
combinatorial optimization problems. OR Spectr 26:237-250

Kochenberger G, Alidaee B, Glover F, Wang HB (2007) An effective modeling and solution approach for
the generalized independent set problem. Optim Lett 1:111-117

Kochenberger G, Hao JK, Lii Z, Wang H, Glover F (2013) Solving large scale max cut problems via tabu
search. J Heuristics 19(4):565-571

Kochenberger G, Hao JK, Glover F, Lewis M, Lii Z, Wang H, Wang Y (2014) The unconstrained binary
quadratic programming problem: a survey. J Comb Optim 28(1):58-81

Konc J, Janézi¢ D (2007) An improved branch and bound algorithm for the maximum clique problem.
MATCH Commun Math Comput Chem 58:569-590

Li C, Quan Z (2010) An efficient branch-and-bound algorithm based on MAXSAT for the maximum clique
problem. In: Proceedings of the 24th AAAI conference on artificial intelligence, pp 128-133

Lewis M, Kochenberger G, Alidaee B (2008) A new modeling and solution approach for the set-partitioning
problem. Comput Oper Res 2008:807-813

Macreesh C, Prosser P (2013) Multi-threading a state-of-the-art maximum clique algorithm. Algorithms
6(4):618-635

Manninno C, Stefanutti E (1999) An augmentation algorithm for the maximum weighted stable set problem.
Comput Optim Appl 14:367-381

Ostergard PRJ (2001) A new algorithm for the maximum weight clique problem. Nordic J Comput 8(4):424—
436

Ostergard PRJ (2002) A fast algorithm for the maximum clique problem. Discret Appl Math 120(1):197-207

Pajouh FM, Balasumdaram B, Prokopyev O (2013) On characterization of maximal independent sets via
quadratic optimization. J Heuristics 19(4):629-644

Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum clique problem. Comput
Oper Res 19(5):363-375

Pullan W (2008) Approximating the maximum vertex/edge weighted clique using local search. J Heuristics
14:117-134

Rebennack S, Oswald M, Theis D, Seitz H, Reinelt G, Pardalos PM (2011) A branch and cut solver for the
maximum stable set problem. J Comb Optim 21(4):434-457

Rebennack S, Reinelt G, Pardalos PM (2012) A tutorial on branch and cut algorithms for the maximum
stable set problem. Int Trans Oper Res 19(1-2):161-199

Segundo PS, Rodriguez-Losada D, Jiménez A (2011) An exact bitparallel algorithm for the maximum
clique problem. Comput Oper Res 38(2):571-581

Sengor NS, Cakir Y, Guzelis C, Pekergin F, Morgul O (1999) An analysis of maximum clique formulations
and saturated linear dynamical network. ARI 51:268-276

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum clique with
computational experiments. J Glob Optim 37(1):95-111

@ Springer

J Comb Optim (2016) 32:531-549 549

Wang Y, Lii Z, Glover F, Hao JK (2013) Probabilistic GRASP-tabu search algorithms for the UBQP problem.
Comput Oper Res 40(12):3100-3107

Warren JS, Hicks IV (2006) Combinatorial branch-and-bound for the maximum weight independent set
problem. Technical Report, Texas A&M University

Wu Q, Hao JK (2015) A review on algorithms for maximum clique problems. Eur J Oper Res 242:693-709

Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem.
Ann Oper Res 196(1):611-634

Wu Y, Huang W, Lau S, Wong CK, Young GH (2002) An effective quasi-human based heuristic for solving
the rectangle packing problem. Eur J Oper Res 141(2):341-358

Xu JF, Chiu SY, Glover F (1996) Probabilistic tabu search for telecommunications network design. Comb
Optim Theory Pract 1(1):69-94

@ Springer

	Solving the maximum vertex weight clique problem via binary quadratic programming
	Abstract
	1 Introduction
	2 Transformation to the BQP model
	2.1 Linear model for the MVWCP
	2.2 Nonlinear BQP alternative

	3 Probabilistic tabu search algorithm
	3.1 Greedy probabilistic construction of initial solutions
	3.2 Tabu search

	4 Experimental results
	4.1 Benchmark instances
	4.2 Experimental protocol
	4.3 Experimental results

	5 Conclusion
	Acknowledgments
	Appendix
	References

