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Abstract In recent years, the general binary quadratic programming (BQP) model
has been widely applied to solve a number of combinatorial optimization problems.
In this paper, we recast the maximum vertex weight clique problem (MVWCP) into
this model which is then solved by a probabilistic tabu search algorithm designed for
the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W
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benchmark instances demonstrate that this general approach is viable for solving the
MVWCP problem.

Keywords Maximum vertex weight clique · Binary quadratic programming ·
Probabilistic tabu search

1 Introduction

Given an undirected graph G = (V, E) with vertex set V and edge set E , a clique is a
set of verticesC ⊆ V such that every pair of distinct vertices ofC is connected with an
edge inG, i.e., the subgraph generated byC is complete. Themaximumclique problem
(MCP) is to find a clique of maximum cardinality. An important generalization of the
MCP, known as the maximum vertex weight clique problem (MVWCP), arises when
each vertex i in G is associated with a positive weight wi . The MVWCP aims to find
a clique of G with the maximum

∑
i∈C wi . It is clear that the MCP is a special case

of the MVWCP with wi = 1 for each vertex.
The MCP is computationally difficult given that its associated decision problem is

known to be NP-complete (Garey and Johnson 1979). As a generalization of theMCP,
the MVWCP has at least as the same computational complexity as the MCP. Like the
MCP, the MVWCP has important applications in many domains like computer vision,
pattern recognition and robotics (Ballard and Brown 1983).

To solve these clique problems, a variety of solution algorithms have been reported
in the literature. Examples of exact methods based on the general Branch-and-Bound
(B&B) or Branch-and-Cut methods for the MCP (or its equivalent maximum sta-
ble set problem) can be found in Carraghan and Pardalos (1990), Konc and Janĕzic̆
(2007), Li and Quan (2010), Macreesh and Prosser (2013), Östergård (2002), Reben-
nack et al. (2011), Rebennack et al. (2012), Segundo et al. (2011), and Tomita and
Kameda (2007). For the MVWCP, some exact algorithms are tightly related to the
corresponding algorithms designed for the MCP (Babel 1994; Östergård 2001) while
other B&B based methods can be found in Warren and Hicks (2006). On the other
hand, a number of heuristic algorithm have also been proposed to find sub-optimal
solutions to the MVWCP, including an augmentation algorithm (Manninno and Ste-
fanutti 1999), a distributed computational network algorithm (Bomze et al. 2000),
a trust region technique algorithm (Busygin 2006), a phased local search algorithm
(Pullan 2008), a multi-neighborhood tabu search algorithm (Wu et al. 2012), and a
breakout local search algorithm (Benlic and Hao 2013). For an updated recent review
of algorithms for these clique problems, the reader is referred to Wu and Hao (2015).

During the past decade, binary quadratic programming (BQP) has emerged as a
unified model for numerous combinatorial optimization problems, such as max-cut
(Kochenberger et al. 2013; Wang et al. 2013), set partitioning (Lewis et al. 2008), set
packing (Alidaee et al. 2008), generalized independent set (Kochenberger et al. 2007)
and maximum edge weight clique (Alidaee et al. 2007). A review of the additional
applications and the reformulation procedures can be found in Kochenberger et al.
(2004, 2014). Using the BQP model to solve the targeted problem has the advantage
of directly applying an algorithm designed for the BQP rather than resorting to a
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specialized solution method. Moreover, this approach proves to be competitive for
several problems compared to specifically designed algorithms (Alidaee et al. 2007;
Kochenberger et al. 2013; Lewis et al. 2008; Wang et al. 2013).

There exists several studies on the application of the BQP model to solve the
classic MCP (Kochenberger et al. 2014; Pajouh et al. 2013; Pardalos and Rodgers
1992). However, for the more general MVWCP, no computational study has been
reported in the literature using the BQP model. In this paper, we investigate for the
first time the application of the BQP model to the MVWCP and solve the resulting
BQP problem with the probabilistic tabu search algorithm (BQP-PTS) designed for
the BQP (Wang et al. 2013). Experimental results on 80 challenging DIMACS-W
and 40 BHOSLIB-W instances demonstrate that this general BQP approach with the
PTS algorithm performs quite well in terms of solution quality at the price of more
computing time for some benchmark instances.

The rest of this paper is organized as follows. Section 2 illustrates how to transform
theMVWCP into the form of the BQP. Section 3 presents our probabilistic tabu search
algorithm to solve the transformed BQP model. Section 4 report the computational
results and comparisons with other state-of-the-art algorithms in the literature. The
paper concludes with Sect. 5.

2 Transformation to the BQP model

2.1 Linear model for the MVWCP

Given an undirected graph G = (V, E) with vertex set V and edge set E , each vertex
associated with a positive weight wi , the binary linear programming model for the
MVWCP can be formulated as follows (Sengor et al. 1999):

Max f (x) =
n∑

i=1
wi xi

subject to: xi + x j ≤ 1, ∀{vi , v j } ∈ E
xi ∈ {0, 1}, i ∈ {1, . . . , n}

(1)

where n = |V |, xi is the binary variable associated to vertex vi , E denotes the edge
set of the complementary graph G.

Notice that if wi = 1 (i ∈ {1, . . . , n}), Eq. (1) turns into the linear model of the
classic maximum clique problem.

2.2 Nonlinear BQP alternative

The linear model of the MVWCP can be recast into the form of the BQP by utilizing
the quadratic penalty function g(x) = Pxi x j (xi is binary, i ∈ {1, . . . , n}) to replace
the inequality constraint of the MVWCP where P is a negative penalty scalar. Since
the inequality constraint xi + x j ≤ 1 implies that xi and x j cannot receive value 1 at
the same time, the infeasibility penalty function g(x) will equal to 0 if the inequality
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constraint is satisfied; otherwise g(x) will take a large penalty value 2P . To construct
the nonlinearBQPmodel, each inequality constraint is replaced by the penalty function
g(x) which is added to the linear objective of Eq. (1) and the nonlinear BQP model
can be formulated as follows:

Max xQx =
n∑

i=1
wi xi +

n∑

i=1

n∑

j=1, j �=i
wi j xi x j

xi ∈ {0, 1}, i ∈ {1, . . . , n}
(2)

where wi j = P if {vi , v j } ∈ E and 0 otherwise.
This formulation is one of many nonlinear reformulations of the MVWCP and

has been studied in previous work like Horst et al. (1995). The quadratic function
will have the same objective value as the linear form subject to all penalty items
equaling to 0, indicating that all constraints are satisfied. According to Eq. (2), any
violated constraint, i.e., for each {vi , v j } ∈ E , in a solution will add a penalty value
2P to the objective value. Thus, simply setting |P| > 0.5

∑i
i=1 wi , where each linear

objective function coefficient wi > 0, will enable an infeasible solution to get a
large penalty value. Actually it suffices to set a smaller |P| > 0.5wm (wm is the
maximal value among all wi , i ∈ {1, . . . , n}). Under this setting, a good decision for
improving an infeasible solution would be to remove vertices associated with violated
constraints, making constraints gradually reduced and finally an infeasible solution
become feasible. Consider that the quadratic penalty function should be negative under
the case of a maximal objective, we select P = −1000 for the MVWCP benchmark
instances tested in our experiments. With this choice, for any optimal solution x of
problem (2), g(x) = 0 holds. In other words, the subgraph constructed by the variables
with the assignment of 1 in the optimized solution x forms a clique. An illustrative
example of this transformation is given in Appendix. Since Eq. (2) corresponds to the
well-known BQP model, any algorithm designed for solving the BQP can be readily
used to solve the MVWCP. In our case, we apply a probabilistic tabu search algorithm
described in the next section.

3 Probabilistic tabu search algorithm

Metaheuristics are often used to solve hard optimization problems, such as quasi-
human based heuristics (He and Huang 2010; Wu et al. 2002), variable neighborhood
search (Hansen and Mladenović 2001), ant colony algorithm (Dorigo 1997), prob-
abilistic tabu search (Glover 1989; Xu et al. 1996), etc. In this paper, we solve the
MVWCP directly in the nonlinear BQP form as expressed in Eq. (2) by adapting our
previous probabilistic tabu search algorithm (BQP-PTS) designed for the BQP (Wang
et al. 2013). BQP-PTS is a multistart procedure, consisting of a greedy probabilistic
solution construction phase and a sequel tabu search phase to optimize the objective
function. These two phases proceed iteratively until a stopping condition is satisfied.
Below we summarize the main ingredients of the BQP-PTS algorithm.
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3.1 Greedy probabilistic construction of initial solutions

We construct a new solution for the general BQP model according to a greedy proba-
bilistic construction heuristic. The construction procedure consists of two phases: one
is to adaptively and iteratively select some variables to receive the value 1; the other is
to assign the value 0 to the remaining variables. The pseudo-code of this construction
procedure is shown in Algorithm 1.

Algorithm 1 Outline of the greedy probabilistic construction heuristic
1: Let px denote the partial solution and V S denote variables not in the partial solution, initialize px = ∅,

V S = {x1, x2, . . . , xn}
2: repeat
3: Construct a candidate list CL ⊂ V S where each variable x j in CL has a positive objective function

increment OF I , calculated as OF I j = w j + ∑
xi∈px wi j

4: Choose randomly one variable xs from CL with a probability of 1/|CL| and set xs = 1
5: Enlarge the partial solution with px = px ∪ {xs }
6: Update V S with V S = V S \ {xs }
7: until CL = ∅
8: Set xi = 0 for ∀xi ∈ V S

First, the partial solution is set to be empty and all the variables of the problem
instance are put into the set of the remaining variables V S. At each iteration we
construct a candidate list CL such that CL is a subset of V S and each variable in CL
has a positive objective function increment OF I . Then we choose one variable from
CL with a probability of 1/|CL| and assign it with the value 1. This variable with
its assignment value is added into the partial solution and is removed from V S. This
process continues until CL becomes empty. The last step is to assign the remaining
variables in V S with value 0.

To quickly compute the objective function increment OF I , we maintain a vector
I V , with each entry I Vi recording the objective function increment when putting a
variable xi with the value 1 into the partial solution. Initially, I V is computed as wi

since the initial partial solution is empty. Once a variable xs joins into the partial
solution, then each such entry I Vi with its corresponding variable belonging to the
set of the remaining variables V S is updated as I Vi = I Vi + 2wsi . Because of this
additional vector, the complexity of this construction procedure is bounded by O(n)2.

Although this strategy is much simpler than that used in the original algorithm
(Wang et al. 2013), it was experimentally demonstrated to be effective. Notice that
seen from the side of the MVWCP, CL is the set of vertices which form a clique
with those in the partial solution. This strategy of constructing an initial solution is
consistent with many specific maximum clique algorithms in the literature.

3.2 Tabu search

For each initial solution generated by the greedyprobabilistic construction,we apply an
extended version of the tabu search algorithm described inWang et al. (2013) to further
improve its quality. The tabu search algorithm inWang et al. (2013) uses a simple one-
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flip move (flipping the value of a single variable xi to its complementary value 1− xi )
to conduct the neighborhood search. Here we not only exploit the one-flip move but
also incorporate a two-flip move (flipping the values of a pair of variables (xi , x j ) to
their corresponding complementary values (1 − xi , 1 − x j )) (Glover and Hao 2010).
The above two types of moves constitute the neighborhood structures N1 and N2.

One drawback of anN2move is the amount of time it consumes. Considerable effort
is required to evaluate all the two-flip moves because the neighborhood structure N2
generates n(n−1)/2 solutions at each iteration. To overcome this obstacle, we employ
an instance of the Successive Filter candidate list strategy ofGlover and Laguna (1997)
by restricting our attention to moves in N2 that can be obtained as follows. The first
step is to examine all the one-flip moves of the current solution x , and if any of these
moves is improving we go ahead and select it. But if no one-flip move is improving,
we limit attention to one-flip moves that produce an objective function value no worse
than f (x) + 2P , where f (x) is the objective function value of x . (Recall that we are
maximizing and the penalty P is negative. This implies that the candidate one-flip
moves can violate at most a single additional constraint beyond those violated by x ,
since a single constraint is penalized as Pxi j + Px ji and hence incurs a penalty of
2P .) Finally, only the one-flip moves that pass this filtering criterion are allowed to
serve as the source of potential two-flip moves.

Tabu search typically introduces a tabu list to assure that solutions visited within a
certain number of iterations, called the tabu tenure, will not be revisited (Glover and
Laguna 1997). In the present study, each time a variable xi is flipped, this variable
enters into the tabu list and cannot be flipped for the next TabuT enure iterations. For
the neighborhood structure N1, our tabu search algorithm then restricts consideration
to variables not forbidden by the tabu list. For the neighborhood structure N2, we
consider a move to be non-tabu only if both variables associated with this move are
not in the tabu list and only such moves are considered during the search process.
According to preliminary experiments, we set TabuT enure(i) = 7+rand(5)where
rand(5) produces a random integer from 1 to 5.

For each iteration in our tabu search procedure, a non-tabumove is chosen according
to the following rules: (1) if the best move from N1 leads to a solution better than the
best solution obtained in this round of tabu search, we select the best move from N1,
thus bypassing consideration of N2; (2) if no suchmove in N1 exists, we select the best
move from the combined pool of N1 and N2. A simple aspiration criterion is applied
that permits a move to be selected in spite of being tabu if it leads to a solution better
than the current best solution. The tabu search procedure stops when the best solution
cannot be improved within a given number μ of moves and we call this number the
improvement cutoff. According to a preliminary experiment on parameter tuning, μ is
set to be 5000 for all the instances except for san instances for which μ = 10. In fact,
it was observed that for some san instances, it is more effective to restart the search
than to make long tabu iterations.

In order to quickly calculate the gains of performing a move, we maintain a vector
Δ which is initialized as follows:
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Δi =
{

wi + ∑n
j=1, j �=i 2wi j x j (xi = 0)

wi − ∑n
j=1, j �=i 2wi j x j (xi = 1)

(3)

Then if a move corresponding to a one-flip move xi is performed, then we update
the set of variables affected by this move using the following scheme (Glover and Hao
2010):

Δk =

⎧
⎪⎨

⎪⎩

−Δk (k = i)

Δk − 2wik (k �= i, xk = xi )

Δk + 2wik (k �= i, xk = 1 − xi )

(4)

If a move corresponding to a two-flip move (xi , x j ) from the neighborhood N2
is performed, then we update the set of variables affected by this move using the
following scheme (Glover and Hao 2010):

Δk =

⎧
⎪⎨

⎪⎩

−Δk − 2wi j (k = i or k = j)

Δk − 2wik + 2w jk (k �= i, k �= j, xk = xi , xk = 1 − x j )

Δk + 2wik − 2w jk (k �= i, k �= j, xk = x j , xk = 1 − xi )

(5)

Given the fact that the BQP-PTS algorithm is designed for the general BQP model
(instead of the MVWCP model studied in the paper), the above presentation of BQP-
PTS does not refer to the MVWCP. However, it is possible to give an interpretation
of some operators used by BQP-PTS related to the MVWCP. For instance, the one-
flip move for the BQP model can be considered as moving a single vertex in or out
the current solution (clique). On the other hand, such an interpretation will change
depending on the target problem under consideration.

4 Experimental results

4.1 Benchmark instances

We used two sets of benchmark instances for our computational assessments. The
first set concerns 80 DIMACS-W instances proposed in Pullan (2008), which were
adapted from the well-known DIMACS instances1 for benchmark purpose to eval-
uate maximum clique algorithms. The second set is composed of 40 BHOSLIB-W
instances,2 which were adapted from the BHOSLIB benchmarks with hidden opti-
mum solutions (Benlic and Hao 2013). The weighting method is to allocate weights
to vertices according to the following scheme: for each vertex i , wi is set equal to
i mod 200 + 1, which enables us to exactly replicate the instances without difficulty.

The DIMACS benchmarks comprise the following families of graphs: Random
graphs (Cx.y and DSJCx.y of size x and density 0.y), Steiner triple graphs (MANNx

1 http://cs.hbg.psu.edu/txn131/clique.html.
2 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.
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Algorithm 2 Outline of the tabu search algorithm
1: Input: a given solution x with its solution value f (x)
2: Output: the local optimal solution x∗ with its solution value f (x∗)

3: T L: an n-dimensional vector for maintaining the tabu list Δ: an n-dimensional vector for recording the
move gain of performing each one-flip move

4: Initialize Δ according to Eq. (3), T Li = 0 for all i = 1 to n
5: Set NonImp = 0, I ter = 0
6: while NonImp < μ (μ is called improvement cutoff) do
7: Identify the best non-tabu one-flipmove or the best one-flipmove that is tabu but satisfies the aspiration

rule from the neighborhood N1, say this move corresponds to flipping xi
8: if f (x) + Δi > f (x∗) then
9: xi = 1 − xi , f (x) = f (x) + Δi
10: Update Δ according to Eq. (4)
11: Update Tabu List by setting T Li = I ter + TabuT enurei
12: else
13: Identify the best non-tabu move or the best tabu move that satisfies the aspiration rule from the

neighborhood N1 and N2
14: if this move corresponds to flipping xi then
15: xi = 1 − xi , f (x) = f (x) + Δi
16: Update Δ according to Eq. (4)
17: Update Tabu List by setting T Li = I ter + TabuT enurei
18: end if
19: if this move corresponds to flipping xi and x j then
20: xi = 1 − xi , x j = 1 − x j , f (x) = f (x) + Δi + Δ j + 2wi j
21: Update Δ according to Eq. (5)
22: Update Tabu List by setting T Li = I ter + TabuT enurei , T L j = I ter + TabuT enure j
23: end if
24: end if
25: if f (x) > f (x∗) then
26: x∗ = x , f (x∗) = f (x), NonImp = 0
27: else
28: NonImp = NonImp + 1
29: end if
30: I ter = I ter + 1
31: end while

with up to 3321 nodes and 5,506,380 edges), Brockington graphs with hidden optimal
cliques (brockx_1, brockx_2, brockx_3, brockx_4of size x),Gen randomgraphswith a
unique known optimal solution (genx_p0.9_z of size x), Hamming and Johnson graphs
stemming from the coding theory, Keller graphs based onKeller’s conjecture on tilings
using hypercubes (with up to 3361 verices and 4,619,898 edges), P-hat graphs (p_hatx-
z of size x), San random graphs (sanx_y_z of size x and density 0.y) and Sanr random
graphs (sanrx-z with size x and density z). The BHOSLIB-W benchmarks have sizes
ranging from 450 vertices and 17,794 edges up to 1534 vertices and 127,011 edges.

4.2 Experimental protocol

Our probabilistic tabu search algorithm for the BQP model was programmed in C++
and compiled using GNUGCC on a PCwith Pentium 2.83 GHz CPU and 2 GBRAM.
We used the CPU clocks as the stop condition of our algorithm. Given the stochastic
nature of BQP-PTS, each problem instance was independently solved 100 times.
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For the DIMACS-W benchmarks, the time limit for a single run was set as follows:
1 min for instances of hamming, gen, c-fat, johnson, p_hat, sanr, keller except keller6
and mann_a9; 5 min for instances of brock, dsjc, san and C families except C2000.5,
C2000.9, C4000.5; 60 min for C2000.5, C2000.9 and keller6; 600 min for C4000.5,
mann_a27, mann_a45, mann_a81. For the BHOSLIB benchmarks, the time limit was
set as 60 min.

4.3 Experimental results

In this section, we verify the effectiveness of our BQP approach with the BQP-PTS
algorithm on the 80 DIMACS-W instances and 40 BHOSLIB-W instances. Further-
more,we compare this general BQP approachwith three recent and powerful heuristics
which are specially dedicated to the MVWCP: the PLSW algorithm (Pullan 2008), the
multi-neighborhood tabu search algorithm MN/TS (Wu et al. 2012) and the breakout
local search BLS (Benlic and Hao 2013).

Table 1 presents the experimental results for the DIMACS-W benchmarks, where
the columns under headings of BQP-PTS, PLSW , MN/TS and BLS list respectively
the best solution values Best obtained by each algorithm, number of times to reach
Best over 100 runs Succ., and the average CPU time T ime (in seconds) to reach
Best . Notice that an entry with <ε signifies the average CPU time was less than 0.01
second and N A signifies the results are unavailable. The solution values inferior to
the best known ones are marked in bold.

From Table 1, we observe that BQP-PTS obtains 76 best solutions for the evaluated
80 instances, better than 67 of PLSW and competitive with 77 of MN/TS and 78 of
BLS. For the 2 failed cases, BQP-PTS achieves the second best solutions. In addition,
BQP-PTS has a success rate of 100% to reach the best solutions for 64 instances, 12
more than PLSW but 4 and 5 less than MN/TS and BLS, respectively. Finally, BQP-
PTS reaches the best known resultswithin a reasonable time (less than 30min) formost
instances, except for 7 instances of C and MANN families. The long computing time
for these instances could be attributed to their difficulty (in fact, the referenceMVWCP
heuristics also need longer time to attain their best solutions for these instances than
for other instances). In particular, PLSW can only attain its indicated best values for
some of these C and MANN instances (as well as some other instances) under a
long and relaxed time condition (indicated by ‘–’ in Table 1). Moreover, unlike the
dedicated MVWCP algorithms which incorporate problem specific implementation
to ensure their search efficiency, BQP-PTS, as a general solver, does not benefit from
such advantages.

Table 2 shows the results of theBQP-PTSapproach compared to those of theMN/TS
and BLS algorithms for the BHOSLIB-W benchmarks (the PLSW algorithm does not
report results for the BHOSLIB-W benchmarks). Table 2 lists the best solution values
Best , number of times hitting Best over 100 runs Succ., the average solution values
and the average CPU time T ime (in seconds) to reach Best for each algorithm. From
Table 2, we observe that BQP-PTS is able to attain the best known results for all
the 40 instances as BLS does while MN/TS misses two best values (frb56-25-2 and
frb56-25-5). In addition, BQP-PTS has a success rate of 100% to reach the best known
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results for 22 instances, better than MN/TS for 8 instances and BLS for 14 instances.
Moreover, BQP-PTS obtains better average solution values than MN/TS and BLS
for 32 and 26 instances, while requiring slightly more computing time, particularly
compared to MN/TS.

Finally, we also evaluated our BQP-PTS approach for the (unweighted) maximum
clique instances. Without bothering to show tabulated results, we observed that BQP-
PTS was able to attain the best known results for 77 of 80 DIMACS instances except
for C2000.9 (79 vs 80),MANNa_45 (344 vs 345),MANNa_81 (1098 vs 1100) and for
all the 40 BHOSLIB instances. Such a performance can be considered as quite good
even compared to the best performing MCP algorithms presented in the recent review
(Wu and Hao 2015). However, our BQP-PTS algorithm requires more computing
time than specific MCP algorithms, in particular when it is applied to solve some very
difficult instances.

5 Conclusion

We recast the maximum vertex weight clique problem (MVWCP) into the binary
quadratic programming (BQP) model, which was solved by a probabilistic tabu search
algorithm. Experiments on two sets of challenging DIMACS-W and BHOSLIB-
W benchmarks indicate that this general BQP approach is viable for solving the
MVWCP problem. In particular, without incorporation of domain specific knowledge,
this approach was able to attain the best known results for 76 out of 80 DIMACS-
W instances and for all the 40 BHOSLIB-W instances within reasonable computing
times. For the conventional maximum clique problem, the BQP approach achieved
similar performances by attaining the best known results for 77 out of 80 DIMACS
instances and for all the 40 BHOSLIB instances. However, our BQP approach is more
time consuming than specific algorithms especially for some very difficult instances
and some parameters need to be tuned to achieving its best performance. These compu-
tational outcomes demonstrate that the general BQP model constitutes an interesting
alternative to solve these clique problems without calling for specific heuristics.

For future consideration, it would be interesting to explore using the probabilistic
tabu search design not only within the restart part of our method, but also periodically
within the improving part of our method which currently consists of a relatively sim-
ple form of tabu search. Another interesting research line is to investigate automatic
parameter tuning techniques to obtain a general and parameter free BQP solver.
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Appendix

To illustrate the transformation from the MVWCP to the BQP, we consider the fol-
lowing graph (see Fig. 1):
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Its linear formulation according to Eq. (1) is:

Max f (x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6
s.t. x1 + x3 ≤ 1; x1 + x4 ≤ 1;

x1 + x6 ≤ 1; x2 + x4 ≤ 1;
x2 + x6 ≤ 1; x3 + x5 ≤ 1;
x3 + x6 ≤ 1; x5 + x6 ≤ 1.

(6)

Choosing the scalar penalty P = −15, we obtain the following BQP model:

Max f (x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6 − 30x1x3 − 30x1x4
−30x1x6 − 30x2x4 − 30x2x6 − 30x3x5 − 30x3x6 − 30x5x6 (7)

which can be re-written as:

(
x1 x2 x3 x4 x5 x6

) ×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 −15 −15 0 −15
0 3 0 −15 0 −15

−15 0 4 0 −15 −15
−15 −15 0 5 0 0
0 0 −15 0 2 −15

−15 −15 −15 0 −15 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
x3
x4
x5
x6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

Solving this BQP problem yields x3 = x4 = 1 (all other variables equal zero) and
the optimal objective function value is 9.
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