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Abstract Let D be any edge orientation of a graph G. We denote by �k(D) the
maximumvalue t forwhich there exists a directed path v1, . . . , vk such that dout (vk) =
t , where dout (vk) is the out-degree of vk in D. We first obtain some bounds for the
chromatic number of G in terms of �k(D) and then show a relationship between
�k(D) and vertex partitions of a graph into degenerate subgraphs.
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1 Introduction

All graphs in this paper are simple and undirected. By an orientation of a graph G
we mean an edge orientation of G. Let D be an orientation of a graph G. Then
D is said to be acyclic if it does not contain any directed cycle. The out-degree in
D of a vertex v of G is the number of edges incident to v and directed out of v.
The in-degree of v is defined similarly. Let S be any subset of vertices in G. We
denote by G[S] the subgraph of G induced on S. Relationships between the chromatic
number χ(G) and orientations of G have been studied widely in the literature. Perhaps
the first result in this direction is a result by Gallai (1968), Roy (1967) and Vitaver
(1962) (independent of each other) which asserts that if D is an orientation with
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longest path length �(D), then χ(G) ≤ �(D) + 1. In fact it is easily observed that
χ(G) = minD�(D) + 1, where the minimum is taken over all orientations of G.
Moreover, if we restrict all orientations of G to acyclic ones then the same equality
still holds. Deming (1979) obtained more results concerning acyclic orientations and
chromatic number. Figueiredo et al. (2008) studied acyclic orientations with path
constraints and obtained some interconnectionswith graph theoretical parameters such
as chromatic and independence number. For other results concerning orientations and
chromatic number we refer the reader to the book Jensen and Toft (1995). For any
orientation D of G we denote by �out (D) the maximum out-degree in D. Some
researchers have obtained upper bounds for chromatic and list chromatic number in
terms of �out (D). It can be shown by the greedy coloring procedure that if D is
acyclic then χ(G) ≤ �out (D) + 1. An independent subset of vertices S is said to
be a kernel for D if for each vertex v ∈ V (G) \ S, there is a directed edge vu in D
such that u ∈ S. Richardson (1953) proved that if D has no odd directed cycle then
D has a kernel. Using this fact Bondy, Boppana and Siegel noted (see Alon and Tarsi
1992) that Richardson’s theorem can be used directly to color the vertices of G using
�out (D) + 1 colors in polynomial time. Alon and Tarsi extended this result to more
general orientations Alon and Tarsi (1992). An Eulerian subgraph of D is a directed
subgraph H such that the in-degree of every vertex in H is equal to its out-degree
in H . By the size of an Eulerian subgraph H we mean the number of edges in H .
A subgraph H of D is called “even” or “odd” according to the parity of |E(H)|. By
an Alon-Tarsi orientation of a graph G we mean any orientation D of G, where the
number of Eulerian spanning subgraphs of even size is different from the number of
Eulerian spanning subgraphs of odd size. It was proved in Alon and Tarsi (1992) that
χ(G) ≤ �out (D) + 1 for any Alon-Tarsi orientation D of G.

In Zaker (2008) the author introduced a new parameter in terms of �out (D) as
follows. Let D be any orientation of G. Denote by �k(D) the maximum value t for
which there exists a directed path v1, . . . , vk in D such that dout (vk) = t . It should be
mentioned that if no such path exists, then �k(D) is defined to be zero. The following
theorem was proved in Zaker (2008).

Theorem 1 Let G be a graph and D any odd-cycle-free orientation of G. For any
positive integer k, there is a greedy coloring of G (dependent on the orientation D)
which uses at most �k(D) + k colors.

2 Results

In the following theorem we prove that the bound of Theorem 1 is also true for Alon-
Tarsi orientations.

Theorem 2 Let G be a graph and D any Alon-Tarsi orientation of G. Then for any
positive integer k, χ(G) ≤ �k(D) + k.

Proof The proof is by induction on k. For k = 1 we have �1(D) = �out (D), so the
desired bound is originally proved in Alon and Tarsi (1992). Assume that the assertion
holds for k. We prove it for k + 1. Call a vertex v a tail if there exists a directed
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path v1v2 . . . vk in D such that v = v1 and dout (vk) ≥ �k+1(D) + 1. Let T be the
subset of G consisting of all tail vertices in D. Assume first that T = ∅. In this case
there exists no tail in D and hence �k(D) ≤ �k+1(D). By the induction hypothesis
χ(G) ≤ �k(D) + k. It follows that χ(G) ≤ �k+1(D) + k, as desired. Assume now
that T �= ∅. Note that every vertex of T has zero in-degree in D. Otherwise we obtain
a contradiction with the definition of �k+1(D). It implies that T is an independent
set in G. Now define G ′ = G \ T and restrict the orientation D to the edges of G ′
to obtain D′. Since no vertex of T has non-zero in-degree then D′ is an Alon-Tarsi
orientation of G ′. By the definition of T we have �k(D′) ≤ �k+1(D). By induction
hypothesis we have

χ(G ′) ≤ �k(D′) + k ≤ �k+1(D) + k.

Now χ(G) ≤ χ(G ′) + 1 ≤ �k+1(D) + k + 1 follows, since T is an independent
set. This completes the proof. ��

Theorem 2 holds for Alon-Tarsi orientations. We will now consider orientations
without any restrictions. The next theorem presents an upper bound for χ(G) in terms
of�k(D), where D is an arbitrary orientation.We need the concepts of degeneracy and
coloringnumber of a graphG. The graphG is k-degenerate if its vertices canbeordered
as v1, v2, . . . , vn such that for each i the vertex vi has at most k neighbors among
{v1, . . . , vi−1}. The degeneracy of G is defined as the minimum value k such that G
is k-degenerate. It has been shown that the degeneracy of G is equal to maxH δ(H),
where the maximum is taken over all subgraphs H of G and δ(H) stands for the
minimum degree of H . Moreover, the coloring number of G is defined as col(G) =
maxH δ(H)+1. The degeneracy and coloring number of any graph can be determined
in polynomial time (see e.g. Jensen and Toft 1995). It has been proved that χ(G) ≤
col(G).

Theorem 3 (i) For any orientation D of a graph G

χ(G) ≤ 2�k(D) + k.

(ii) For any positive integers t and k, there exist a graph G with an orientation D such
that �k(D) = t and χ(G) = 2�k(D) + k.

Proof We prove part (i) by induction on k. First let k = 1. In this case we show that
col(G) ≤ 2�1(D) + 1. Assume on the contrary that col(G) ≥ 2�1(D) + 2. Then
there exists an induced subgraph H of G such that δ(H) ≥ 2�1(D)+1. Consider the
edge orientation of H obtained by restricting D to the edges of H . Now, the following
inequalities hold for any vertex v of H

2�1(D) + 1 ≤ dH (v) = din
H (v) + dout

H (v) ≤ din
H (v) + �1(D).

It follows that din
H (v) ≥ �1(D) + 1 for any vertex v of H . We have also the

following inequalities.

|H |(�1(D) + 1) ≤
∑

din
H (v) = |E(H)| =

∑
dout

H (v) ≤ |H |(�1(D)).
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This contradiction proves the theorem for k = 1. Assume that the assertion holds
for k. We prove it for k +1. Similar to the proof of Theorem 2 by a tail vertex we mean
any vertex v such that there exists a directed path v1v2 . . . vk in D such that v = v1
and dout (vk) ≥ �k+1(D)+1. Let T be the subset of G consisting of all tail vertices in
D. Obviously no vertex of T has non-zero in-degree. In particular T is an independent
set. Now consider G ′ = G \ T and restrict the orientation D to G ′ to obtain D′. By
the definition of T we have �k(D′) ≤ �k+1(D). By induction hypothesis we have

χ(G ′) ≤ 2�k(D′) + k ≤ 2�k+1(D) + k.

On the other hand, T is an independent setwhich impliesχ(G) ≤ 2�k+1(D)+k+1,
as desired.

Now, we prove part (ii). Suppose that t and k are given. Let H be the complete
graph on 2t + 1 vertices. The edge set of H is decomposed into t Hamilton cycles.
We orient each Hamilton cycle in such a way that it forms a directed cycle. In the
resulting orientation of H , each vertex has out-degree exactly t . Now we add k − 1
extra vertices v1, v2, . . . , vk−1 to H . We form a complete graph on the vertex set
V (H) ∪ {v1, . . . , vk−1}. We orient any edge of the form e = vvi , where v ∈ V (H)

from vi to v. For any i and j with 1 ≤ i < j ≤ k − 1, we orient the edge viv j from vi

to v j . Denote the resulting complete graph and orientation by G and D, respectively.
It is clear that �k(D) = t . We have χ(G) = 2t + k = 2�k(D) + k, as desired. ��

Theorem 3 gives another proof of the Gallai-Roy-Vitaver bound.

Corollary 1 For any orientation D of G, χ(G) ≤ �(D) + 1.

Proof Let k = �(D) + 1. Then �k(D) = 0. Apply Theorem 3 for this k and obtain
χ(G) ≤ �(D) + 1. ��

Acyclic orientations were studied widely in combinatorics from different aspects.
Let G be a graph with n vertices, m edges and α acyclic orientations. In Barbosa
and Szwarcfiter (1999) an algorithm is described for finding all acyclic orientations
in overall time O(n + m)α. Let D be any acyclic orientation of G. We have χ(G) ≤
�k(D) + k Zaker (2008). In order to minimize the later upper bound over all acyclic
orientations of G, we define the following notation

δout
k (G) := min

Dacyc
�k(D)

where the minimum is taken over all acyclic orientations D of G. The inequality
χ(G) ≤ δout

k (G)+ k holds obviously. In the following, by a (k1, k2, . . . , kt )-partition
of a graph G we mean a partition V (G) = V1 ∪ . . . ∪ Vt such that col(G[Vi ]) ≤
ki for all i = 1, . . . , t . Vertex partition of general graphs and in particular planar
graphs into degenerate subgraphs is the subject of much research. A strong result
from Kawarabayashi and Thomassen (2009) asserts that a planar graph of girth at
least five can be partitioned into an independent set and a forest. Theorem 4 shows a
relationship between δout

k (G) and partitions of G into degenerate subgraphs.
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Theorem 4 A graph G has (1, . . . , 1, t)-partition, where the number of 1’s is k − 1
if and only if δout

k (G) ≤ t − 1.

Proof First, assume that V1, V2, . . . , Vk is a (1, . . . , 1, t)-partition of G. We have
col(G[Vi ]) ≤ 1 for each i ≤ k − 1, so Vi is an independent set for i ≤ k − 1. Let
e = uv be any arbitrary edge of G. We orient the edge e according to the following
cases.

Case 1. Either u or v does not belong to Vk . In this case without loss of generality
there are i and j with 1 ≤ i, j ≤ k such that u ∈ Vi and v ∈ Vj . Now orient the edge
e from u to v.

Case 2. Both u and v are in Vk . In this case col(G[Vk]) ≤ t because G[Vk] is
(t − 1)-degenerate. Hence, the vertices of G[Vk] can be ordered as u1, . . . , u p so that
u j has at most t − 1 neighbors in G[u1, . . . , u j ] for each j . Now, there exist i and j
with 1 ≤ i < j ≤ p such that u = ui and v = u j . Without loss of generality we may
assume that i < j . We orient the edge e from v to u. Note that each vertex v has at
most t − 1 out-neighbors.

Denote the resulting orientation of the edges of G by D. By our construction of D,
each directed path in D with k vertices necessarily finishes at Vk . Each vertex in Vk

has out-degree at most t − 1. Hence �k(D) ≤ t − 1. Therefore δout
k (G) ≤ t − 1. This

proves one direction of the theorem.
Assume now that δout

k (G) ≤ t −1. It follows that there exists an acyclic orientation
D such that �k(D) ≤ t − 1. Define V1 as the set of vertices with in-degree zero in
D. For each i ≤ k − 1, define recursively Vi as the set consisting of vertices having
zero in-degree in V (G) \ (∪i−1

j=1Vj ). Finally let Vk = V (G) \ (∪k−1
j=1Vj ). Each Vi is

independent for each i ≤ k − 1, hence col(G[Vi ]) ≤ 1. Corresponding to each vertex
v in Vk there exists a directed path v1, v2, . . . , vk−1, vk , where vi ∈ Vi and vk = v.
We have �k(D) ≤ t − 1. Hence each vertex of G[Vk] has out-degree at most t − 1 in
D, so the degeneracy of G[Vk] is at most t − 1. We conclude that col(G[Vk]) ≤ t and
that V1, . . . , Vk is a (1, . . . , 1, t)-partition for G. This completes the proof. ��

The final result concerns the computational complexity of determining δout
k (G).

For any fixed k, the decision problem concerning δout
k (G) is as follows.

Instance: A graph G and an integer t .
Question: δout

k (G) ≤ t?
In Yang and Yuan (2006) a graph G is called near-bipartite if V (G) can be decom-

posed into an independent subset and an acyclic subgraph. It was proved in Yang
and Yuan (2006) that it is NP-complete to determine whether a given graph is near-
bipartite. We also use the NP-completeness of k-colorability of graphs. Let k ≥ 3 be
any integer. It is NP-complete to decide if a given graph can be properly colored by
k colors. For any graph G by H = G ∨ K1 we mean the graph obtained by adding a
new vertex say u to G and putting an edge between u and each vertex of G.

Lemma 1 Let G be a graph and k ≥ 2 any fixed integer. Set H = G ∨ K1. Then G
is k-colorable if and only if δout

k (H) ≤ 1.

Proof Let v be the vertex added toG. Assumefirst thatG is k-colorable andV1, . . . , Vk

is a partition of G into independent subsets. We make a partition for the vertices of H
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as follows. Set Ui = Vi for each i = 1, . . . , k − 1. Set also Uk = Vk ∪ {v}. Note that
H [Uk] is a star graph and hence its coloring number is 2. Therefore, U1, . . . , Uk is a
(1, . . . , 1, 2)-partition for H .

Assume now that U1, . . . , Uk is a (1, . . . , 1, 2)-partition for H . For the vertex v

there are two possibilities.
Case 1. For some i ≤ k − 1, v ∈ Ui . In this case it is clear that Ui only contains

the vertex v. Note that Uk ⊆ V (G) and H [Uk] = G[Uk] is acyclic. Hence we
can partition Uk into two independent subsets A and B. We observe that the sets
U1, . . . , Ui−1, Ui+1, . . . , Uk−1, A, B introduce a partition ofV (G) into k independent
subsets. In other words G is k-colorable.

Case 2. v ∈ Uk . In this caseUk ∩V (G) should be an independent set because H [Uk]
is acyclic. Hence {U1, . . . , Uk ∩ V (G)} is a partition of G into at most k independent
sets. This completes the proof. ��

The next theorem proves that for any fixed k ≥ 2, the related decision problem
concerning δout

k (G) is NP-complete. Note that we can not use Lemma 1 to deduce
NP-completeness of δout

2 (G).

Theorem 5 Let k be any fixed integer. Then to determine δout
k (G) is NP-complete for

k ≥ 2 and has a polynomial time solution for k = 1.

Proof Theorem 4 shows that to determine δout
1 (G) is equivalent to determining the

coloring number (or degeneracy) of G. As we mentioned earlier this is a polynomial
time task. Note first that for any fixed k, the decision problem corresponding to δout

k (G)

is an NP problem. In fact an acyclic orientation D of G satisfying�k(D) ≤ t is a short
certificate for the problem. We show now that to determine δout

2 (G) is NP-complete.
For any graph G, δout

2 (G) ≤ 1 if and only if G admits a (1, 2)-partition. The later
condition holds if and only if G is near-bipartite. We mentioned before Theorem 5
that the later problem is NP-complete. It follows that to decide whether δout

2 (G) ≤ 1
is an NP-complete problem.

To complete the proof we show that, given any graph G, to decide whether
δout

k (G) ≤ 1 is NP-complete for any fixed k ≥ 3. Lemma 1 states that this prob-
lem is equivalent to k-colorability of G which is NP-complete. ��

We make a final remark that for bipartite graphs G, δout
2 (G) = 0 but δout

1 (G) may
be arbitrarily large for bipartite graphs. It is an interesting problem to approximate
δout
2 (G) in polynomial time or obtain a suitable heuristic for this hard to compute
parameter.
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