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Abstract Let G be a connected graph of order n. The long-standing open and close
problems in distance graph theory are: what is the Wiener index W (G) or average
distance μ(G) among all graphs of order n with diameter d (radius r )? There are
very few number of articles where were worked on the relationship between radius or
diameter and Wiener index. In this paper, we give an upper bound on Wiener index
of trees and graphs in terms of number of vertices n, radius r , and characterize the
extremal graphs. Moreover, from this result we give an upper bound on μ(G) in terms
of order and independence number of graph G. Also we present another upper bound
on Wiener index of graphs in terms of number of vertices n, radius r and maximum
degree �, and characterize the extremal graphs.

Keywords Graph · Tree · Wiener index · Average distance · Radius ·
Maximum degree
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1 Introduction

The average distance is one of the most studied graph invariants in mathematics.
Also Wiener index is the most famous topological indices in mathematical chemistry.
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In fact, the history of Wiener index goes back to 1947, when Wiener (1947) used the
distances between atoms in the molecular graphs to calculate the boiling points of
alkanes. This well-known research led to one of the most popular molecular structure-
descriptors which is called Wiener index. In Harary (1959) many years after Wiener
introduction, the same quantity has been studied and referred to by mathematicians as
the gross status, the distance of graphs, average (mean) distance and the transmission.
For finding more details in mathematical aspects of Wiener index, see recent survey
(Knor et al. 2015). The Wiener index found numerous applications in pure mathe-
matics and other sciences. For example in pure mathematics relation between Wiener
index and eigenvalues of trees, independence number, distance matrix and more graph
invariants are considered (Das andNadjafi-Arani 2014; Khodashenas et al. 2011; Knor
et al. 2015). Recently, we obtain a relation between Wiener index and several other
popular topological indices of graph (Das et al. 2015). Moreover, using Wiener index
in QSPR models in chemistry, crystallography, communication theory, facility loca-
tion, etc., are some of these applications in other sciences, for more details see surveys
(Bonchev 2002; Klavžar and Nadjafi-Arani 2015) and the references cited therein.

The computer programs Grafitti (Fajtlowicz and Waller 1987) and AutoGraphiX
(Aouchiche et al. 2006) with the classical 1984 paper (Plesnik 1984) are three of the
best sources for problems and conjectures related to average distance (as alias Wiener
index) than other parameters of graphs. These sources designed some pretty and long-
standing problems in this topic [see DeLaVina andWaller (2008) and Mukwembi and
Vetrik (2014) and the references cited there in].

A problem that Plesnik addresses on Wiener index or average distance of graphs
which remains unresolved for a long time is the following:

Problem 1 What is the maximum total (Wiener index) or average distance among all
graphs of order n with diameter d?

To see how hard to solve Problem 1, consider the next Graffiti conjecture from
DeLaVina and Waller (2008) that is a special case of Problem 1.

Conjecture 1 (DeLaVina and Waller 2008) Let G be a graph with diameter d > 2
and order 2d + 1. Then

W (G) ≤ W (C2d+1),

where C2d+1 denotes the cycle of length 2d + 1.

The next long-standing open problem that is so near to Problem 1 focus on radius
of graphs.

Problem 2 What is the maximum total (Wiener index) or average distance among all
graphs of order n with radius r?

Also these problemswith some papersmakes conjectures and theorems to approach
in solution of Problems 1 and 2 [see DeLaVina and Waller (2008) and the references
cited there in]. Recently, Su et al. (2015) studied some graph invariants very close to
the Wiener index of graphs. Although, there are several papers for relation between
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toplogical indices and diameter (radius) of graphs but for the most well-known of
them Wiener index is very less (see Wu et al. 2013). Recently, Chen et al. (2013)
classified the maximum Wiener index of graphs with radius two. In Mukwembi and
Vetrik (2014), by a very difficult proof, Mukwembi and Vetrik are presented some
sharp bounds for trees of order n and diameter at most 6. Bounds stated as order n
(O(n)) without any classification. Moreover, the trees with minimum Wiener index
of order n and diameter d is presented in Liu and Pan (2008). Clearly, all the above
recent papers worked on Wiener index and diameter in special class of graphs. These
problems seem to be quite challenging because they defy all attempts to solve them
for a long time.
The paper is organized as follows. In Sect. 2, we state some preliminary definitions and
lemmas. In Sect. 3, we give an upper bound on theWiener index (and average distance)
in terms of order and radius of trees and graphs, and characterize the extremal graphs.
Moreover, we obtain an upper bound on the average distance of graphs in terms of
order and independence number of G. In Sect. 4, we present an upper bound on the
Wiener index (and average distance) in terms of order, radius and maximum degree
of trees and graphs, and also characterize the extremal graphs.

2 Preliminary

Let G be an (n, m)-connected graph with vertex set V (G) and edge set E(G), where
|V (G)| = n and |E(G)| = m. For a graph G, we let dG(v) be the degree of a vertex
v in G. The maximum vertex degree in G is denoted by � . The distance between
two vertices u and v in G, namely, the length of the shortest path between u and v

is denoted by dG(u, v). The eccentricity of a vertex v in a graph G is defined to be
ecG(v) = max{dG(v, u) | u ∈ V (G)}. The radius of a graph is the minimum graph
eccentricity of any graph vertex in a graph. The radius of a graph G , is denoted by
r(G). Thus we have

r(G) = min{ecG(vi ) : vi ∈ V (G)}.

The Wiener index of a graph G equals

W (G) = 1

2

∑

u∈V (G)

∑

v∈V (G)

dG(u, v)

and the average distance μ(G) of G equals

μ(G) = 2

n (n − 1)
W (G) .

For recent results, the reader is referred to Klavžar and Nadjafi-Arani (2014a, b) and
for review, see Dobrynin et al. (2001) and Klavžar (2013).

Let F be a forest with k connected components (k ≥ 1), each being a tree. Suppose
that F = T1 ∪ T2 ∪ · · · ∪ Tk , where Ti (1 ≤ i ≤ k) is a tree of F . Denote by N2(F)
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the sum over all pairs of components, of the product of the number of vertices of two
components of F , that is,

N2(F) =
∑

1≤i< j≤k

n(Ti ) n(Tj ) ,

where n(Ti ) is the number of vertices in tree Ti . The following result is obtained from
Škrekovski and Gutman (2014) and Wiener (1947):

Lemma 2.1 Let T be a tree on n vertices. Then

W (T ) =
∑

e∈E(T )

N2(T − e) . (1)

For a subset Z of V (G), let G\Z be the subgraph of G obtained by deleting the
vertices of Z together with the incident edges. Given a graph G, a subset S of V (G) is
said to be an independent set of G if the subgraph G[S], induced by S, is a graph with
|S| isolated vertices. The independence number α(G) of G is the number of vertices
in the largest independent set of G. As usual, K1, n−1 is the star of n vertices. Other
notation and terminology not defined here will conform to those in Bondy and Murty
(1976).

3 Maximum Wiener index in terms of n and r

We now give an upper bound on W (T ) in terms of n, r and characterize the extremal
graphs.

Theorem 3.1 Let T be a tree of order n (> 1) with radius r . Then

W (T ) ≤ r(n − r)

[
n − r + r(r − 1)

n − 1

]
(2)

with equality holding in (2) if and only if T ∼= K1, n−1 .

Proof For r = 1, T ∼= K1, n−1 . We have W (T ) = (n − 1)2 and hence the equality
holds in (2). Otherwise, r ≥ 2. Since r is the radius of tree T , then there exists a vertex
v such that r = maxu∈V (T ) dT (v, u) . Suppose that v is a root of the tree T . Let Ni (v)

(0 ≤ i ≤ r) be the set of vertices at distance i from vertex v, that is,

Ni (v) = {u ∈ V (T ) : dT (v, u) = i} .

Then we have

V (G) = N0(v) ∪ N1(v) ∪ N2(v) ∪ · · · ∪ Nr (v) and Ni (v) ∩ N j (v) = ∅, i 	= j.

Let |Ni (v)| = ni (1 ≤ i ≤ r) and n0 = 1. One can easily see that

n0 + n1 + n2 + · · · + nr = n.
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Set

Si = n0 + n1 + n2 + · · · + ni , 0 ≤ i ≤ r, and Sr = n.

Let Mi (v) (1 ≤ i ≤ r) be the set of edges at distance i − 1 from vertex v, that is,

Mi (v) = {e = uw ∈ E(T ) : u ∈ Ni−1(v), w ∈ Ni (v)} and |Mi (v)| = ni .

Then we have

E(T ) = M1(v) ∪ M2(v) ∪ · · · ∪ Mr (v) and Mi (v) ∩ Mj (v) = ∅, i 	= j.

Let Ti be a subtree of tree T such that v ∈ V (Ti ) and V (Ti ) = {u ∈V (T ) | dT (v, u)

≤ i}. Then |V (Ti )| = 1+n1 +n2 +· · ·+ni = Si . Let t ij (1 ≤ j ≤ ni ) be the number
of vertices in the j-th connected component in T \V (Ti−1). Thus we have

t i1 + · · · + t ini = n − Si−1 .

Using the above result, we have

∑

e∈Mi (v)

N2(T − e) =
ni∑

j=1

t ij (n − t ij )

=
ni∑

j=1

t ij (Si−1 + t i1 + t i2 + · · · + t ij−1 + t ij+1 + · · · + t ini )

= Si−1

ni∑

j=1

t ij + 2
∑

1≤ j<k≤ni

t ij t
i
k

= Si−1 (n − Si−1) + 2
∑

1≤ j<k≤ni

t ij t
i
k for i = 1, 2, . . . , r.

(3)

By Cauchy-Schwarz inequality, we have

⎛

⎝
ni∑

j=1

t ij

⎞

⎠
2

≤ ni

ni∑

j=1

(
t ij

)2
(4)

with equality holding if and only if t i1 = t i2 = · · · = t ini . Since

⎛

⎝
ni∑

j=1

t ij

⎞

⎠
2

=
ni∑

j=1

(
t ij

)2 + 2
∑

1≤ j<k≤ni

t ij t
i
k,
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using (4), we have

∑

1≤ j<k≤ni

t ij t
i
k ≤ ni − 1

2 ni

⎛

⎝
ni∑

j=1

t ij

⎞

⎠
2

= ni − 1

2 ni
(n − Si−1)

2

with equality holding if and only if t i1 = t i2 = · · · = t ini .

Using the above result in (3), for i = 1, 2, . . . , r , we get

∑

e∈Mi (v)

N2(T − e) ≤ Si−1 (n − Si−1) + ni − 1

ni
(n − Si−1)

2 (5)

with equality holding if and only if t i1 = t i2 = · · · = t ini .

Using (5) in (1), we have

W (G) =
∑

e∈M1(v)

N2(T − e) +
∑

e∈M2(v)

N2(T − e) + · · · +
∑

e∈Mr (v)

N2(T − e)

≤
r∑

j=1

[
S j−1(n − S j−1) + n j − 1

n j

(
n − S j−1

)2
]

. (6)

with equality holding if and only if t i1 = t i2 = · · · = t ini (1 ≤ i ≤ r).

Now we define

P1 = n1 + n2 + · · · + nr ,

P2 = n2 + n3 + · · · + nr ,

...

Pr−1 = nr−1 + nr ,

Pr = nr ,

that is,

Pi =
r∑

j=i

n j , 1 ≤ i ≤ r.

Then we have

Si−1 + Pi =
i−1∑

j=0

n j +
r∑

j=i

n j =
r∑

j=0

n j = n,

that is,

Pi = n − Si−1 . (7)
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Using the weighted arithmetic-harmonic mean, we get

r∑
k=1

Pk · Pk
nk

r∑
k=1

Pk

≥

r∑
k=1

Pk

r∑
k=1

nk

,

that is,

r∑

k=1

P2
k

nk
≥

( r∑
k=1

Pk
)2

n − 1
(8)

with equality holding if and only if

P1
n1

= P2
n2

= · · · = Pr
nr

.

Now,

r∑

k=1

Pk = n1 + 2n2 + 3n3 + · · · + (r − 1)nr−1 + r nr

= r(n1 + n2 + · · · + nr ) −
[
(r − 1)n1 + (r − 2)n2 + · · · + 2nr−2 + nr−1

]

≤ r(n − 1) − 2
[
(r − 1) + (r − 2) + · · · + 2 + 1

]

= r(n − 1) − r(r − 1) = r(n − r). (9)

Using (7) and (8) in (6), we get

W (T ) ≤
r∑

k=1

[
n Pk − P2

k

nk

]

≤ n
r∑

k=1

Pk −

( r∑
k=1

Pk
)2

n − 1
.

Since f (x) = n x − x2

n − 1
is an increasing function on 1 ≤ x ≤ n(n − 1)

2
and hence

W (T ) ≤ f

(
r∑

k=1

Pk

)
≤ f (r(n − r)) = nr(n − r) − r2 (n − r)2

n − 1
,

which gives the required result in (2).
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Now we have to prove that the inequality in (2) is strict for r ≥ 2. By contradiction,
we will show this result. For this, we assume that all the inequalities in the above must
be equalities. From the equality in (6), we get

tk1 = tk2 = · · · = tknk , 1 ≤ k ≤ r.

From the equality in (8), we get

P1
n1

= P2
n2

= · · · = Pr
nr

. (10)

From the equality in (9), we get

n1 = n2 = · · · = nr−1 = 2. (11)

Using the above result in (10), we get P1 = P2 = · · · = Pr−1 . For r > 2, we have
P1 > P2 > · · · > Pr , a contradiction. Therefore we must have r = 2 and hence
n1 = 2, by (11). Since r = 2, we have P2 = n2. From (10), we get P1 = n1 <

n1 + n2 = P1, a contradiction. This completes the proof. 
�
Theorem 3.2 Let G be a connected graph of order n (> 1) with radius r . Then

W (G) ≤ r(n − r)

[
n − r + r(r − 1)

n − 1

]
(12)

with equality holding in (12) if and only if G ∼= K1, n−1 .

Proof SinceG is a connected graphwith radius r , then there exists a spanning tree T of
G such that r(G) = r(T ) andW (G) ≤ W (T ).Moreover,we haveW (G) < W (G−e),
where e is any edge inG. By Theorem 3.1, we get the required result in (12).Moreover,
the equality holds in (12) if and only if T ∼= K1, n−1 . 
�
Corollary 3.3 Let G be a connected graph of order n (> 1) with radius r . Then

μ(G) ≤ 2 r(n − r)

n (n − 1)

[
n − r + r(r − 1)

n − 1

]
(13)

with equality holding if and only if G ∼= K1, n−1 .

We now give an upper bound on μ(G) in terms of n and α.

Theorem 3.4 Let G be a connected graph of order n(>1)with independence number
α. Then

μ(G) ≤

⎧
⎪⎪⎨

⎪⎪⎩

2α(n − α)

n(n − 1)

[
n − α + α(α − 1)

n − 1

]
ifα ≤ n

2
,

3n

8
+ 9

32
ifα >

n

2

(14)

with equality holding if and only if G ∼= K2.

123



582 J Comb Optim (2017) 34:574–587

Proof One can easily see that the equality holds in (14) for K2. Otherwise, n ≥ 3. Let
us consider a function

g(x) = nx(n − x) − x2(n − x)2

n − 1
, 1 ≤ x ≤ n .

Then we have

g′(x) = (n − 2x)

[
n − 2

n − 1
x(n − x)

]
.

Thus g(x) is an increasing function on 1 ≤ x ≤ n

2
and a decreasing function on

n

2
≤ x ≤ n . For G, we have r ≤ α. If r ≤ α ≤ n

2
, then from (13), we get

μ(G) ≤ 2α(n − α)

n(n − 1)

[
n − α + α(α − 1)

n − 1

]
.

Otherwise, α >
n

2
. But we have

g(x) ≤ g
(n
2

)
.

By simple calculation, one can easily see that

μ(G) ≤ 2

n(n − 1)
g

(n
2

)
≤ 3n

8
+ 9

32
.

The first part of the proof is done.

The equality holds in (14) if and only if G ∼= K1, n−1 with r = α when α ≤ n

2
and

r = n
2 when α >

n

2
(by Corollary 3.3), a contradiction. This completes the proof. 
�

4 Maximum Wiener index (or average distance) in terms of n, r and �

In this section we are interested to find graphs which maximize the Wiener index in
terms of the number of vertices n, radius r and maximum degree �. In fact, Fischer-
mann et al. (2003) have also determined the trees which maximize the Wiener index,
but in a much more restricted family of trees which have two distinct vertex degrees
only. Wang (2008) characterize the trees that achieve the maximum and minimum
Wiener index, given the number of vertices n and the degree sequence. Stevanović
(2008) obtained the trees which maximize theWiener index among all graphs of order
n and maximum degree �. Now, we look this problem from another aspect. For this,
consider a tree Tn, r,� is defined as follows. Start with the root having � children.
Every vertex different from the root, which is not in the last level (that is, r -th level),
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has exactly � − 1 children. We now give another upper bound on W (T ) in terms of
n, r and �.

Theorem 4.1 Let T be a tree of order n with radius r and maximum degree � ≥ 3.
Then

W (T ) ≤ n − 1 + �(� − 1)

(� − 2)3

[
(� − 1)2r−1(r�2 − 2r� − 2� + 1)

−(� − 1)r−1(�2 − 6� + 4) + � − 3

]
(15)

with equality holding in (15) if and only if T ∼= Tn, r,� .

Proof Here we use the same notation as in the proof of Theorem 3.1. Let a = � − 1.
One can easily see that

ni ≤ � ai−1 and ni+k ≤ ni a
k , i ≥ 1, k ≥ 1. (16)

Using the above result with � ≥ 3, we get

Si = 1 + n1 + n2 + · · · + ni ≤ 1 +
i∑

j=1

� a j−1 = 1 + ai − 1

a − 1
� (17)

and

n − Si = ni+1 + ni+2 + · · · + nr ≤
r∑

j=i+1

� a j−1 = ar − ai

a − 1
�. (18)

Again, by (16), we get

n − Si−1

ni
= ni + ni+1 + · · · + nr

ni
≤ 1 + a + a2 + · · · + ar−i = ar−i+1 − 1

a − 1
.

(19)

Using (16), (17), (18) and (19), we get

r−1∑

i=1

[
Si (n − Si ) + ni − 1

ni
(n − Si−1)

2
]

≤ �

r−1∑

i=1

[(
� ai − 2

) (
ar − ai

)

(a − 1)2
+

(
� ai−1 − 1

) (
ar − ai−1

) (
ar−i+1 − 1

)

(a − 1)2

]

as a = � − 1
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= �

(a − 1)2

r−1∑

i=1

[
� a2r + � ar (a − 2) ai−1 − a2r−i+1 − �(a2 − 1) a2i−2

+ (2a − 1) ai−1
]

= �

(a − 1)2

[
�(r − 1) a2r + �ar (a − 2) × ar−1 − 1

a − 1
− ar+2 × ar−1 − 1

a − 1

−�(a2r−2 − 1)

+ (2a − 1) × ar−1 − 1

a − 1

]

= �

(a − 1)3

[
�(a − 1)

(
(r − 1)a2r − a2r−2 + 1

)

− (ar−1 − 1)
(
(� + 1)ar − 2� + 3

)]
.

Using the above result with (16), from (6), we get

W (T ) ≤
r−1∑

i=1

[
Si (n − Si ) + ni − 1

ni
(n − Si−1)

2
]

+ (n − 1) + nr (nr − 1)

≤ n − 1 + � ar−1
(
� ar−1 − 1

)

+ �

(a − 1)3

[
�(a − 1)

(
(r − 1)a2r − a2r−2 + 1

)
− (ar−1 − 1)

(
(� + 1)ar − 2� + 3

)]
, (20)

where a = � − 1. Therefore, we have:

W (T ) ≤ n − 1 + �(� − 1)r−1
(
�(� − 1)r−1 − 1

)
+ �

(� − 2)3

×
[
�(� − 2)

(
(r − 1)(� − 1)2r − (� − 1)2r−2 + 1

)

−
(
(� − 1)r−1 − 1

)(
(� + 1)(� − 1)r − 2� + 3

)]
.

By a simple calculation of above expression, we get the required result in (15). The
first part of the proof is done.
The equality holds in (20) if and only if t i1 = t i2 = · · · = t ini , 1 ≤ i ≤ r (by Theorem
3.1). Moreover, the equality holds in (16) if and only if

ni = �(� − 1)i−1 , i = 1, 2, . . . , r.
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Hence the equality holds in (15) if and only if

t i1 = t i2 = · · · = t ini (1 ≤ i ≤ r), and ni = �(� − 1)i−1 , i = 1, 2, . . . , r,

that is,

dT (vi ) = �, vi ∈ V (T )\Nr (v) and dT (vi ) = 1, vi ∈ Nr (v),

that is,

T ∼= Tn, r,� .

This completes the proof of the theorem. 
�
Corollary 4.2 Let T be a tree of order n (> 1) with radius r and maximum degree
� ≥ 3. Then

μ(T ) ≤ 2

n
+ 2�(� − 1)

n(n − 1)(� − 2)3

[
(� − 1)2r−1(r�2 − 2r� − 2� + 1)

−(� − 1)r−1(�2 − 6� + 4) + � − 3

]

with equality holding if and only if T ∼= Tn, r,� .

The center of a graph is the set of vertices with eccentricity equal to the radius r . Let
C(G) be the center of a graph G. We now give an upper bound on W (G) in terms of
n, r , �, and characterize the extremal graphs.

Theorem 4.3 Let G be a graph of order n with radius r and maximum degree vertex
v of degree � ≥ 3. If v ∈ C(G), then

W (G) ≤ n − 1 + �(� − 1)

(� − 2)3

[
(� − 1)2r−1(r�2 − 2r� − 2� + 1)

−(� − 1)r−1(�2 − 6� + 4) + � − 3

]
.

Proof Consider the graph G as a v rooted graph with dG(v) = � and define the
vertices of level i are as follows:

Ni (v) = {u ∈ V (G) : dG(v, u) = i} .

Suppose that G ′ obtain from G by deleting the edges between vertices of Ni (for
each i). Indeed G ′ is a spanning bipartite subgraph of G. We now obtain a spanning
tree T from G ′ by deleting some edges between Ni−1(v) and Ni (v) (i ≥ 2). Clearly,
the based on deleting edges, the vertex v is of degree � and T is a spanning tree of G
with maximum degree � and radius r . From this fact W (G) ≤ W (T ) and applying
Theorem 4.1, we get the required result. 
�
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5 Conclusion and future work

In this paper, we obtained an upper bound onWiener index of trees and graphs in terms
of number of vertices, radius, and characterize the extremal graphs. Besides these, we
presented an upper bound on average distance in terms of order and independence
number of graphG. Finally we gave another upper bound onWiener index of graphs in
termsof number of vertices, radius andmaximumdegree, and characterize the extremal
graphs. These results are not enough to solve Problems 1 and 2, and Conjecture 1. We
believe that Conjecture 1 is one of the best challenge open problem for distance-based
topological indices of graphs. Still Problems 1 and 2, and Conjecture 1 are far from
the solution.
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