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Abstract This paper examines the problem of combining a set of ordinal rankings
to form an acceptable consensus ranking. The objective of traditional group decision
making problem is to determine the Minimum Violation Ranking. Motived by the
applications of adjusted consensus in recent years, we study this problem from a new
perspective, for obtaining an acceptable consensus ranking for group decision mak-
ing. In this paper, every voter ranks a set of alternatives respectively, and we know
the acceptability index, which represents the minimum adjustments that are allowed
for each voter. The problem is to find the Minimum Acceptable Violation Ranking
(MAVR) which minimizes the sum of voter’s unacceptable violations. Besides, we
develop a branch and bound ranking algorithm to solve this problem. The suggested
improvement include: (1) analysing the ranking preference by two ways: pairwise
preference and ranking-based preference; (2) constructing the lower bound and upper
bound, which exclude at most half of the feasible solutions in each iteration process.
Furthermore, the effectiveness and efficiency of this algorithm are verified with an
example and numerical experiments. Finally, we discuss two extensions of the basic
MAVR problem: the Minimum Weighted Acceptable Violation problem, whose vot-
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ers are accompanied with a set of weights or multiples, and the Minimum Hierarchy
Acceptable Violation problem, which uses hierarchical acceptability indexes. In addi-
tion, our results can be applied to other ranking and subset selection problems in which
provide consensus rankings over the alternatives.

Keywords Group decision making · Ordinal ranking · Acceptability index ·
Branch-and-Bound Algorithm

1 Introduction

Group decisions are widely used in many areas: the president election, the Oscar film
review, allocation of priorites to projects, and so on. In the group decision making
setting, every voter ranks a subset of alternatives based on his or her own preference,
and the chairman has to combine all the individual rankings together into a group
choice or consensus ranking as the ultimate result. Such a voting format is common
in group decision making, where a set of available alternatives (candidates in an
election, projects,…, etc.) are required to fill a complete ranking positions. Additional
requirement of transitivity must be present as well.

The traditional group decisionmaking based on ordinal ranking has been studied for
over 200 years. De Borda (1781) firstly proposed this concept by using the average
ranks assigned by voters. The most common and simplest way of group decision
making is majority rule. For mathematical properties and applications of majority
decision rule, one may be referred to Inada (1969), Bowman and Colantoni (1973) and
the references there in. Further the majority rule problem under transitivity property
is solved in Blin and Whinston (1974) as an integer progamming problem.

An excellent work inKendall (1948) proposed a preference vector to describe group
decision making. If voters represent their preferences in terms of priority, a form of
group consensus can be derived by adding the individual preference vector together.
Wei (1952) tried to obtain the consensus preference by using strength vector method.
Then Kendall (1955) extended this problem by aggregating the individual preference
vector together and taking their average. This work does not lead to a consensus which
under transitivity property. However, it is fundamental to the latter problem which we
concentrate on herein.

Using Kendall preference distance function, a novel group consensus was intro-
duced independently by Kemeny and Snell (1962). Their model aggregated the
individual preference difference by pairwise comparisons of the form “alternative
a is preferred to alternative b, alternative a is preferred to alternative c, etc ”. The
pairwise difference can be viewed as an distance measure. Such a measure would be
an indicator of the degree of consensus between voter’ ranking and consensus rank-
ing. The objective function is to minimize the total violation distance (or differences)
between every voters preference and “consensus”ranking preference. They named this
problem as MinimumViolation Ranking (MVR) problem. Cook (1976) used a branch
and bound ranking algorithm to solve this MVR problem by determining the median.
Then Blin (1976) and other scholars (Cook and Seiford 1978, 1982; Ali et al. 1986)
extended the distance among rankings through various approaches. Further, Barzilai
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et al. (1986) used an equivalent positive KS (PKS) form and expressed this problem as
a network for solving it more efficiently. Cook et al. (1988) used heuristics to find the
order ranking with a minimum violation. Furthermore, Cook and Kress (1990) gave us
some transformed models based on the Date Envlopement Model (DEA) framework.
Also, there are many transformed MVR problem, such as Cook et al. (2007) came up
with a partial MVR problem and solved it with a branch and bound ranking algorithm.
Recently Rademaker and De Baets (2014) formulated a new ranking procedure for
the initial MVR problem and gave some great properties of this ranking procedure.

We know that people probably have violation (or difference) acceptability when
they are involved in a group decision making environment. It means that people will
ignore (or accept) the violation (or difference) if the violation is not significant. We
pay more attention to minimize the total unacceptable violations. This concept has
been used in group adjusted consensus decisions for more than twenty years since
Herrera and Herrera-Viedma (1996). A common framework of the adjusted consensus
model is as the notable consensus model presented by Herrera-Viedma et al. (2002).
For instance, Dong et al. (2014, 2015) applied the adjusted consensus in linguistic
preference enviornment. In this type of consensusmodels, at first we obtain a collective
opinion from individual opinions. The consensus level among voters is then obtained
by using the consensus measure to calculate the difference between the individual
opinions and the collective opinion. Finally, when the consensus level is unacceptable
(greater than the established level α), a feedback process is used to help experts adjust
their individual opinions. The adjusted consensus in continous model is well studied
in the literature, see for example Herrera-Viedma et al. (2007), Ben-Arieh and Easton
(2007), Ben-Arieh et al. (2009) and elsewhere. In recent years, based on Ben-Arieh
and Chen (2006)’ work, Zhang et al. (2011, 2013, 2014) did some further reasearch
for multiple consensus rules.

However, few researchers apply the adjusted consensus to the traditional discrete
group decision making. In this paper, we attempt to model a new MVR problem
with an acceptability index. We permit every voter to adjust their preferences less
than or equal to a constant step (saying, acceptability index) before we calculate
the violation. Then we associated the problem of consensus derivation in terms of a
violation distance measure. The unique objective is to find a ranking C for which the
total violation distance between C and the set of all voters adjusted rankings (it is also
called unacceptable violations) is minimized. This problem can be titled as Minimum
Acceptable Violation Ranking (MAVR) problem.

While the MVR problem is NP-hard for it is equivalent either to a minimum feed-
back edge set problem (Isaak and Narayan 2004), or a problem of which the group
preference matrix has the property of being an upper and lower triangular (it is also
called transitivity property) (Even 2011). Both of them are NP-complete or NP-hard.
The MAVR problem, we shall study in this paper, is more difficult because we have
to identify whether voters violate the acceptability index or not. Thus, the branch and
bound algorithm is a reasonable method to solve this problem.

The rest of the paper is organized as follows. In Sect. 2, we present a set of def-
initions and describe the connection between them. The problem of determining the
MAVR is then shown with two equivalent formulations based on different distance
forms. Having formulated the MAVR problem, we examine, in Sect. 3, the prop-
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erties of optimal consensus ranking. The most important thing is, that we present
a branch and bound ranking procedure with a tight upper bound and a tight lower
bound. In Sect. 4, we give an example to illustrate the algorithm and report a set of
numerical experiments to evaluate its effeciency and effectiveness. Finally in Sect. 5
we discuss the Minimum Weighted Acceptable Violation (MWAVR) problem and
the Minimum Hierarchy Acceptable Violation (MHAVR) problem, and show how to
transform MWAVR and MHAVR to be a MAVR problem for obtaing the optimal
consensus ranking, respectively. Concluding remarks and possible future studies are
given in Sect. 6.

2 Formulation

Based on a set of definitions and two transformations, we derive a formulation of
MAVR problem.

2.1 Preliminaries

We introduce some basic concepts and network formations of MAVR problem. Let
X = {x1, x2, . . . , xm} be a discrete set of alterntives, E = {e1, e2, . . . , en} be the set
of voters that participate in the group decision making and R = {R1, R2, . . . , Rn}
be the set of ordinal ranking matrix. We denote α as the acceptability index, which
denotes the established adjustment threshold. The acceptability index α must be even
because for each pair of violation, the violation distance is |0 − 1| + |1 − 0| = 2.

Definition 1 (Kemeny and Snell 1962) Let Al = (ali j )m∗m(l = 1, 2, . . . , n), where
ai j ≥ 0 and ai j + a ji = 1, be the preference decision matrix which we assume that
the pairwise preference are given by the voter el , where ali j represents the preference
between xi ∈ X and x j ∈ X , and

ali j =
{
1 if voter el deems that alternative xi is preferred to alternative x j ,

0 otherwise.

Definition 2 Let Rl = (rli j )m∗m(l = 1, 2, . . . , n) be the ranking decision matrix

given by voter el ∈ E , where rli j presents that the ranking order of alternative xi ∈ X
is j th ( j ∈ {1, 2, . . . ,m}), and

rli j =
{
1 if voter el deems that alternative xi is j th,

0 otherwise,

s.t.
m∑
i=1

rli j = 1 l = 1, . . . , n, j = 1, . . . ,m,

m∑
j=1

rli j = 1 l = 1, . . . , n, i = 1, . . . ,m.
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It is obvious that Al can be derived from Rl , and Rl can be derived from Al , too.
For example, (1) the ranking Rl of three alternatives x1, x2 and x3 in which x1 is first,
x2 is second, and x3 is third would be represented by

Rl =

⎛
⎜⎜⎝

1 2 3
x1 1 0 0
x2 0 1 0
x3 0 0 1

⎞
⎟⎟⎠ �⇒ Al =

⎛
⎜⎜⎝

x1 x2 x3
x1 0 1 1
x2 0 0 1
x3 0 0 0

⎞
⎟⎟⎠ .

(2) the preference Al of three alternatives x1, x2 and x3 in which the alternative x1
is preferred to the alternative x3, the alternative x1 is preferred to the alternative x2,
the alternative x3 is preferred to the alternative x2 would be represented by

Al =

⎛
⎜⎜⎝

x1 x2 x3
x1 0 1 1
x2 0 0 0
x3 0 0 1

⎞
⎟⎟⎠ �⇒ Rl =

⎛
⎜⎜⎝

1 2 3
x1 1 0 0
x2 0 0 1
x3 0 1 0

⎞
⎟⎟⎠ .

Definition 3 (PKS distance) Generally, Positive Kemeny and Snell distance (Barzilai
et al. 1986) is used for representing the difference (or violation) of two preference
decision matrixes Al = (ali j )m∗m and C = (ci j )m∗m :

dPK S(A
l ,C) =

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ .

Definition 4 (Ranking distance) Given two ranking decision matrix Rl = (rli j )m∗m
and C̃ = (c̃i j )m∗m , the ranking distance (or violation) between them is given by:

dRD(Rl , C̃) =
m∑
i=1

m∑
j=1

vi j ,

where

vi j =
{
1

(∑
i1 i1 ∗ rli,i1 − ∑

j1 j1 ∗ rlj, j1

)
∗

(∑
i1 i1 ∗ c̃i,i1 − ∑

j1 j1 ∗ c̃ j, j1
)

< 0,

0 otherwise.

If Al = (ali j )m∗m is derived from Rl = (rli j )m∗m (or Rl = (rli j )m∗m is derived from

Al = (ali j )m∗m), and C = (ci j )m∗m is derived from C̃ = (c̃i j )m∗m (or C̃ = (c̃i j )m∗m
is derived from C = (ci j )m∗m), we have dRD(Rl , C̃) = dPK S(Al ,C). It is obvious.
Because the two distances are both defined based on the samemeaning, the differences
between voter’s preference and the consensus preference. They are just formed by two
different methods.
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Fig. 1 A 50-voter election (with an acceptability index)

Definition 5 (Violating voters and no-violating voters) Given a set of preference deci-
sion rankings {A1, A2, . . . , An}, and a consensus preference decisionmatrixC . If voter
el ’s violation(PKS distance between Al andC) is not less thanα, el is a violating voter;
otherwise, el is a no-violating voter.

For example, there are 50 voters involved in an election, and the acceptability index
is 4. The voters will be divided into two parts, as shown in Fig. 1, called violating voter,
whose PKS distance is greater than (or equal to) the acceptability index (above /on
the red line), and no-violating voter, whose PKS distance is less than the acceptability
index (below the red line).

2.2 Minimum acceptable violation ranking model

Definition 6 (Acceptable PKS distance (APD)) Given a set of preference decision
matrixes {A1, A2, . . . , An}, the unacceptable violation of a ranking C(in matrix rep-
resentation) is given by

V (C) =
n∑

l=1

dAPD(Bl ,C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣

s.t.

m∑
i

m∑
j

∣∣∣ali j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.
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where Al is the initial preference matrix of voter el , Bl = (bli j )m∗m is the adjusted

preference matrix of voter el after kl adjustments (kl � α), C = (ci j )m∗m is a feasible
consensus preference decision matrix.

There are some axiomswhich such distance dARD in this paper should satisfy, simi-
lar to those ofArrow (1951). They are the usual conditions for a violationmeasurement
with the additional requirement that the distance is linear. We required:

Axiom 1. d(A, B) ≥ 0 with equality iff A = B.
Axiom 2. d(A, B) ≥ d(B, A).
Axiom 3. d(A,C) ≤ d(A, B) + d(A,C) with equality iff the ranking B is between

A and C . (We say that ranking B is between A and C is for each voter
the adjusted ranking of B is preferred because it provides much better
consensus availability for group decision making).

Definition 7 (Acceptable consensus preference) The consensus preference C∗ is that
preference which minimizes the total absolute distance

V (C) =
n∑

l=1

dAPD(Bl ,C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣ (2.1)

s.t.

m∑
i

m∑
j

∣∣∣ali j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

The above preference can also be presented as below (for details see Appendix 1).

min V0(C) =
n∑

l=1

dAPD(Al , Bl) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ali j

∣∣∣
s.t.

m∑
i

m∑
j

∣∣∣ci j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

It’s similar to the linear adjusted consensus group decision making linear model (Ben-
Arieh and Easton 2007).

In Theorem 1, we will simplify the objective notation of Problem 2.1 by removing
the adjusted preference decision matrix Bl = (ali j )m∗m .
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Theorem 1 Problem 2.1 is equivalent to Problem 2.2

min
ci j

n∑
l=1

max

⎧⎨
⎩

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ , α

⎫⎬
⎭ . (2.2)

s.t.

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

Proof We firstly prove that Problem 2.1 is equivalent to Problem 2.3

min
ci j

n∑
l=1

⎡
⎣max

⎧⎨
⎩

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ , α

⎫⎬
⎭ − α

⎤
⎦ . (2.3)

s.t.

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

The MAVR model allows all voters to adjust their preferences as more as possible
(not greater than acceptability index) before calculating the violation distance. If voter
el is a violating voter, minimizing objective requires that the adjusted violation does
equal to α; otherwise, the adjusted violation equals to dPK S(Al ,C).

(i) For a violating voter, we have
∑m

i=1
∑m

j=1

∣∣∣ali j − ci j
∣∣∣ ≥ α. Because d(Al ,C) =

d(Al , Bl)+d(Al ,C), to minimize the unacceptable violations between Bl and C , we
have

m∑
i=1

m∑
j=1

∣∣∣ali j − bli j

∣∣∣ = α.

So we have

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣ =

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ − α = max

⎧⎨
⎩

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ , α

⎫⎬
⎭ − α.

(ii) For a no-violating voter, we have
∑m

i=1
∑m

j=1

∣∣∣ali j − ci j
∣∣∣ < α. Because

d(Al ,C) = d(Al , Bl) + d(Al ,C), to minimize the unacceptable violations between
Bl and C , we have

m∑
i=1

m∑
j=1

∣∣∣ali j − bli j

∣∣∣ =
m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ .
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So we have

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣ = 0 = max

⎧⎨
⎩

m∑
i=1

m∑
j=1

∣∣∣ali j − ci j
∣∣∣ , α

⎫⎬
⎭ − α.

Obviously, adding a constant to or removing a constant from the objective function
will not affect the result. Hence, we add n ∗ α to transfer Problem 2.3 to Problem 2.2.

This proves the theorem. �	
The greatest difficulty in solving this problem is to deal with the requirement that

the elements ci j in the optimal preference decision matrix C must satisfy transitivity
property (Isaak andNarayan 2004; Even 2011). An order relation is said to be transitive
if it satisfies for all three alternatives xi , x j , xk : xi 
 x j and x j 
 xk ⇒ xi 
 xk .

Definition 8 (Acceptable ranking distance (ARD)) Given a set of rankings
{
R1, R2,

. . . , Rn}, the unacceptable violation of a ranking C̃(in matrix representation) is given
by

V1(C̃) =
n∑

l=1

dARD(Rl , C̃) =
n∑

l=1

m∑
i=1

m∑
j=1

wl
i j

where wl
i j =

⎧⎪⎨
⎪⎩
1 vli j = 1, dRD(Rl , C̃) ≥ α,

α

dRD(Rl ,C̃)
vli j = 1, 0 < dRD(Rl , C̃) < α,

0 otherwise,
dRD(Rl , C̃) = ∑

i
∑

j v
l
i j , and

vli j =
{
1

(∑
i1 i1 ∗ rli,i1 − ∑

j1 j1 ∗ rlj, j1

)
∗

(∑
i1 i1 ∗ c̃i,i1 − ∑

j1 j1 ∗ c̃ j, j1
)

< 0,

0 otherwise.

If Al is derived from Rl ( or Rl is derived from Al ) and C is derived from C̃ (or
C̃ is derived from C), we have dARD(Rl , C̃) = dAPD(Al ,C). It is obvious. Because
the two acceptable distances are defined based on a same meaning, the unacceptable
violations (differences) between voter’s preference and the consensus preference. They
are just formed from two different methods.

Definition 9 (Acceptable consensus ranking) Given a set of rankings {R1, R2,

. . . , Rn}, the consensus C̃∗ ranking is that ranking which minimizes the total absolute
distance

V1(C̃) =
n∑

l=1

dARD(Rl , C̃) =
n∑

l=1

m∑
i=1

m∑
j=1

wl
i j .
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Theorem 2 Problem 2.2 is equivalent to Problem 2.4.

min
c̃i j

V1(C̃) (2.4)

s.t.
m∑
i=1

c̃li j = 1, l = 1, . . . , n, j = 1, . . . ,m,

m∑
j=1

c̃li j = 1, l = 1, . . . , n, i = 1, . . . ,m.

The elements c̃i j in the ranking matrix C̃ do not need to satisfy transitivity property.

Proof According to Definition 8, for any arbitrary ranking decision matrix C̃ , we have
the following.

(i) For an arbitrary voter el , if dARD(Rl , C̃) ≥ α holds,
for any pair of alternatives (xi , x j ), if xi is preferred to x j both in Rl and C̃ , we

have wl
i j =

∣∣∣ali j − ci j
∣∣∣ = 0;

for any pair of alternatives (xi , x j ), if xi is preferred to x j in Rl but not in C̃ ; or xi

is preferred to x j in C̃ but not in Rl , we have wl
i j =

∣∣∣ali j − ci j
∣∣∣ = 1.

Therefore, dARD(Rl , C̃) = ∑
i
∑

j w
l
i j = max

{∑
i
∑

j

∣∣∣ali j − ci j
∣∣∣ , α}

holds.

(ii) For an arbitrary voter el , if dARD(Rl , C̃) < α holds,
for any pair of alternatives (xi , x j ), if xi is preferred to x j both in Rl and C̃ , we

have wi j =
∣∣∣ali j − ci j

∣∣∣ = 0;
for any pair of alternatives (xi , x j ), if xi is preferred to x j in Rl but not in C̃ ;

otherwise xi is preferred to x j in C̃ but not in Rl , we have wl
i j = α

dRD(Rl ,C̃)
.

Therefore, dARD(Rl , C̃) = α = max
{∑

i
∑

j

∣∣∣ali j − ci j
∣∣∣ , α}

holds.

For all voters el ∈ E ,
∑

l dARD(Rl , C̃) = ∑
l max

{∑m
i=1

∑m
j=1

∣∣∣ali j − ci j
∣∣∣ , α}

holds.
Thus, Problem 2.2 and Problem 2.4 are equivalent. �	

3 Ranking procedure

In this section, we will examine some properties of MAVR and apply a branch and
bound ranking algorithm to derive the best solution of the MAVR problem. Note
that the optimal consensus ranking may be found out before the algorithm “walks
through”all possible rankings. Additionally, we’ll show a simple example and numer-
ical experiments in the next section.

We start by representing some definitions and propositions that are derived from
Sect. 2. In all lemmas and the procedures of our algorithm described below the fol-
lowing variables are used:
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• si j (aggregated preference): given a set of ranking
{
A1, A2, . . . , An

}
which comes

from ranking decision matrix set
{
R1, R2, .., Rn

}
, denote si j = ∑

l a
l
i j as the

aggregated preference between xi and x j
• I (prefix ranking): for a ranking C̃ = {x1 
 x2 . . . 
 xm}, if I = {x1 
 x2 . . . 
 xi }

(i < m), I is a prefix ranking of C̃
• X1: the set of alternatives in I
• X2: the set of left alternatives, represented as I/X
• E1: the set of violating voters
• E2: the set of no-violating voters
• Absolute(first/last) alternative: given a set of rankings {R1, R2, . . . , Rn}, if xi ∈

X = {x1, x2, . . . , xm} and ∀el ∈ E = {e1, e2, . . . , en}, ãli1 = 1 or ãlim = 1, xi is
the absolutely first or last alternative

Lemma 1 (Separate property) For any given set of rankings, removing the absolutely
first or last alternatives initially and add them back finally will not change the optimal
ranking.

Because absolutely first or last alternative is easy to identify, we do not need to
consider such alternatives exactly.

Given a set of ranking {R1, R2, . . . , Rn}, acceptability index α, and I , we divide
alternative set X into two parts: X1 is the set of alternatives ranked by I , and X2 is the
set of left alternatives. According to Definition 5, the voter set E can be separated into
two sets: set E1 includes violating voters, while set E2 includes no-violating voters.

Lemma 2 (Lower/Upper bound) A tight lower bound with the prefix ranking I is
given by

M(I ) = M0 + M1 (3.1)

and an upper bound can be represented by

M(I ) = M0 + M2, (3.2)

where

M0(I ) =
∑
el∈E1

∑
i

∑
j

wl
i j + ‖E2‖ ∗ α xi , x j ∈ X; one of xi , x j ∈ X1,

M1(I ) =
∑
i

∑
j

min
{
si j , s ji

}
xi , x j ∈ X2, el ∈ E1,

M2(I ) =
∑
i

∑
j

max
{
si j , s ji

} − 2 ∗
(
max1

{
si j

} + max2
{
si j

})

+2 ∗
(
min1

{
si j

} + min2
{
si j

})
xi , x j ∈ X2, el ∈ E,

where min1{si j } and min2{si j } represent the first and second lowest aggregated pref-
erence si j (xi , x j ∈ X2), max1{si j } and max2{si j } represent the first and second
greatest aggregated preference si j (xi , x j ∈ X2), and ‖E2‖ represents the number of
voters in E2.
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Proof We give a brief illustration about M as follows.
If el ∈ E1, when at least one of xi , x j ∈ X1, we have

∑
l
∑

i
∑

j w
l
i j ; when xi , x j ∈

X2, without loss of generality, we have
∑

i
∑

j min{si j , s ji } ≤ ∑
l
∑

i
∑

j w
l
i j .

If el ∈ E2, we assume that all voters in E2 are no-violating voters. So we have

‖E2‖ ∗ α ≤ ∑
l max

{∑m
i=1

∑m
j=1 wl

i j , α
} (

xi , x j ∈ X
)
.

Hence, M0 + M1 is a lower bound of the prefix ranking I .
Similarly, We give a brief illustration about M as follows.
If at least one of xi , x j ∈ X1, for all el ∈ E2, we have ‖E2‖ ∗ α ≥∑
el∈E2

∑
i
∑

j w
l
i j ; for all el ∈ E1, we have

∑
el∈E1

∑
i
∑

j w
l
i j . So we have∑

el∈E1

∑
i
∑

j w
l
i j + ‖E2‖ ∗ α ≥ ∑

el∈E
∑

i
∑

j w
l
i j .

If xi , x j ∈ X2, without loss of generality, we have
∑

i
∑

j max
{
si j , s ji

} ≥∑
l
∑

i
∑

j w
l
i j . At the same time, relieving the two different pairs of prefer-

ences with the highest aggregated violation does not violate the rule of transitivity,
they still can be part of some feasible solutions. After further analysis in Appen-
dix 2, we have

∑
i
∑

j max
{
si j , s ji

} − 2 ∗ (
max1

{
si j

} + max2
{
si j

}) + 2 ∗(
min1

{
si j

} + min2
{
si j

}) ≥ ∑
l
∑

i
∑

j w
l
i j .

Hence, M0 + M2 is an upper bound of the prefix ranking I . �	
Lemma 3 (Noninterchangeability property) For an adjacent pair of the prefix order
I (say, xi 
 x j ) and the prefix order I ′ (say, x j 
 xi ), if both si j < s ji and M0(I ) >

M0(I ′) hold, I must not be a prefix order of C̃∗.

Proof We will derive a contradiction. We suppose I may be a prefix order of C̃∗, it
means that V (C̃ I ) � V (C̃ I ′

) must exists.
Suppose that I is a prefix order of an acceptance ranking C̃ I and I ′ is a prefix

order of an acceptance ranking C̃ I ′
. I ⊆ C̃ I , I ′ ⊆ C̃ I ′

and the other part of ranking
in C̃ I ′

are the same with the other part of C̃ I . Denote Wl(I ) = dRD(Rl , I ) and
W (I ) = ∑

l W
l(I ), where dRD(Rl , I ) has been denoted by Definition 4.

We know that M0(I ) > M0(I ′) andWl(I ′) = Wl(I )−2 (orWl(I ′) = Wl(I )+2)
because the only difference is the prefix order itself. At the same time, the number
of voters whose Wl(I ′) = Wl(I ) − 2, is not less than the number of voters whose
Wl(I ′) = Wl(I ) + 2 because of s ji > si j .

For a given α, there are three cases below because violation Wl(I ) is even.
Case 1 Wl(I ) � α + 2.
We know that V (C̃ I /I ) = V (C̃ I ′

/I ′) because these voters have been listed in E1.
Due to M0(I ) > M0(I ′), we have V (C̃ I ) > V (C̃ I ′

).
Case 2 Wl(I ) = α.
If there is no additional violation, we know that the violations of I and I ′ will not

change, V (C̃ I ) = Wl(I ) > Wl(I ′) = V (C̃ I ′
).

If there are some additional violations, when Wl(I ′) = Wl(I ) − 2, we have
V (C̃ I /I ) = V (C̃ I ′

/I ′) + 2; when Wl(I ′) = Wl(I ) + 2, we have V (C̃ I /I ) =
V (C̃ I ′

/I ′). As we know, the number of voters whose Wl(I ′) = Wl(I ) − 2 is not less
than the number of voters, whose Wl(I ′) = Wl(I ) + 2, so V (C̃ I /I ) > V (C̃ I ′

/I ′).
Due to M0(I ) > M0(I ′), we have V (C̃ I ) > V (C̃ I ′

).
Case 3 Wl(I ) ≤ α − 2.
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If there is no additional violation, we know that the violations of I and I ′ will not
change, V (C̃ I ) = Wl(I ) > Wl(I ′) = V (C̃ I ′

).
If there are some additional violation, when Wl(I ′) = Wl(I ) − 2, we have

V (C̃ I /I ) = V (C̃ I ′
/I ′) + 2; when Wl(I ′) = Wl(I ) + 2, we have V (C̃ I /I ) =

V (C̃ I ′
/I ′) + 2. As we know, the number of voters whose Wl(I ′) = Wl(I ) − 2 is not

less than the number of voters, whoseWl(I ′) = Wl(I )+2, so V (C̃ I /I ) > V (C̃ I ′
/I ′).

Due to M0(I ) > M0(I ′), we have V (C̃ I ) > V (C̃ I ′
).

Summing up all voters’ violation, we have V (C̃ I ) > V (C̃ I ′
). It contradicts with

the assumption.
Thus, order I will not be a prefix order of C̃∗, this proves the lemma. �	

In the algorithmbelow,we startwith an empty ranking. Then adding each alternative
to the first node one by one, and calculate the lower bound and upper bound for later,
and then cut off some branches based on branching principle or Noninterchangeability
Property. Note that we start from the branches with the lowest bound and check all
other branches’ upper bound when we add a new alternative.

We represent an algorithm to generate MAVR as follows.

Algorithm—Branch and bound ranking algorithm

Input: Set of alternatives X = {x1, x2, . . . , xm} and the voters’ ranking decision
matrix {R1, R2, . . . , Rn}. M(I ) := 0 and M(I ) := 0.

1. Initialization: Initialize the search tree by creating the root node with the prefix
ranking set I = φ ( j = 0). Calculate its lower bound M(I ) and upper bound
M(I ), and store them as the branch and bound tree root node. If M(I ) = M(I ),
then stop with the optimal solution; Otherwise, define this node as an active node
and go to Step 2.

2. Branching
Selecting a node: Selecting the node with the lowest M(I ) from the set of active
nodes of the search tree.
Branching new nodes: Construct node c̃i j = 1(i ∈ X2, j = j + 1) to selected
node I . I includes the alternatives which have been ranked already. Add these ci j
to I as active nodes to the search tree and store M(I ) and M(I ). If M(I ) = M(I ),
then stop with the optimal solution; Otherwise, increment j by one and go to 3.

3. Bounding
Bounding (lower bound and upper bound): Calculate these new nodes’ M(I ) and
M(I ). Check whether one of M(I ) is greater than currently best known mini-
mum M(I ). If so, cut off this branch. If not, then proceed to the bounding of
noninterchangeability property.
Bounding (noninterchangeability property): Use this property to check whether
some branches have both smaller si j and larger M0 than its pair branch. If so, cut
off this branch. If not, then proceed to 2.

4. Termination: If there are still some active nodes or the number of the left alterna-
tives is greater than 2, return to Step 2; otherwise, select the smaller si j of the left
two alternatives, and add this order ranking behind the termination ranking.
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Table 1 A group decision
making example

Voters’ frequency Alternatives Ranking

4 {1, 2, 3, 4} 3 
 4 
 2 
 1

3 {1, 2, 3, 4} 4 
 3 
 2 
 1

2 {1, 2, 3, 4} 2 
 1 
 3 
 4

1 {1, 2, 3, 4} 2 
 3 
 1 
 4

Fig. 2 First iteration

4 An example and computational tests

4.1 A numerical example

We consider an example with the acceptability index α = 4, n = 10 voters, andm = 4
alternatives. The Table 1 presentes the voter’s rankings:

The si j below presentes the summarized pairwise preference:

si j =

⎛
⎜⎜⎜⎜⎝

x1 x2 x3 x4
x1 0 0 2 3
x2 10 0 3 3
x3 8 7 0 7
x4 7 7 3 0

⎞
⎟⎟⎟⎟⎠ .

Initialization: I = φ. Calculate M0 = 4 ∗ 10 = 40, M1 = 0, and M2 = 2 ∗ (0 +
2 + 7 + 7 + 7 + 7) = 60. We obtain a lower bound M = M0 + M1 = 40, and an
upper bound M = M0 + M2 = 40 + 60 = 100.

Branching: We process the root node with the empty ranking one by one as shown
in Fig. 2, we check them all:

• Adding alternative 1
Let c̃11 = 1, we have I = {1}. Calculate M0 = 4 ∗ 6 + 3 ∗ 6 + 2 ∗ α = 52,
M1 = 2 ∗ (1 + 1 + 3) = 10, and M2 = 2 ∗ (3 + 3 + 7) = 26. We obtain a lower
bound M = 62, and an upper bound M = 78.

• Adding alternative 2
Let c̃21 = 1, we have I = {2}. Calculate M0 = 40, M1 = 6, and M2 = 24. We
obtain a lower bound M = 46, and an upper bound M = 64.

• Adding alternative 3
Let c̃31 = 1, we have I = {3}. Calculate M0 = 40, M1 = 0, and M2 = 20. We
obtain a lower bound M = 40, and an upper bound M = 60.

• Adding alternative 4
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Fig. 3 Second iteration

Let c̃41 = 1, we have I = {4}. Calculate M0 = 46, M1 = 2, and M2 = 16.
We obtain a lower bound M = 48, and an upper bound M = 62.
We could not bound any point because max{M} < min{M}.
Branching: Ranking all the nodes by their M , we process the root node one by one

again as shown in Fig. 3. We check them all:

• Adding alternative 2 to I = {3}, for now we have I = {3, 2}:
Calculate M0 = 4 ∗α + 3 ∗α + 2 ∗ 4+ 1 ∗α = 40, M1 = 0, and M2 = 2 ∗ 3 = 6.
We obtain a lower bound M = 40, and an upper bound M = 46.

• Adding alternative 4 to I = {3}, for now we have I = {3, 4}:
We obtain a lower bound M = 50. We do not need to calculate its upper bound
and add it to the branch and bound tree because the lower bound is greater than
present min{M} = 46.

• Adding alternative 1 to I = {3}, for now we have I = {3, 1}:
We obtain a lower bound M = 52. We do not need to calculate upper bound and
add it to the branch and bound tree because the lower bound is greater than present
min{M} = 46.

Bounding (lower bound and upper bound): For M (I = {1}) = 62, M(I = {2}) =
46, and M (I = {4}) = 48 is not less than M (I = {3, 2}) = 46, we cut off these
branches from the branch and bound tree.

Bounding (Noninterchangeability property): For s41 = 7 > s14 = 3 and
M0 (I = {3, 2, 4, 1}) = 44 < M0 (I = {3, 2, 1, 4}) = 46, we cut off I = {3, 2, 1, 4}.

Hence, we know that the MAVR is 3 
 2 
 4 
 1.

4.2 Numerical experiments

We implement some computational tests to evaluate the branch and bound ranking
algorithm. Our testing platform is a AMD Athlon(tm) II X4 640 Processor 3.00 GHz
with 4.00 GB that run under Windows 7. We coded the algorithm in Matlab and
compiled it with Matlab 7.11.0. We construct six classes, each with 25 test instances,
and different number of alternatives or voters as shown in Table 2. For each of the
150 instances in Table 2, we created 3 different sets of voters decision matrixes which
have different normally distributed noise N (0, σ 2), with σ 2 = 1, 4 or 9. In Table 3
we represent the average and worst case running time (in seconds) for each of the six
classes and three levels of noises.
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Table 2 Six classes of the test
problems

Class No. of
alternatives

No. of pairwise
comparisions

No. of voters

A 3 6 60

B 3 6 120

C 3 6 240

D 4 24 240

E 5 120 240

F 5 120 2400

Table 3 Running time (s) and percentage of the problems solved

σ 2 = 1 σ 2 = 4 σ 2 = 9

Class Avg. (max)
running time

% Solved to
optimality

Avg. (max)
running time

% Solved to
optimality

Avg. (max)
running time

% Solved to
optimality

A <.01(1) 100 <.01(1) 100 <.01(1) 100

B <.01(1) 100 <.01(1) 100 <.01(1) 100

C <.01(1) 100 <.01(1) 100 <.01(1) 100

D <.02(4) 100 <.02(4) 100 <.02(4) 100

E <.2(3) 100 <.2(3) 100 <.2(3) 100

F <3(6) 100 <3(6) 100 <3(6) 100

(1), (4), (3), (6) represent the (max) running time of each class, as 0.01, 0.04, 0.3, 6

It’s apparent in Table 3 that we are able to obtain the optimal ranking of each
instance within 5 seconds. Although the number of alternatives is not high (m ≤ 5),
it matches with most of practical scenarios.

Additionally, we have three conclusions. Firstly, the fact that every class with dif-
ferent level of noise take a similar amount of time to process implies that our algorithm
is insensitive to the level of noise. Secondly, as the size of alternatives increases (Class
C, D and E), the processing time increases quickly because the pairwise preference
comparisions increase with factorial growth. Thirdly, Classes A, B, and C take a sim-
ilar amount of processing time, which implies that our algorithm is insensitive to the
amount number of voters. Our method does have a good performance.

5 Minimum weighted/hierarchy acceptable violation

There are two useful extended problems of the MAVR problem, the Minimum
Weighted Acceptable Violation (MWAVR) problem and the Minimum Hierarchy
Acceptable Violation (MHAVR) problem.

5.1 Minimum weighted acceptable violation problem

Considering the voting system, numerical researchers studied from amore generalized
aspect, weighted voting method (Lucas 1983; Isaak and Narayan 2004; Bustince et al.
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Table 4 The initial MWAVR
problem ⇒ the MAVR problem

Voter’ weight Ranking Frequence Ranking

0.25 3 
 4 
 2 
 1 5 3 
 4 
 2 
 1

0.2 4 
 3 
 2 
 1 4 4 
 3 
 2 
 1

0.2 2 
 1 
 3 
 4 4 2 
 1 
 3 
 4

0.15 2 
 3 
 1 
 4 3 2 
 3 
 1 
 4

0.2 1 
 2 
 3 
 4 4 1 
 2 
 3 
 4

2013). In some group decision making processes, the voters are treated differently
according to their education, wealth, ect. For example, the members of the board in
a company have weighted voting rights, which is based on their right of control, and
these weights may differ across voters. Thus, we should not aggregates every voter’s
ranking together equally. We will discuss the MWAVR problem and solve it then.

Without loss of generality, we denote W = (w1, . . . , wn)T as the voter’s weight
vector, where wl ≥ 0 and �n

l=1w
l = 1, from the judgement matrix Al .

The MWAVR problem can be represented as:

V (C) =
n∑

l=1

wl × dAPD(Al ,C) =
n∑

l=1

m∑
i=1

m∑
j=1

wl ×
∣∣∣bli j − ci j

∣∣∣
s.t.

m∑
i

m∑
j

∣∣∣ali j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

For solving this problem, we could multiple the weight vector to be an integer
vector without altering the problem, and then consider the MWAVR problem as a new
MAVR problem with more voters, simply.

For example, there are 5 voters involved in an election, and the voter’s weight
vector is (0.25, 0.2, 0.2, 0.15, 0.2). The initial MWAVR problem can be represented
as a MAVR problem as shown in Table 4. Thus, the new MAVR problem owns 20
voters, and we can solve it by using the branch and bound ranking algorithm.

According to the computational tests in the previous section, as the voters increased
exponentially, the running time increased slowly.What’s more, when voters increased,
the ranking types do not increase inMWAVR problem.We can predict that the running
time do not increase dramatically. Thus, the branch and bound ranking algorithm in
the Sect. 3, will be able to solve the MWAVR problem, too.

5.2 Minimum hierarchy acceptable violation

It is easy for us to know that people have various violation acceptability. Some voters
do not care about the violations in group decision making, and some voters could not
tolerate any violations. According to each voter’s tolerance, the voterswill be classified
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Fig. 4 A 50-voter election (with a hierarchy acceptability index)

into different acceptability index hierarchies. For example, there are 50 voters involved
in an election, and the acceptability index hierarchy is {8, 8 . . . ; 4, 4 . . . ; 2, 2 . . .}. The
voters will be divided into two parts byDefinition 5, as shown in Fig. 4, called violating
voter, whose PKS distance is not less than its own acceptability index (above /on the
red line), and no-violating voter, whose PKS distance is less than its own acceptability
index (below the red line).

When we try to minimize the unacceptable violations (or total PKS distance above/
on the red line) for obtaing the optimal ranking, we should introduce the difference of
voter’s acceptability into this problem. Thus, α should no longer be assumed to be a
fixed integer simply. We will discuss the MHAVR problem and solve it then.

Without loss of generality,wedenoteα = (
α1, . . . , αn

)T
as the voter’s acceptability

index vector. Actually, suppose there are m alternatives, the α owns at most m ∗
(m − 1)/2 different forms in this problem. At the same time, αl is even, and αl ∈
[2,m ∗ (m − 1)].

The MHAVR problem can be represented as:

V (C) =
n∑

l=1

dAPD(Al ,C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣

s.t.

m∑
i

m∑
j

∣∣∣ali j − bli j

∣∣∣ ≤ αl l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.
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We still use the branch and bound ranking algorithm to solve this problem, however,
the voters are divided into two parts (violating voter and no-violating voter) according
to their own acceptability index αl in each iteration. The lower bound and the upper
bound are still strict. Thus, the branch and bound ranking algorithm is useful to solve
the MHAVR problem, too. The only difference between the MHAVR problem and the
MAVR problem is that the voters in the MAVR problem have the same acceptability
index α.

6 Summary and future research directions

This paper has examined the issue of aggregating ordinal voter rankings across a set
of alternatives into an acceptable consensus ranking. We considered that voters are
more willing to accept the final ranking MAVR than the initial MVR because, on one
hand, most of the voters’ violations will not exceed the acceptability index, and on
the other hand, the total unacceptable violation is minimized. To simplify the MAVR
problem, we came up with two transformations. Firstly, we removed the adjusted
preference matrixes

{
B1, B1, . . . , Bm

}
from the model. Secondly, we using ranking

distance instead of PKS distance to represent themodel so that the elements of the final
ranking decision matrix do not need to be transitive. Based on Problem 2.4 and the
noninterchangeability property, we represented a branch and bound ranking algorithm.
The approach undertaken in this research serves as an exact algorithm for this problem.
The results of the numerical experiments, the processing time and precentage of the
problems solved, clearly show the superiority of algorithm. Additionally, we proposed
two extension problems, the MWAVR problem and the MHAVR problem, and give
some brief illustrations of their solutions. We believe that this paper could help users
to attain an “acceptable consensus ranking”in practical group decision making with a
clear procedure.

The study of ordinal rankings and adjusted consensus touch on a variety of field.
In terms of this paper, we assumed that the preferences of each voter is complete,
in reality, however, the situation in which each voter choose a subset of alternatives
from a ballot, and to rank order that subset from most to least preference, is relatively
common in municipal elections. The MAVR problem with partial preferences is left
to be explored in the future. Besides, research into the handling of multiple types of
preferences, like ranking, scores, and etc., in this MAVR performance measurement
setting, can be an important contribution to group decision making.
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the China Postdoctoral Science Foundation (Grant No. 2016M592811) and by the Natural Science Basic
Research Plan in Shaanxi Province of China (Program No. 2015JM7372).

Appendix 1: The proof of equivalency of the two linear models

To prove the equivalency, we just need to prove that the two models have the same
feasible solution set and the feasible solutions of these two models are the same.
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The first linear model is given by

min V (C) =
n∑

l=1

dAPD(Bl ,C) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ci j
∣∣∣

s.t.

m∑
i

m∑
j

∣∣∣ali j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

The second linear model can be represented as below.

min V0(C) =
n∑

l=1

dAPD(Al , Bl) =
n∑

l=1

m∑
i=1

m∑
j=1

∣∣∣bli j − ali j

∣∣∣
s.t.

m∑
i

m∑
j

∣∣∣ci j − bli j

∣∣∣ ≤ α l = 1, . . . , n,

ci j satisfies transitivity property i = 1, . . . ,m, j = 1, . . . ,m.

where Al = (ali j ) is the initial preference matrix of voter el , Bl = (bli j ) is the adjusted

preference matrix of voter el after kl adjustments (kl � α),C = (ci j ) is a consensus
preference decision matrix.

It is obvious to know that the feasible solutions are the set of all possible rankings,
so the feasible solutions of these two models are the same. For example, there are 3
alternatives(or candidates) a, b and c in an election, the feasible solution set can be
represented as: {a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a}.

For a given preference decision matrix C (a feasible solution), we will know the
distance between each voter Al and C .

In the first model, because d(Al ,C) = d(Al , Bl) + d(Al ,C), to minimizing the
distance between adjusted preference matrix Bl andC , each voter should adjuste their
preference as more as possible (at most α), nearing to C . If the distance between
adjusted preference matrix Al and C is greater than α, dAPD(Al , Bl) = α, then
dAPD(Bl ,C) = dAPD(Al ,C)−α. If the distance between adjusted preference matrix
Al andC is not greater thanα, dAPD(Al , Bl) = dAPD(Al ,C), then dAPD(Bl ,C) = 0.

In the second model, because d(Al ,C) = d(Al , Bl)+d(Al ,C), to minimizing the
adjusted distance between adjusted preference matrix Bl and Al , the distance between
Bl and C is as great as it could be (at most α). If the distance between adjusted
preferencematrix Al andC is greater thanα, dAPD(Bl ,C) = α, then dAPD(Al , Bl) =
dAPD(Al ,C) − α. If the distance between adjusted preference matrix Al and C is not
greater than α, dAPD(Bl ,C) = dAPD(Al ,C), then dAPD(Al , Bl) = 0.
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Eventually, we choose the minimum distance among all feasible solutions C as the
final decision. Because the objectives of these two linear models are same for every
feasible solution, so the final decisions of these two models are the same.

From the above we can draw a conclusion that these two two linear models are
equivalent.

Appendix 2: The supplemental proof of the upper bound

Because the objective is to minimize the violations, any one of the feasible solutions
is no less than the final solution. To prove the upper bound, we just need to prove that
the upper bound we represents, is a feasible solution.

If xi , x j ∈ X2: The worst case is that we choose all the pairs with a higher
aggregated violation max

{
si j , s ji

}
between

(
xi ≺ x j

)
and

(
x j 
 xi

)
. We have∑

i
∑

j max
{
si j , s ji

} ≥ ∑
l
∑

i
∑

j w
l
i j .

Fixing (or choosing) two different pairs of preferences with the highest aggregated
violation does not violate the rule of transitivity, they still can be part of some feasible
solutions, because the rule of transitivity only exists in more than or equal to three
different pairs. For example, {a 
 b, b 
 c} is not contradict with the transitivity
property, however, {a 
 b, b 
 c, c 
 a} is contradict with the rule of transitivity.

Among these alternatives which we have not yet assigned to the prefix order
(xi , x j ∈ X2), we choose two different pairs of preferences with the highest
aggregated violation as part of solution. For these two pairs , the violation is 2 ∗(
min1

{
si j

} + min2
{
si j

})
. For theother pairs, the violation is

∑
i
∑

j max
{
si j , s ji

}−
2 ∗ (

max1
{
si j

} + max2
{
si j

})
. Because the objective is to minimize the viola-

tions, any one of the feasible solutions is no less than the final solution. We have∑
i
∑

j max
{
si j , s ji

}−2∗(
max1

{
si j

} + max2
{
si j

})+2∗(
min1

{
si j

} + min2
{
si j

})
≥ ∑

l
∑

i
∑

j w
l
i j .

From the above and the previous proof in Lemma 2 we can draw a conclusion that
M0 + M2 is an upper bound.
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