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Abstract A total coloring of a graph G is a coloring such that no two adjacent or
incident elements receive the same color. In this field there is a famous conjecture,
named Total Coloring Conjecture, saying that the the total chromatic number of each
graph G is at most � + 2. Let G be a planar graph with maximum degree � ≥ 7 and
without adjacent chordal 6-cycles, that is, two cycles of length 6 with chord do not
share common edges. In this paper, it is proved that the total chromatic number of G
is � + 1, which partly confirmed Total Coloring Conjecture.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow
Bondy and Murty (1976) for the terminologies and notations not defined here. A k-
total-coloring of a graph G is a coloring of V ∪ E using k colors such that no two
adjacent or incident elements receive the same color. A graph G is k-total-colorable
if it admits a k-total-coloring. The total chromatic number χ ′′(G) of G is the smallest
integer k such thatG is k-total-colorable. Clearly,χ ′′(G) ≥ �+1,where� denotes the
maximumdegree ofG. TheTotalColoringConjecture (TCC) is awell-studied problem
in graph theory, which is posed by Behzad (1965) and Vizing (1968) independently.
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Conjecture 1 (TCC) For every graph G, we have � + 1 ≤ χ ′′(G) ≤ � + 2.

TCC is confirmed for graphs with � ≤ 5 (Kostochka 1996). For planar graphs, the
remaining open case is just that � = 6 (Sanders and Zhao 1999). Interestingly, the
total chromatic number χ ′′(G) of planar graphs with large maximum degree can be
determined. Until now, the best known result for planar graphs is that χ ′′(G) = �+1
for � ≥ 9. Some other related results can be found in Cai et al. (2016), Chang et al.
(2011), Hou et al. (2011), Li et al. (2015), Liu et al. (2009), Qu et al. (2016), Qu et al.
(2015), Wang and Wu (2011), Wang et al. (2014), and Wang et al. (2015).

In the following, we just consider planar graphs G with � ≥ 7. Wang et al. (2014)
proved that if G has no 6-cycles with chords, then χ ′′(G) = � + 1. In this paper, we
obtain the following result.

Theorem 2 Suppose G is a planar graphwithout adjacent chordal 6-cycles. If� ≥ 7,
then χ ′′(G) = � + 1.

Nowwe introduce somemore notations and definitions here for convenience. LetG
be a planar graph which is embedded on the plane. For a vertex v ofG, the degree d(v)

is the number of edges incident with v; and for a face f of G, the degree d( f ) is the
length of the boundary walk of f , where each cut-edge is counted twice. A k-vertex,
k−-vertex or k+-vertex is a vertex of degree k, at most k or at leat k, respectively.
Similarly, we can define a k-face, k−-face and k+-face. We say that two cycles are
intersecting if they share at least one common vertex, and adjacent if they share at
least one common edge. Denote by nd(v) the number of d-vertices adjacent to the
vertex v, by nd( f ) the number of d-vertices incident with the face f , and by fd(v)

the number of d-faces incident with the vertex v.

2 Proof of Theorem 2

In Wang et al. (2016), Theorem 2 was proved for � ≥ 8. So we assume � = 7 in
the following. Let G = (V, E, F) be a minimal counterexample to Theorem 2 in
terms of the number of vertices and edges. That is, every proper subgraph of G is
8-total-colorable, but not G. So G is 2-connected, and the boundary of each face in G
is exactly a cycle, i.e., the boundary walk of each face cannot pass though a vertex v

more than once. We first show some known properties of G.
(i) If uv ∈ E(G) with d(u) ≤ 4, then d(v) ≥ 9 − d(u) (see Borodin 1989; Wang

and Wu 2004).
(ii) The subgraph G27 of G induced by all edges joining 2-vertices to 7-vertices is

a forest (see Borodin 1989).
(iii) If v is a 7-vertex ofG with n2(v) ≥ 1, then n4+(v) ≥ 1 (see Chang et al. 2011).
(iv) G has no configurations depicted in Fig. 1 where the vertices marked by • have

no other neighbors in G (see Borodin et al. 1997; Liu et al. 2009; Shen and Wang
2009; Wang 2007).

Lemma 1 (Kostochka 1996) Suppose that v is a 7-vertex and that v1, v2, · · · , vk are
consecutive neighbors of v with d(v1) = d(vk) = 2 and d(vi ) ≥ 3 for 2 ≤ i ≤ k − 1,
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( 1 ) ( 5 ) ( 2 ) ( 3 ) ( 4 ) ( 6 ) ( 7 ) ( 8 ) 

Fig. 1 Reducible configurations

where k ∈ {3, 4, 5, 6}. If the face incident with v, vi , vi+1 is a 4-face for all 1 ≤ i ≤
k − 1, then at least one vertex in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 2 (Wang and Wu 2011) Let u, v1, v2, · · · , vk be neighbors of v with d(u) =
d(v1) = 2, d(vk) ≥ 5, v1, v2, · · · , vk are consecutive neighbors of v, and d(vi ) ≥ 3
for 2 ≤ i ≤ k, where k ∈ {3, 4, 5, 6}. If the face incident with v, vi , vi+1 is a 4-face
vvi xivi+1 for any 1 ≤ i ≤ k − 2, and the face incident with v, vk−1, vk is a 3-face,
then at least one vertex in {v1, v2, · · · , vk−1} is a 4+-vertex.

By the Euler’s formula |V | − |E | + |F | = 2, we have

∑

v∈V
(2d(v) − 6) +

∑

f ∈F
(d( f ) − 6) = −12 < 0.

We define the initial charge c(x) of x ∈ V ∪ F to be c(v) = 2d(v) − 6 if v ∈ V
and c( f ) = d(v) − 6 if f ∈ F . It follows that

∑
x∈V∪F c(x) = −12 < 0. Now we

design appropriate rules and redistribute weights accordingly. Note that any discharg-
ing procedure preserves the total charge of G. If we can define suitable discharging
rules to charge the initial charge function c to the final function c′ on x ∈ V ∪ F , such
that c′(x) ≥ 0 for all x ∈ V ∪ F , then we get an obvious contradiction.

In the following we use c(x → y) to denote the total charge from an element x to
another element y. Our discharging rules are defined as follows.

R1 . Let v be a 2-vertex, then v receives charge 1 from each of its adjacent vertices.
R2 . Let v be a 4-vertex and f be a k-face incident with v. Then

(1) c(v → f ) = 1
5 , if k = 5;

(2) c(v → f ) = 1
2 , if k = 4;

(3) c(v → f ) = 1
2 , if k = 3 and f3(v) = 4;

(4) c(v → f ) = 2
3 , if k = 3 and f3(v) = 3;

(5) c(v → f ) = 3
4 , if k = 3, f3(v) = 2 and f6+(v) ≤ 1;

(6) c(v → f ) = 1, if k = 3, f3(v) = 2 and f6+(v) = 2;
(7) c(v → f ) = 3

4 , if k = 3, f3(v) = 1, f4(v) = 2 and f5(v) = 1;
(8) c(v → f ) = 1, if k = 3, f3(v) = 1, f4(v) = 2 and f5(v) = 0;
(9) c(v → f ) = 1, if k = 3, f3(v) = 1, f4(v) ≤ 1.

R3 . Let v be a 5-vertex and f be a k-face incident with v. If f is incident with a
4-vertex, then let this 4-vertex be u. Then

(1) c(v → f ) = 1
5 , if k = 5;

(2) c(v → f ) = 1
2 , if k = 4;

(3) c(v → f ) = 1, if k = 3 and f3(v) = 4;
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Fig. 2 Some discharging rules

(4) c(v → f ) = 1, if k = 3 and n4( f ) = 0;
(5) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1 and f3(u) ≥ 3;
(6) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1, f3(u) = 2 and f6+(u) ≤ 1;
(7) c(v → f ) = 1, if k = 3, n4( f ) = 1, f3(u) = 2 and f6+(u) = 2;
(8) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) = 2, f5(u) = 1;
(9) c(v → f ) = 1, if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) = 2, f5(u) = 0;
(10) c(v → f ) = 1, if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) ≤ 1.

R4 . Let v be a 6-vertex or 7-vertex and f be a k-face incident with v. If f is incident
with a 4-vertex, then let this 4-vertex be u. Then

(1) c(v → f ) = 1
8 , if d(v) = 7, k = 6 and it appears in Fig. 2(1);

(2) c(v → f ) = 7
16 , if k = 5 and it appears in Fig. 2(2);

(3) c(v → f ) = 1
8 , if k = 5 and it appears in Fig. 2(2);

(4) c(v → f ) = 1
3 , if k = 5 and it not appears in Fig. 2(2);

(5) c(v → f ) = 1, if k = 4 and n3−( f ) = 2;
(6) c(v → f ) = 3

4 , if k = 4, n3−( f ) = 1 and n5−( f ) = 2;
(7) c(v → f ) = 2

3 , if k = 4, n3−( f ) = 1 and n5−( f ) ≤ 1;
(8) c(v → f ) = 1

2 , if k = 4 and n3−( f ) = 0;
(9) c(v → f ) = 3

2 , if k = 3 and n3−( f ) = 1;
(10) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1 and f3(u) ≥ 3;
(11) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1, f3(u) = 2 and f6+(u) ≤ 1;
(12) c(v → f ) = 1, if k = 3, n4( f ) = 1, f3(u) = 2 and f6+(u) = 2;
(13) c(v → f ) = 5

4 , if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) = 2, f5(u) = 1;
(14) c(v → f ) = 1, if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) = 2, f5(u) = 0;
(15) c(v → f ) = 1, if k = 3, n4( f ) = 1 and f3(u) = 1, f4(u) ≤ 1;
(16) c(v → f ) = 1, if k = 3 and n4−( f ) = 0.

R5 . Let f be a 6-face and v be a 7-vertex incident with f . If it appears in Fig. 2(1),
then c( f → v) = 1

4 .
R6 . Let f be a 7+-face and v be a 7-vertex incident with f . If it appears in Fig. 2(3),

then c( f → v) = 1
2 .

In the following, we will check that c′(x) ≥ 0 holds for all x ∈ V ∪ F which will
be the desired contradiction.
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Let vi be the neighbor of v and fi be the face incident with v for i = 1, 2, · · · , d(v)

in anticlockwise order, where vi is incident with fi−1 and fi (i = 1, 2, · · · , d(v)).
Note that eventually f0 and fd(v) denote the same face.

First, we consider the final charge of faces. Let f be a face ofG. Suppose d( f ) ≥ 7.
Then n2( f ) ≤ � d( f )−1

2 	. So c′( f ) ≥ c( f ) − 1
2 × (� d( f )−1

2 	 − 1) ≥ 0 by R6.
Suppose d( f ) = 6. Then c( f ) = 0 and c′( f ) ≥ 0 − 1

4 + 1
8 × 2 = 0 by R4-1

and R5. Suppose d( f ) = 5. Then c( f ) = −1 and n3−( f ) ≤ 2. If n3−( f ) = 2,
then c′( f ) ≥ −1 + 1

8 + 7
16 × 2 = 0 by R4-2,3. If n3−( f ) = 1, then c′( f ) ≥

−1 + 1
3 × 2 + 1

5 × 2 = 1
15 > 0 by R2-1, R3-1 and R4-4. If n3−( f ) = 0, then

c′( f ) ≥ −1+ 1
5 ×5 = 0 by R2-1 and R3-1. Suppose d( f ) = 4. Then c( f ) = −2 and

n3−( f ) ≤ 2. If n3−( f ) = 2, then c′( f ) ≥ −2+1×2 = 0 by R4-5. If n3−( f ) = 1 and
n5−( f ) = 2, then c′( f ) ≥ −2+ 3

4 ×2+ 1
2 = 0 by R2-2, R3-2 and R4-6. If n3−( f ) = 1

and n5−( f ) ≤ 1, then c′( f ) ≥ −2 + 2
3 × 3 = 0 by R4-7. If n3−( f ) = 0, then

c′( f ) ≥ −2+ 1
2×4 = 0 byR2-2, R3-2 andR4-8. Suppose d( f ) = 3. Then c( f ) = −3

and n3−( f ) ≤ 1. If n3−( f ) = 1, then c′( f ) ≥ −3+ 3
2 ×2 = 0 by R4-9. If n3−( f ) = 0

and n4−( f ) = 1, then c′( f ) ≥ −3+min{ 54 ×2+ 3
4 ,

5
4 ×2+ 2

3 ,
5
4 ×2+ 1

2 , 1×3} = 0.
If n3−( f ) = 0 and n4−( f ) = 0, then c′( f ) ≥ −3 + 1 × 3 = 0 by R3-4 and R4-16.

Second, we consider the final charge of vertices. There are two useful lemmas as
follows.

Lemma 3 (Wang and Wu 2011) Suppose that d(v1) = d(vk) = 2, and d(v j ) ≥ 3 for
j = 2, 3, · · · , k − 1. If f1, f2, · · · , fk−1 are 4+-faces, then v sends in total at most
3
2 + (k − 3) to f1, f2, · · · , fk−1.

Lemma 4 (Wang et al. 2016) Suppose that d(v1) = d(vk) = 2, and d(v j ) ≥ 3 for
j = 2, 3, · · · , k − 1. If min{d( f2), d( f3), · · · , d( fk−2)} ≥ 3, then v sends in total at
most 3

2 + 5
4 × (k − 3) to f1, f2, · · · , fk−1.

Let v ∈ V . Note that G has no vertex of degree one by (i). If d(v) = 2, then c(v) =
−2 and c′(v) = −2 + 1 × 2 = 0 by R1. If d(v) = 3, then clearly c′(v) = c(v) = 0.
In the following, it suffices to check that c′(v) ≥ 0 for all 4+-vertices of G.

Letv be a4-vertex.Wehave c(v) = 2,n4−(v) = 0 and f3(v) ≤ 4. If f3(v) = 4, then
c′(v) = 2− 1

2×4 = 0 byR2-3. If f3(v) = 3, then f6+(v) ≥ 1. So c′(v) = 2− 2
3×3 = 0

by R2-4. If f3(v) = 2, then f4(v) ≤ 1 and the two 4+-faces incident with v can not
be both 5-faces. If one of the 4+-faces is a 4-face, then the other 4+-face must be a
6+-face. So c′(v) ≥ 2−max{ 34 ×2+ 1

2 ,
3
4 ×2+ 1

5 , 1×2} = 0 by R2-5,6. If f3(v) = 1,
then f4(v) ≤ 2. If f4(v) = 2, then c′(v) ≥ 2 − max{ 34 + 1

2 × 2 + 1
5 , 1 + 1

2 × 2} = 0
by R2-7,8. If f4(v) ≤ 1, then c′(v) ≥ 2 − 1 − 1

2 − 1
5 × 2 = 1

10 > 0 by R2-9. If
f3(v) = 0, then c′(v) ≥ 2 − 1

2 × 4 = 0.
Let v be a 5-vertex. We have c(v) = 4, n3−(v) = 0 and f3(v) ≤ 4. If f3(v) = 4,

then f6+(v) ≥ 1. So c′(v) = 4 − 1 × 4 = 0 by R3-3. Suppose f3(v) = 3. If all the
3-faces incident with v are (4, 5+, 5)-faces, then f6+(v) ≥ 2 by Wang et al. (2014).
So c′(v) ≥ 4 − 5

4 × 3 = 1
4 > 0. Otherwise, one of the 3-faces incident with v is a

(5+, 5+, 5)-face, then f4(v) ≤ 1. If one of the 4+-faces is a 4-face, then the other
4+-face must be a 6+-face. So c′(v) ≥ 4 − 5

4 × 2 − 1 − max{ 12 , 1
5 × 2} = 0. If

f3(v) ≤ 2, then c′(v) ≥ 4 − 5
4 × f3(v) − 1

2 × [5 − f3(v)] ≥ 0.
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Fig. 3 The cases of 7-vertices

Let v be a 6-vertex. We have c(v) = 6, n2(v) = 0 and f3(v) ≤ 4. If f3(v) = 4,
then f6+(v) ≥ 2. So c′(v) = 6 − 3

2 × 4 = 0. If f3(v) = 3, then f4(v) ≤ 1. So
c′(v) ≥ 6 − max{ 32 × 2 + 5

4 + 2
3 ,

3
2 + 5

4 × 2 + 3
4 ,

5
4 × 3 + 1} − 7

16 × 2 = 5
24 > 0. If

f3(v) = 2, then f4(v) ≤ 3. If f4(v) = 3, then c′(v) ≥ 6−max{ 32 + 5
4 + 3

4 + 2
3 ×2, 5

4 ×
2+ 3

4×3}− 7
16 = 35

48 > 0. If f4(v) ≤ 2, then c′(v) = 6− 3
2×2−1×2− 7

16×2 = 1
8 > 0.

If f3(v) = 1, then f4(v) ≤ 3. So c′(v) ≥ 6− 3
2 −1×3− 7

16 ×2 = 5
8 > 0. If f3(v) = 0,

then c′(v) ≥ 6 − 1 × 6 = 0.
Let v be a 7-vertex. We have c(v) = 8, n2(v) ≤ 6 and f3(v) ≤ 4. So it suffices to

consider the following cases.
Case 1 n2(v) = 6. Then n3(v) = 0, f3(v) = 0 and f6+(v) ≥ 5 by (iv). So

c′(v) ≥ 8 − 1 × 6 − 3
2 = 1

2 > 0 by R1 and Lemma 4.
Case 2 n2(v) = 5. Then n3(v) ≤ 1 and there are three possibilities in which 2-

vertices are located. They are shown as configurations in Fig. 3, where the vertices
marked by • are 2-vertices. For Fig. 3(1), we have f3(v) ≤ 1 and f6+(v) ≥ 4. So
c′(v) ≥ 8 − 1 × 5 − ( 32 + 5

4 ) = 1
4 > 0 by Lemma 4. For Fig. 3(2) and 3(3), we have

f3(v) = 0 and f6+(v) ≥ 3. So c′(v) ≥ 8 − 1 × 5 − 3
2 × 2 = 0 by Lemma 4.

Case3n2(v) = 4.Thenn3(v) ≤ 2. For Fig. 3(4), c′(v) ≥ 8−1×4−( 32+ 5
4×2) = 0.

ForFig. 3(5) and (6),wehave f3(v) ≤ 1 and f6+(v) ≥ 2. So c′(v) ≥ 8−1×4− 3
2−( 32+

5
4 )+ 1

4 ×2 = 1
4 > 0 by R5. For Fig. 3(7), we have f3(v) = 0, f4(v) ≤ 4 and f6+(v) ≥

1. If f4(v) = 4, then c′(v) ≥ 8−1×4−max{ 32×2+ 7
16×2, 3

2+1×2+ 1
8×2} = 1

8 > 0.
If f4(v) ≤ 3, then c′(v) ≥ 8−1×4−max{ 32 +1+ 1

8 + 7
16 ×2, 1×3+ 1

8 ×3} = 1
2 > 0.

Case 4 n2(v) = 3. For Fig. 3(8), we have f3(v) ≤ 3 and f6+(v) ≥ 2. So c′(v) ≥
8 − 1 × 3 − ( 32 + 5

4 × 3) + 1
4 × 2 = 1

4 > 0 by R5. For Fig. 3(9), we have f3(v) ≤ 2

123



J Comb Optim (2017) 34:257–265 263

and f6+(v) ≥ 1. If f3(v) = 0, then c′(v) ≥ 8 − 1 × 3 − ( 32 + 2) − 3
2 = 0 by

Lemma 3. If f3(v) = 1, then f4(v) ≤ 4. If the 3-face is a (3, 6+, 7)-face, then
c′(v) ≥ 8− 1× 3−max{ 32 × 2 + 1+ 2

3 + 1
8 ,

3
2 + 1+ 3

4 × 2 + 2
3 + 1

8 } = 5
24 > 0 by

(iv). Otherwise, c′(v) ≥ 8 − 1 × 3 − 5
4 − 1 × 2 − 3

4 × 2 − 1
8 = 1

8 > 0. If f3(v) = 2,
then f2 and f5 can not be both 4-faces. So c′(v) ≥ 8 − 1 × 3 − max{ 32 × 3 + 1

8 ×
2, 3

2 × 2 + 5
4 + 3

4 + 1
8 } + 1

4 = 1
8 > 0 by R5. For Fig. 3(10), we have f3(v) ≤ 2

and f6+(v) ≥ 1. If f3(v) = 0, then c′(v) ≥ 8 − 1 × 3 − ( 32 + 1) × 2 = 0. If
f3(v) = 1, then c′(v) ≥ 8− 1× 3− ( 32 + 1) −max{ 32 + 2

3 + 1
8 ,

5
4 + 3

4 × 2} + 1
4 = 0

by Lemma 2. If f3(v) = 2, then f4(v) ≤ 4. If f4(v) = 4, then f1 is a 7+-face.
So c′(v) ≥ 8 − 1 × 3 − ( 54 + 3

4 × 2) × 2 + 1
2 = 0 by R6. If f4(v) ≤ 3, then

c′(v) ≥ 8 − 1 × 3 − 5
4 − 3

4 × 2 − max{ 32 + 2
3 + 1

8 ,
5
4 + 3

4 + 7
16 } + 1

4 = 1
16 > 0.

For Fig. 3(11), we have f3(v) ≤ 1 and f4(v) ≤ 4. If f3(v) = 0, then c′(v) ≥
8 − 1 × 3 − max{1 × 4 + 1

8 × 3, 3
2 + 1 × 2 + 7

16 + 1
8 × 2} = 5

8 > 0. If f3(v) = 1,
then c′(v) ≥ 8− 1× 3−max{ 54 + 3

4 × 2+ 2×max{1+ 1
8 ,

3
4 + 1

3 ,
2
3 + 7

16 }, 3
2 × 2+

1 + 2
3 + 1

8 ,
3
2 + 5

4 + 1 + 3
4 + 1

8 } = 0.
Case 5 n2(v) = 2. For Fig. 3(12), we have f3(v) ≤ 4 and f5+(v) ≥ 1. If f3(v) = 0,

then c′(v) ≥ 8 − 1 × 2 − ( 32 + 4) = 1
2 > 0. If f3(v) = 1, then f4(v) ≤ 4. So

c′(v) ≥ 8 − 1 × 2 − 3
2 − 1 × 3 − 1

8 − max{1 + 1
8 ,

3
4 + 1

3 ,
2
3 + 7

16 } = 1
4 > 0.

Suppose f3(v) = 2. If f3 and f4 or f4 and f5 are 3-faces, then f4(v) ≤ 2. So
c′(v) ≥ 8 − 1 × 2 − 3

2 × 2 − 1 × 2 − 7
16 × 2 − 1

8 = 0. Otherwise, f4(v) ≤ 4. If
f4(v) ≤ 2, then c′(v) ≥ 8 − 1 × 2 − 3

2 × 2 − 1 × 2 − 7
16 × 2 − 1

8 = 0. Otherwise,
c′(v) ≥ 8−1×2−max{ 32 ×2+ 1

8 +max{1+ 2
3 ×2+ 1

8 ,
3
4 ×2+ 2

3 + 7
16 }, 3

2 + 5
4 + 1

8 +
max{1+ 3

4 ×2+ 1
8 , 1+ 3

4 + 2
3 + 7

16 ,
3
4 ×3+ 1

3 }, 5
4 ×2+1+ 3

4 ×2+ 7
16 + 1

8 } = 13
48 > 0. If

f3(v) = 3, then f4(v) ≤ 2. So c′(v) ≥ 8−1×2−max{ 32 ×3+ 2
3 + 1

8 ×3, 3
2 ×2+ 5

4 +
max{1+ 1

8 ×3, 3
4 + 2

3 + 1
8 ×2}, 3

2 + 5
4 ×2+1+ 3

4 + 1
8 ×2, 5

4 ×3+1×2+ 1
8 ×2} = 0. If

f3(v) = 4, then f6+(v) ≥ 2. So c′(v) ≥ 8−1×2− 3
2 ×2− 5

4 ×2− 1
8 ×3 = 1

8 > 0. For
Fig. 3(13), we have f3(v) ≤ 3. If f3(v) = 0, then c′(v) ≥ 8−1×2− 3

2−( 32+3) = 0. If
f3(v) = 1, then c′(v) ≥ 8−1×2− 3

2×2−1×2− 2
3− 1

8 = 5
24 > 0. Suppose f3(v) = 2.

If f3 and f4 are 3-faces, then c′(v) ≥ 8−1×2− 3
2×3− 1

8−max{1+ 1
8 ,

3
4+ 1

3 ,
2
3+ 7

16 } =
1
4 > 0. Otherwise, c′(v) ≥ 8 − 1 × 2 − max{ 32 × 3 + 2

3 + 7
16 + 1

8 ,
5
4 × 2 + 3

4 ×
2 + max{1 + 3

4 + 1
8 ,

2
3 + 7

16 × 2}} = 1
8 > 0. If f3(v) = 3, then f4(v) ≤ 2. So

c′(v) ≥ 8−1×2−max{ 32×3+1+ 1
8×2, 3

2+ 5
4×2+1+ 3

4+ 1
8×2} = 0. For Fig. 3(14),

we have f3(v) ≤ 3. If f3(v) = 0, then c′(v) ≥ 8 − 1 × 2 − ( 32 + 1) − ( 32 + 2) = 0.
If f3(v) = 1, then f4(v) ≤ 4. If f4(v) = 4, then c′(v) ≥ 8 − 1 × 2 − max{ 32 +
1 × 3 + 2

3 + 1
8 × 2, 5

4 + 1 × 2 + 3
4 × 2 + 7

16 × 2} = 3
8 > 0. If f4(v) ≤ 3, then

c′(v) ≥ 8 − 1 × 2 − 3
2 − 1 × 3 − 7

16 × 3 = 3
16 > 0. Suppose f3(v) = 2. If f3 and

f4 are 3-faces, then f4(v) ≤ 2. If f4(v) = 2, then c′(v) ≥ 8 − 1 × 2 − max{ 32 × 2 +
1 + 1

8 × 2 + max{1 + 1
8 ,

3
4 + 1

3 ,
2
3 + 7

16 }, 3
2 + 5

4 + max{1 × 2 + 7
16 + 1

8 × 2, 1 +
3
4 + 7

16 × 3}, 5
4 × 2 + 1 × 2 + 7

16 × 2 + 1
8 } = 3

16 > 0. If f4(v) ≤ 1, then c′(v) ≥
8−1×2−max{ 32 ×2+1+ 1

8 ×2+ 7
16 ×2, 3

2 + 5
4 +1+ 7

16 ×4} = 1
2 > 0. If f3 and f7 are

3-faces, then c′(v) ≥ 8−1×2−max{ 32×2+ 1
8×2+max{1+ 2

3×2, 1+ 2
3+ 7

16 }, 3
2+ 5

4+
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7
16 + 1

8 +max{1+ 3
4 ×2, 1+ 3

4 + 2
3 }, 5

4 ×2+1+ 3
4 ×2+ 7

16 ×2} = 1
8 > 0. If f3(v) = 3,

then f4(v) ≤ 2. If f4(v) = 2, then c′(v) ≥ 8−1×2− 3
2 ×2− 5

4 − 3
4 ×2− 1

8 ×2 = 0.
If f4(v) ≤ 1, then c′(v) ≥ 8 − 1 × 2 − max{ 32 × 3 + 2

3 + 1
8 × 3, 3

2 × 2 + 5
4 + 3

4 +
7
16 + 1

8 × 2, 3
2 + 5

4 × 2 + 3
4 + 7

16 × 2 + 1
8 ,

5
4 × 3 + 3

4 + 7
16 × 3} = 3

16 > 0.
Case 6 n2(v) = 1. Then f3(v) ≤ 5. If f3(v) = 0, then c′(v) ≥ 8−1−1×7 = 0. If

f3(v) = 1, then f4(v) ≤ 4. So c′(v) ≥ 8−1− 3
2−1×4− 7

16×2 = 5
8 > 0. If f3(v) = 2,

then f4(v) ≤ 4. If f4(v) = 4, then c′(v) ≥ 8−1− 3
2 ×2−1×2− 2

3 ×2− 7
16 = 11

48 > 0.
If f4(v) ≤ 3, then c′(v) ≥ 8−1− 3

2 ×2−1×3− 7
16 ×2 = 1

8 > 0. If f3(v) = 3, then
f4(v) ≤ 2. If f4(v) = 2, then c′(v) ≥ 8 − 1 − 3

2 × 2 − 5
4 − 1 × 2 − 1

8 × 2 = 1
2 > 0.

If f4(v) ≤ 1, then c′(v) ≥ 8 − 1 − 3
2 × 3 − 1 − 7

16 × 3 = 3
16 > 0. If f3(v) = 4,

then f6+(v) ≥ 2 or f5+(v) ≥ 3. So c′(v) ≥ 8 − 1 − max{ 32 × 4 + 1
8 × 3, 3

2 × 3 +
5
4 + 1 + 1

8 × 2, 3
2 × 2 + 5

4 × 2 + 1 + 1
8 × 2} = 0. If f3(v) = 5, then f6+(v) ≥ 2. So

c′(v) ≥ 8 − 1 − 3
2 − 5

4 × 4 − 1
8 × 2 = 1

4 > 0 by (iv).
Case 7 n2(v) = 0. Then f3(v) ≤ 5. If f3(v) ≤ 2, then c′(v) ≥ 8− 3

2 × f3(v)−1×
[7− f3(v)] ≥ 0. If f3(v) = 3, then f4(v) ≤ 2. So c′(v) ≥ 8− 3

2 ×3−1×2− 7
16 ×2 =

5
8 > 0. If f3(v) = 4, then f4(v) ≤ 1. So c′(v) ≥ 8− 3

2 × 4− 1− 7
16 × 2 = 1

8 > 0. If
f3(v) = 5, then f6+(v) ≥ 2. So c′(v) ≥ 8 − 3

2 × 5 = 1
2 > 0.

Hence we complete the proof of the theorem.
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