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Abstract We consider the facility location problem of locating a set X p of p facilities
(resources) on a network (or a graph) such that the subnetwork (or subgraph) induced
by the selected set X p is connected. Two problems on a block graph G are proposed:
one problem is to minimizes the sum of its weighted distances from all vertices of
G to X p, another problem is to minimize the maximum distance from each vertex
that is not in X p to X p and, at the same time, to minimize the sum of its distances
from all vertices of G to X p. We prove that the first problem is linearly solvable on
block graphs with unit edge length. For the second problem, it is shown that the set of
Pareto-optimal solutions of the two criteria has cardinality not greater than n, and can
be obtained in O(n2) time, where n is the number of vertices of the block graph G.

Keywords Connected p-center · Median · Centdian · Block graphs

1 Introduction

In network location theory, two main criteria that are often used on a network for
locating a facility is: the maximal distance between the facility and a customer and the
average distance between the facility and the customers. However, neither of the two
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criteria above alone capture all essential elements of a location problem. The sumof the
distances criterion alonemay result in solutions which are unacceptable from the point
of view of the service level for the clients who are located far away from the facilities.
On the other hand, the criterion of the minimization of the maximum distance, if used
alone, may lead to very costly service systems. To capture more real-word problems
and provide goodways to trade-off minisum andminimax approaches, Halpern (1976)
introduce the centdian criteria which combine the minimax and minisum objective
functions.

Problems of locating a facility at a point of a network with combinations of the two
criteria are investigated and efficient algorithms for them are developed in Halpern
(1978), Handler (1985) and Hansen et al. (1991). Averbakh and Berman (1999) con-
sidered problems of finding the optimal location of a path (of unrestricted length) on a
tree, using different combinations of the minisum and minimax criteria. Becker et al.
(2007) considered the first two problems introduced in Averbakh and Berman (1999)
with an additional constraint, namely that the two optimal paths must have length (or
cost) bounded by a fixed constant. Tamir et al. (2002) studied the problem finding
the optimal location of a tree shaped facility of a specified size in a tree network by a
convex combination of theminisum andminimax criteria and developed an O(n logn)

algorithm.
Yen (2012) studied the connected p-center problem on block graphs. Shan et al.

considered the connected p-center and connected p-median problems on interval and
circular-arc graphs and showed that all the problems can by solved in polynomial
time. In this paper we consider problems of finding the optimal location of connected
p-median and connected p-centdian (defined by bi-objective criterion) on a block
graph.

The paper is organized as follows. In the next section we formally introduce the
notation and the problems thatwe study in this paper. In Sect. 3, we study the connected
p-median problem on block graphs, we prove that the connected p-median problem is
linearly solvable on block graphswith unit edge length. Section 4 studies the connected
p-centdian problem on unweighted block graphs. We give some properties of the
Pareto-optimal solutions and prove that there are at most n Pareto-optimal solutions.
Then two algorithms are proposed to obtain all the Pareto-optimal solutions. In the
last section, we describe an example to illustrate the whole process to find all the
Pareto-optimal solutions of the connected p-centdian problem on an unweighted block
graphs.

2 Problem formulation

Let G = (V, E, w, l) ba a finite, connected, undirected graph with vertex set V of
order n = |V | and edge set E of size m = |E |, where each vertex v ∈ V is associated
with a nonnegative weightw(v) and each edge (vi , v j ) ∈ E is associatedwith a certain
cost or length l(vi , v j ). For convenience, we denote G = (V, E) as the unweighted
graph that w(v) = 1 for all vertex v ∈ V and l(e) = 1 for all edge e ∈ E , and
G = (V, E, w) as the graph that l(e) = 1 for all edge e ∈ E .
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For any two vertices of u, v ∈ G, a path from u to v is vertex-edge alternative
sequence: u = x1, e1, x2, e2, . . . , xs, es, xs+1 = v such that the xi are all distinct and
ei = xi xi+1 for i = 1, 2, . . . , s. The number of edges of a path is its length. Let
d(u, v) = ∑s

i=1 l(ei ) be the length of a shortest path in G between u and v, called
the distance of two vertices u and v. Let P(u, v) denotes a shortest path between
u and v, and particularly L(P(u, v)) denotes the length of path P(u, v). Clearly,
d(u, v) = L(P(u, v)). For any p-vertex set X p = {x1, . . . , xp} of G, let 〈X p〉 denote
the subgraph induced by X p and d(v, X p) = min1≤ j≤p{d(v, xi )} denote the distance
between vertex v and vertex set X p. A p-vertex set X p is called a connected p-vertex
set if 〈X p〉 is a connected subgraph of G. Let Φ be the collection of all connected
p-vertex sets of the graph G.

Given a graph G, a vertex u is called a cut vertex of G if κ(G − {u}) > κ(G),
where κ(G) denotes the number of components of G. A connected subgraph H of G
is called a block of G if H is maximal and it contains no cut vertices. A graph G is
a block graph if all blocks of G are cliques and any two distinct blocks B1 and B2
have at most one common vertex (Behtoei et al. 2010), where a clique in a graph is a
complete subgraph maximal under inclusion. In this paper we investigate the location
problems on block graph. Throughout this paper, G denotes a block graph.

The minimax objective seeks a connected p-vertex set X p on the graph G that
minimize the maximum weighted distances from each vertices to X p:

minX p∈ΦF1(X p), where F1(X p) = maxv∈V
{
w(v)d(v, X p)

}
.

This problem is known as connected p-center (CpC) problem and studied in Yen
(2012). Yen (2012) shown that the CpC problem is N P-hard on block graphs G when
w(v) = 1 for all vertices v and l(e) = {1, 2} for all edges e. We consider the following
two problems on block graph G:

Problem 1 Find a connected p-vertex set X p on the graph G that minimize the sum
of its distances from all vertices of G to X p:

minX p∈ΦF2(X p), where F2(X p) =
∑

v∈V
w(v)d(v, X p).

This problem is known as the connected p-median problem (CpM).

Problem 2 Find the set of all Pareto-optimal solutionsΠ of the bi-objective problem:

{

min
X p∈Φ

F1(X p), min
X p∈Φ

F2(X p)

}

,

where a connected p-vertex set X p ∈ Φ is called Pareto-optimal, if there is no
connected p-vertex set X ′

p ∈ Φ such that F1(X ′
p) ≤ F1(X p) and F2(X ′

p) ≤ F2(X p)

and at least one is satisfied as strict inequality. We call this problem the connected
p-centdian problem.
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Given a block graph G = (V, E), let r be a vertex of G, we consider the rooted
block graph G(r). Each vertex v of G(r) is associated with a label L(v), called the
level of v which can be computed by the BFS traversal in O(n) time. The parent of v,
denoted by par(v), is the vertex u such that (v, u) ∈ E and L(v) = L(u) + 1. Note
that par(v) = null if v = r . The children-set of v, denoted by chi(v), is defined as
chi(v) = {w | (v,w) ∈ E and L(w) = L(v) + 1}. The descendant-set of v, denoted
by des(v), is defined as des(v) = {w | L(w) > L(v) and v ∈ P(w, r)}. If des(v)

is empty, then v is called a leaf vertex of G(r). Otherwise, v is a non-leaf vertex
of G(r). G(v) denotes the subgraph of G(r) induced by {v} ∪ des(v). We define
W (v) = ∑

u∈G(v) w(u) which can computed bottom-up by the following formula:

W (v) = w(v) +
∑

u∈chi(v)

W (u). (1)

Whenwe consider unweighted block graph,W (v) is the number of vertices in subgraph
G(v). For each vertex v of G(r), let cs(v) = {u | (u, v) ∈ E and L(u) = L(v)}. Note
that cs(v) may be empty under this definition.

Consider the block graph G = (V, E, w) and vertex r ∈ V . For a vertex v of the
rooted block graph G(r), let f (v) and g(v) be the sum of the weighted distance from
vertices of G(v) to v and vertices of G(r) − G(v) to v, respectively. By assumption,
l(e) = 1 for each edge e ∈ G. Then

f (v) =
∑

u∈G(v)

w(u)d(u, v)

=
∑

z∈chi(v)

f (z) +
∑

z∈chi(v)

W (z)

=
∑

u∈G(v)−v

W (u), (2)

and

g(v) =
∑

u∈G(r)−G(v)

w(u)d(u, v)

=
∑

u∈G(r)−G(par(v))

w(u)d(u, v) +
∑

u∈G(par(v))−G(v)

w(u)d(u, v)

= g(par(v)) + W (r) − W (par(v)) + f (par(v)) − ( f (v) + W (v))

+
⎛

⎝W (par(v)) − W (v) −
∑

z∈cs(v)

W (z)

⎞

⎠

= g(par(v)) + f (par(v)) − f (v) + W (r) − 2W (v) −
∑

z∈cs(v)

W (z). (3)

Note that g(r) = 0 and F2(v) = f (v) + g(v) for each vertex v of G.
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3 The CpM problem on block graphs with unit edge length

In this section we consider the connected p-median (CpM) problem on a block graph
G = (V, E, w). We show that the CpM problem onG with unit edge length is linearly
solvable.

Suppose that m is the 1-median of G and m belongs to a block Bj = {m =
v1, v2, . . . , vt } of G. When we delete all the edges in Bj , we obtain a collection
of connected components G1, . . . ,Gt with vi ∈ Gi , 1 ≤ i ≤ t . Let W (Gi ) =∑

v∈Gi
w(v). For each vertex v ∈ Gi , d(v,m) = d(v, vi ) + d(vi ,m). Then, we have

F2(m) =
∑

v∈G
w(v)d(v,m)

=
t∑

i=1

∑

v∈Gi

w(v)d(v, vi ) +
t∑

i=1

⎛

⎝
∑

v∈Gi

w(v)

⎞

⎠ d(vi ,m)

=
t∑

i=1

∑

v∈Gi

w(v)d(v, vi ) +
t∑

i=1

W (Gi ) − W (G1).

Because v1 = m is the 1-median of G, F2(m) = min1≤i≤t {F2(vi )}.
Then, W (G1) = max1≤i≤t {W (Gi )}. We have the following lemma.

Lemma 1 If the 1-median vertex m of G belongs to a block B j , then m is the vertex
of B j with maximum value W (Gi ).

Chen et al. (1985) obtained an extension version of Goldman’s algorithm which
can find either the 1-median of G or the single block of G containing the 1-median of
G in linear time. The following lemma is a direct consequence of their result.

Lemma 2 The 1-median of a block graph G can be found in linear time.

Lemma 3 If m is the 1-median of a block graph G = (V, E, w), then there exist a
connected p-median X∗

p of G containing the vertex m.

Proof By contradiction, suppose that X∗
p is a connected p-median of G such that

d(m, X∗
p) is minimized and m /∈ X∗

p. Assume that x is a vertex in X∗
p such that

d(m, x) = d(m, X∗
p) and x ′ is a vertex in path P(m, x) which is adjacent to vertex x .

We may assume that the 1-median vertex m of G belongs to a block Bj of G. Delete
all the edges in Bj , we consider connected components of G − E(Bj ). Assume that
Gm is the component of G − E(Bj ) containing m. Since G is a block graph, there
exists a vertex y ∈ X p such that y 	= x and 〈X p − y〉 is connected. Let

Vx = {
v | d(v, x) = d(v, X p), v ∈ V

}

Vy = {
v | d(v, y) = d(v, X p), v ∈ V − Vx

}
.

Set X ′
p = X∗

p −{y}+ {x ′}. Obviously, 〈X ′
p〉 is connected and d(m, X ′

p) < d(m, X∗
p).

We obtain a contradiction by showing F2(X ′
p) ≤ F2(X∗

p).
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Suppose that X∗
p ⊆ G − Gm . Then, we have

F2
(
X ′

p

)
− F2

(
X∗

p

)
≤

∑

v∈Vy

w(v) −
∑

v∈Gm

w(v).

Since m is a 1-median vertex of G, Vy belongs to a component of G − E(Bj ) − Gm .
By Lemma 1, we have

∑

v∈Vy

w(v) ≤
∑

v∈Gm

w(v).

Thus F2(X ′
p) ≤ F2(X∗

p). But d(m, X ′
p) < d(m, X∗

p). This contradicts the mini-
mality of d(m, X∗

p).
Suppose that X∗

p ⊆ Gm . Then, we have

F2
(
X ′

p

)
− F2

(
X∗

p

)
≤

∑

v∈Vy

w(v) −
∑

v∈G−Gm+m

w(v).

Since X p ⊆ Gm , there exists another block Bk 	= Bj such that m ∈ Bk and y is
contained in a component of G − E(Bk). Denote by Gy the component containing
y. Since 〈X p〉 is connected, in view of the choices of x and y, Vy ⊆ V (Gy). By
Lemma 1, we have

∑

v∈Vy

w(v) ≤
∑

v∈Gy

w(v) ≤
∑

v∈G−Gm+m

w(v).

Thus F2(X ′
p) ≤ F2(X∗

p), contradicting the minimality of d(m, X∗
p) again. ��

Lemma 4 Let m be the 1-median of a block graph G = (V, E, w). For the
rooted graph G(m), let X∗

p = {v1, . . . , vp} be a p-vertex set of G such that
W (v1), . . . ,W (vp) are the first p largest numbers among {W (v) | v ∈ G(m)} and
L(v1), . . . , L(vp) as small as possible. Then, X∗

p is a connected p-median of G.

Proof Obviously, for each non-root vertex v, W (v) ≤ W (par(v)). This implies that
m ∈ X∗

p. Nextwe show that X∗
p is connected.Wewill prove this statement by induction

on p. Without loss of a generality, we may assume that W (v1) ≥ W (v2) ≥ · · · ≥
W (vn), and X∗

i = {v1, . . . , vi }, 1 ≤ i ≤ p.
It is trivial that 〈X∗

1〉 is connected. Assume that 〈X∗
k 〉 is connected for 1 ≤ k < p.

The choice of vk+1 implies that vk+1 ∈ {y | y ∈ chi(X∗
k ) − X∗

k }. Then 〈X∗
k+1〉 is

connected.
It is easily seen that

F2
(
X∗

p

)
= F2

(
X∗

p−1

)
− W (xp) = F2(m) −

∑

v∈X∗
p−m

W (v).
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By Lemma 3 and the assumption of the lemma, for any connected p-vertex set X ′
p 	=

X∗
p of G, we have

∑

v∈X∗
p

W (v) ≥
∑

v∈X ′
p

W (v).

Thus F2(X∗
p) ≤ F2(X ′

p), so X∗
p is an optimal solution. ��

By Lemma 2, the 1-median m can be found in O(n). Lemma 4 implies that we can
construct X∗

p in O(n) by considering the rooted graph G(m). Then we get the main
result in this section.

Theorem 1 For a given block graph G = (V, E, w) on n vertices, the CpM problem
can be solved in O(n) time.

4 The connected p-centdian problem on unweighted block graphs

We now turn our attention to the connected p-centdian problem on unweighted block
graphs. Given an unweighted block graph G(V, E), the notation P(u∗, v∗) denotes
a diameter path of G, i.e., L(P(u∗, v∗)) ≥ L(P(u, v)), for all u, v ∈ V . For a
path P(u, v) of G, a middle vertex of P(u, v) is a vertex x in P(u, v) such that
d(u, x) = �L(P(u, v))/2� or d(x, v) = �L(P(u, v))/2�. In Yen (2012) Yen gave
an algorithm to find a diameter path P(u∗, v∗) in an unweighted block graph G in
O(n+m) time. Obviously, the 1-center vertex c is the middle vertex of diameter path
P(u∗, v∗) and F1(c) = �L(P(u∗, v∗))/2�. Hence, we can find the 1-center vertex of
an unweighted block graph in O(n+m) time. As we have seen in Sect. 3, we can find
the 1-median of G in linear time.

Lemma 5 Let c be the 1-center vertex and m the 1-median vertex in a block graph
G = (V, E). For any connected p-vertex set X p ∈ Π , we have X p ∩ P(c,m) 	= ∅.

Proof By contradiction, we suppose that X p ∈ Π , X p ∩ P(c,m) = ∅ and
d(P(c,m), X p) is minimized. Let x be a vertex in X p such that d(P(c,m), x) =
d(P(c,m), X p). Assume that x ′ is adjacent to x and x ′ is a vertex on the shortest path
from x to P(c,m). Since G is a block graph, there exists a vertex y ∈ X p such that
y 	= x and 〈X p − y〉 is connected. Let

Vx = {
v | d(v, x) = d(v, X p), v ∈ V

}
,

Vy = {
v | d(v, y) = d(v, X p), v ∈ V − Vx

}
.

Set X ′
p = X p − {y} + {x ′}. Obviously, 〈X ′

p〉 is connected, d(P(c,m), X ′
p) =

d(P(c,m), X p) − 1 and d(c, X ′
p) = d(c, X p) − 1.

Since c lies on the diameter path P(u∗.v∗), c is a cut vertex. Let Gu∗ and Gv∗ be
the subgraphs of G − {c} containing u∗ and v∗, respectively. Since c /∈ X p and 〈X p〉
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is connected, X p cannot lie within two distinct subgraphs Gu∗ and Gv∗ . We have

F1(X p) = max{d(u∗, X p), d(v∗, X p)}
= �L(P(u∗, v∗))/2� + d(c, X p) or �L(P(u∗, v∗))/2� + d(c, X p).

Similarly, we have

F1
(
X ′

p

)
= �L(P(u∗, v∗))/2� + d

(
c, X ′

p

)
or �L(P(u∗, v∗))/2� + d

(
c, X ′

p

)
.

Obviously, X p and X ′
p lies in the same component of G − {c}. We have

F1(X p) − F1
(
X ′

p

)
= d(c, X p) − d

(
c, X ′

p

)
= 1.

Thus F1(X ′
p) < F1(X p).

We assume that the 1-median vertex m of G belongs to a block Bj of G. Deleting
all the edges in Bj , we obtain a collection of connected components. Suppose Gm is
the component containing m. If X p ⊆ G − Gm , then we have

F2
(
X ′

p

)
− F2(X p) ≤

∑

v∈Vy

w(v) −
∑

v∈Gm

w(v).

Since 〈X p〉 is connected, in view of the choices of x and y, Vy belongs to a component
of G − E(Bj ) − Gm . From Lemma 1, it immediately follows that

∑

v∈Vy

w(v) ≤
∑

v∈Gm

w(v).

Thus F2(X ′
p) ≤ F2(X p). If X p ⊆ Gm , then we have

F2
(
X ′

p

)
− F2(X p) ≤

∑

v∈Vy

w(v) −
∑

v∈G−Gm+m

w(v).

Since X p ⊆ Gm , there exists another block Bk 	= Bj such that m ∈ Bk and y is
contained in a component of G − E(Bk). Denote by Gy the component containing
y. Since 〈X p〉 is connected, in view of the choices of x and y, Vy ⊆ V (Gy). By
Lemma 1, we have

∑

v∈Vy

w(v) ≤
∑

v∈Gy

w(v) ≤
∑

v∈G−Gm+m

w(v).

Thus F(X ′
p) ≤ F(X p). This contradicts the assumption that X p is Pareto-optimal. ��
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Lemma 6 Let X p ∈ Π , the 1-center vertex c /∈ X p and x be a vertex of X p such
that d(x, c) is minimum. For the rooted graph G(c), let x2, . . . , xp be the vertices
such that W (x2), . . . ,W (xp) are the first p − 1 largest numbers among {W (v) | v ∈
G(x) ∪z∈cs(x) G(z) − {x}} and L(x2), . . . , L(xp) as small as possible. Then X p =
{x, x2, . . . , xp}.
Proof Using the similar reasoning in the proof of Lemma 4, we can deduce that
X p ∈ Φ. Since x is a vertex of X p and d(x, c) is minimum, X p contain only vertices
in G(x) ∪z∈cs(x) G(z). Then we have

F1(X p) = maxv∈V {d(v, X p)}
= �L(P(u∗, v∗))/2� + d(x, c) or �L(P(u∗, v∗))/2� + d(x, c),

and

F2(X p) =
∑

v∈G(c)

d(v, X p)

=
∑

v∈G(c)−G(x)

d(v, X p) +
∑

v∈G(x)

d(v, X p)

= g(x) −
∑

x ′∈X p∩(∪z∈cs(x)G(z))

W (x ′) + f (x) −
∑

x ′∈X p∩G(x)−{x}
W (x ′)

= F2(x) −
∑

x ′∈X p−x

W (x ′).

Hence, for any X ′
p ∈ Φ, where x ∈ X ′

p and X ′
p ⊆ G(x) ∪z∈cs(x) G(z), we have

∑

v∈X p

W (v) ≥
∑

v∈X ′
p

W (v).

Thus F2(X p) ≤ F2(X ′
p), and so X p is Pareto-optimal. ��

Wechoose 1-center vertex c as the root ofG and computeW (v) for v ∈ G(c) by (1).
Find the optimal solution Q of G by the algorithm in Yen (2012) and set β1 = F1(Q).
For each vertex v of G(c), define μ(v) = max{d(y, v) | y ∈ G(v)}. Then we have:

μ(v) =
{
0 if chi(v) = ∅,

max{μ(u) | u ∈ chi(v)} + 1 if chi(v) 	= ∅.
(4)

For integer k with β1 ≤ k ≤ F1(c)), let Yk = {x | x ∈ G(c), μ(v) ≥ k}. Then Yk is
the minimum set of connected vertices of G such that F1(Yk) = k and |Yk | ≤ p. It is
easy to check that Yk can be found in O(n) time.

Let X p ∈ Π and c ∈ X p. The definition of Yk implies that Yk ⊆ X p. The proof of
the following lemma is similar to the proof of Lemma 6, and is omitted.
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Lemma 7 Suppose X p ∈ Π , c ∈ X p and F1(X p) ≤ k, where β1 ≤ k ≤
F1(c). Consider the rooted graph G(c). Then X p = Yk ∪ {x1, . . . , xp−|Yk |}, where
W (x1), . . . ,W (xp−|Yk |) are the first p − |Yk | largest numbers among {W (v) | v ∈
G(c) − Yk} and L(x1), . . . , L(xp−|Yk |) as small as possible.

According to Lemmas 5, 6 and 7, we now provide Algorithm 1 for finding a set
Ψ containing all Pareto-optimal solutions.

Algorithm 1
1: Find the 1-center vertex c and the 1-median m of G, consider the rooted graph G(c);
2: Set Ψ = ∅, F1(c) = �L(P(u∗, v∗))/2�, P(m, c) = {y1 = m, y2, . . . , yt = c};
3: for i = 1 to t do
4: Compute F2(yi ) = f (yi ) + g(yi ) by formula (2) and (3),
5: end for
6: for i = 1 to t − 1 do
7: Find x2, . . . , xp such that W (x2), . . . ,W (xp) are the first p − 1 largest numbers among {W (v) | v ∈

G(yi ) ∪u∈cs(yi ) G(u) − {yi }} and L(x2), . . . , L(xp) as small as possible,

8: set X
yi
p = {yi , x2, . . . , xp} and Ψ = Ψ ∪ X

yi
p ,

9: compute F1(X
yi
p ) and F2(X

yi
p ) = F2(yi ) − ∑

x ′∈X yi
p −yi

W (x ′),
10: end for
11: for k = F1(c) to β1 do
12: Find minimum set connected vertices Yk that F1(Yk ) = k,
13: find x1, . . . , xp−|Yk | such thatW (x1), . . . ,W (xp−|Yk |) are the first p−|Yk | largest numbers among

{W (v)|v ∈ G(c) − Yk } and L(x1), . . . , L(xp−|Yk |) as small as possible,

14: set Xk
p = Yk ∪ {x1, . . . , xp−|Yk |} and Ψ = Ψ ∪ Xk

p ,

15: compute F1(X
k
p) and F2(X

k
p) = F2(c) − ∑

x∈X p−c W (x),
16: end for

Algorithm 2
1: for each X p ∈ Ψ do
2: Two functions h1, h2 : Ψ → {1, 2, . . . , |Ψ |} are given such that for any different connected p-vertex

sets X p, X ′
p ∈ Ψ :

3: h1(X p) < h1(X
′
p) iff F1(X p) < F1(X

′
p) or F1(X p) = F1(X

′
p) and F2(X p) < F2(X

′
p),

4: h2(X p) < h2(X
′
p) iff F2(X p) < F2(X

′
p) or F2(X p) = F2(X

′
p) and F1(X p) < F1(X

′
p),

5: end for
6: for all X ′

p ∈ Ψ do
7: if there exists X p such that h1(X p) < h1(X

′
p) and h2(X p) < h2(X

′
p) then

8: set Ψ = Ψ − X ′
p ,

9: end if
10: end for
11: Set Π = Ψ .

Lemma 8 Algorithm 1 can obtain a set Ψ such that Π ⊆ Ψ ⊆ Φ and |Π | ≤ n in
O(n2) time.

Proof Obviously, all X yi
p and Xk

p are connected p-vertex sets, i.e. Ψ ⊆ Φ. By
Lemma 5, for any connected p-vertex set X p ∈ Π , we have X p ∩ P(c,m) 	= ∅.
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By Lemma 6, Steps 6–10 in Algorithm 1 find all X p ∈ Π with c /∈ X p. By Lemma 7,
Steps 11–16 in Algorithm 1 find all X p ∈ Π with c ∈ X p. Note that some X p ∈ Ψ

may not be Pareto-optimal. Thus Π ⊆ Ψ . We have:

|Π | ≤ |Ψ | ≤ L(P(m, c)) + F1(c) − β1 ≤ n

2
+ n

2
= n.

The 1-center vertex c can be found in O(n + m) and the 1-median can be found
in O(n). In Steps 3–5, the values F2(yi ) (1 ≤ i ≤ t) can be computed in O(n) time.
The Steps 6–10 take t − 1 times and each loop takes O(n) time. The Steps 11–16
take F1(c) − β1 times and each loop takes O(n) time. Thus, the total computational
complexity is O(n2). ��

Based on Algorithm 1, we give Algorithm 2 to find all Pareto-optimal solutions.
Given Ψ , Algorithm 2 can obtain the Pareto-optimal set Π of the connected p-

centdian problem in O(n logn) time. Thus, we have:

Theorem 2 The Pareto-optimal set Π of the connected p-centdian problem can be
obtained in O(n2) time.

5 An example for the connected p-centdian problem

In this section we exhibit an example to illustrate how Algorithm 1 and 2 work. Let
G be an unweighted block graph, which is shown in Fig. 1 and p = 5.

First, by applying Algorithm 1, we obtain:

1. The diameter path P(u∗, v∗) and the middle vertex c, the 1-median m;
2. F1(c) = 5 and P(m, c) = {y1, y2, y3};
3. The connected 5-center Q = {y1, y2, y3, v22, v19}, and β1 = F1(Q) = 3;

c = y3

y2

m = y1

v∗ v1 v2 v3 u∗

v4 v5 v6 v7 v8 v9 v10

v11 v12
v13

v14
v15 v16 v17

v18 v19

v20 v21 v22

5

4

3

2

1

0
Level

Fig. 1 Illustration for the example
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Table 1 W (v) for all v ∈ G

· v∗ v1 v2 v3 u∗ v4 v5 v6 v7 v8 v9 v10 v11

W (·) 1 1 1 1 1 2 1 3 1 2 1 2 4

v12 v13 v14 v15 v16 v17 y1 v18 v19 y2 v20 v21 v22 y3
5 3 2 1 1 3 15 3 4 16 1 4 5 27

4. W (v) for all v ∈ G is presented in Table 1;
5. F2(y1) = 76, F2(y2) = 79, F2(y3) = 84;
6. X y1

5 = {y1, v11, v12, v13, v6}, F1(X y1
5 ) = 7, F2(X

y1
5 ) = 61,

X y2
5 = {v11, v12, v13, y2, y1}, F1(X y2

5 ) = 6, F2(X
y2
5 ) = 52;

7. Y5 = {y3}, X5
5 = {y3, y2, y1, v12, v22}, F1(X5

5) = 4, F2(X5
5) = 43,

Y4 = {y3, y2, v22}, X4
5 = {y3, y2, y1, v12, v22}, F1(X4

5) = 4, F2(X4
5) = 43,

Y3 = {y3, y2, y1, v19, v22} = X3
5, F1(X

3
5) = 3, F2(X3

5) = 44;
8. Ψ = {X y1

5 , X y2
5 , X4

5, X
3
5}.

Further, by applying Algorithm 2, we obtain:

1. h1(X3
5) = 1, h1(X4

5) = 2, h1(X
y2
5 ) = 3, h1(X

y1
5 ) = 4,

h2(X4
5) = 1, h2(X3

5) = 2, h2(X
y2
5 ) = 3, h2(X

y1
5 ) = 4;

2. Π = {X4
5, X

3
5}.
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