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Abstract Let c1, c2, . . . , ck be k non-negative integers. A graphG is (c1, c2, . . . , ck)-
colorable if the vertex set can be partitioned into k sets V1, V2, . . . , Vk such that for
every i, 1 ≤ i ≤ k, the subgraphG[Vi ]hasmaximumdegree atmost ci . Steinberg (Ann
DiscretMath 55:211–248, 1993) conjectured that every planar graph without 4- and 5-
cycles is 3-colorable. Xu andWang (Sci Math 43:15–24, 2013) conjectured that every
planar graph without 4- and 6-cycles is 3-colorable. In this paper, we prove that every
planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is (1, 1, 0)-
colorable, which improves the result of Xu andWang (SciMath 43:15–24, 2013), who
proved that every planar graph without 4- and 6-cycles is (1, 1, 0)-colorable.

Keywords Planar graphs · Improper coloring · Cycle

1 Introduction

All graphs considered in this paper are finite simple graphs. For a planar graph G, we
use V , E , and δ to denote its vertex set, edge set and minimum degree, respectively.
For u ∈ V (G), let N (u) denote the neighbors of u in G. A k-vertex (resp. k+-vertex,
k−- vertex) is a vertex of degree k (resp. at least k, at most k). The same notation will
be used for faces.
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It is well-known that the problem of deciding whether a planar graph is properly 3-
colorable is NP-complete. In 1959, Grötzsch (1959) showed the famous theorem that
every triangle-free planar graph is 3-colorable. In 1976, Steinberg raised the following
famous conjecture.

Conjecture 1.1 [Steinberg (1993)] Every planar graph without 4- and 5-cycles is
3-colorable.

This conjecture was disproved by Cohen–Addad et al. (2016) recently. However,
Erdös suggested to find a constant c such that a planar graph without cycles of length
from 4 to c is 3-colorable. Abbott and Zhou (1991) proved that such a c exists and
c ≤ 11. This bound was improved to c ≤ 9 by Borodin (1996) and independently by
Sanders and Zhao (1995), to c ≤ 7 by Borodin et al. (2005). Up to now, it is unknown
whether the bound can be decreased to 6.

Another relaxation of the conjecture is to allow some defects in the color classes.
Let c1, c2, . . . , ck be k non-negative integers. A graph G is (c1, c2, . . . , ck)-colorable
if the vertex set can be partitioned into k sets V1, V2, . . . , Vk such that for every
i, 1 ≤ i ≤ k, the subgraph G[Vi ] has maximum degree at most ci . Thus, a graph is
properly 3-colorable if and only if it is (0,0,0)-colorable. Chang et al. (2011) showed
that every planar graph without 4- and 5-cycles is (4, 0, 0)-colorable and (2, 1, 0)-
colorable. Improving the result of Chang et al., it is proved that every planar graph
without cycles of length 4 or 5 is (3, 0, 0)-colorable (Hill et al. 2013) and (1, 1, 0)-
colorable (Hill and Yu 2013; Xu et al. 2014). As a variation, Xu and Wang (2013)
conjectured that every planar graph without 4- and 6-cycles is 3-colorable and they
proved that every planar graph without 4- and 6-cycles is (3, 0, 0)- and (1, 1, 0)-
colorable.

On the other hand, Lih et al. (2001) proved that every planar graph without 4- and
6-cycles is (1, 1, 1)-choosable. As an improvement, Chen et al. (2015) proved that
every planar graph without adjacent triangles or 6-cycles is (1, 1, 1)-choosable, where
two cycles are adjacent if they have an edge in common. Motivated by those results,
we prove the following result.

Theorem 1.2 Every planar graph without 3-cycles adjacent to 4-cycles and without
6-cycles is (1, 1, 0)-colorable.

An m-face f = [u1u2 . . . um] is called an (a1, a2, . . . , am)-face if d(ui ) = ai for
i = 1, 2, . . . ,m. We use mi (u) to denote the number of i-faces incident with u. If a
vertex u is incident with a face f , then its neighbor not incident with this face is called
its outer neighbor. A 5-vertex u is bad if u is incident with a 3-face, a (5, 3, 3, 4, 3)-
face and a (5, 3, 3, 5+, 3)-face, and good otherwise. A neighbor v′ of a vertex v is
isolated if no 3-face in G contains vv′.

Like many similar results, we use a discharging procedure to prove Theorem 1.2.
We show some reducible configurations in the next section, and then in the last section,
use discharging argument to reach a contradiction.
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2 Reducible configurations of G

Let G be a counterexample to Theorem 1.2 with minimizing |V (G)| + |E(G)|. Thus,
G is connected. Embed G into the plane, we get a plane graph G = (V, E, F), where
F is the set of faces of G. Since G has no 6-cycles and no adjacent 3- and 4-cycles,
we have the following

Lemma 2.1 No two 4−-faces are adjacent, and no 3-face is adjacent to a 5-face
in G.

Lemma 2.2 [Xu et al. (2014)] The following are some properties of G:

(1) δ(G) ≥ 3.
(2) Every 3-vertex is adjacent to at most one 3-vertex.
(3) A 4-vertex has at least one 4+-neighbor.
(4) There is no (3, 3, 4−)-face in G.
(5) If a 3-vertex u is incident with a (3, 4, 4)-face, then the outer neighbor of u is a

4+-vertex.
(6) If a 4-vertex is incident with exactly one 3-face that is a (3, 4, 4)-face, then it is

adjacent to an isolated 4+-vertex.
(7) If a 4-vertex is incident with two 3-faces one of which is a (3, 4, 4)-face, then it

is adjacent to at least one 5+-vertex.

Lemma 2.3 There is no (4, 3, 3, 4, 3)-face in G.

Proof Suppose to the contrary that f = [u1u2u3u4u5] is a (4, 3, 3, 4, 3)-face. By the
minimality of G, we can first color G − {ui : 1 ≤ i ≤ 5}. Color u1 and u4 properly.
Assume first that u1 is not colored 3. Let u′

5 be the outer neighbor of u5. If the colors
of u1, u4 and u′

5 are different, then color u5 with the same color of u1 since u1 was
colored 1 or 2. If at least two of u1, u4 and u′

5 are colored the same color, then u5 can
be properly colored. Now we properly color u2. Let u′

3 be the outer neighbor of u3.
If at least two of u2, u4 and u′

3 are colored the same color, then u3 can be properly
colored. If the colors of u2, u4 and u′

3 are different, then color u3 with 1 or 2 since at
least one of u2 and u4 is not colored with 3 (say u2 and color u3 with color of u2),
a contradiction. Thus, by symmetry, we assume that both u1 and u4 are colored 3. In
this case, properly color u5 and u2. The vertex u3 can be either properly colored or
colored with the color of u2, a contradiction. ��
Lemma 2.4 Let u be a 5-vertex in G.

(a) The vertex u is incident with at most four (5, 3, 3, 4+, 3)-faces.
(b) The vertex u is incident with at most one (5, 3, 3, 4, 3)-faces.
(c) If u is incident with a (5, 3, 3, 4, 3)-face, then it is incident with at most two

(5, 3, 3, 5+, 3)-faces.

Proof (a) Suppose to the contrary that u is incident with five (5, 3, 3, 4+, 3)-faces
f1 = [uu1u2u3u4], f2 = [uu4u5u6u7], f3 = [uu7u8u9u10], f4 = [uu10u11u12u13]
and f5 = [uu13u14u15u1]. Then u1u2 . . . u15 is a 15-cycle and u1, u4, u7, u10, u13
are neighbors of u. Then the neighbors of u are all 3-vertices, and moreover, each of
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them must be adjacent to a 3-vertex and a 4+-vertex, as no 3-vertex is adjacent to two
3-vertices on the cycle by Lemma 2.2 (2). We assume, without loss of generality, that
each of u3, u6, u9, u12 and u15 is a 4+-vertex.

By the minimality of G, G − N [u] can be colored. Since each of u2, u5, u8, u11
and u14 has only two colored neighbors in G − N [u], we can further assume that each
of u2, u5, u8, u11 and u14 can be recolored (if necessary) so that they are properly
colored. Note that each of u1, u4, u7, u10 and u13 has only two colored neighbors,
one of which is properly colored. Observe two colored neighbors u2 and u15 of u1.
If at least one of u1 and u15 is colored with 3, we can properly color u1 with 1 or 2.
Thus, assume that none of u2 and u15 is colored with 3. If u2 and u15 are colored with
different colors, then we color u1 with the color of u2; if u2 and u15 are colored with
the same color, we color u1 with the color which is neither 3 nor the color used by
u2 and u15. This means that we may also color u1 so that 3 is not used. Similarly, we
color each of u4, u7, u10 and u13 so that 3 is not used. Finally, u can be colored with
3, a contradiction since G is not (1, 1, 0)-colorable.

(b) Suppose to the contrary that u is incident with two (5, 3, 3, 4, 3)-faces. Then
the two 5-faces may or may not have a common edge. So we consider two cases.

Case (b.1): The two 5-faces share an common edge. Let [uu1u2u3u4] and
[u4u5u6u7u] be the two 5-faces, and v,w be the other two neighbors of u. It follows
that u1, u4, u7 are 3-neighbors of u. By the minimality of G, G − {u, ui : 1 ≤ i ≤ 7}
can be colored, and furthermore, as each of ui , 1 ≤ i ≤ 7, has at most two colored
neighbors, we may properly color them. Now we try to color u.

Note that each of u1 and u7 has at least one properly colored neighbor, we may
recolor them so that 3 is not used, and u4 has two properly colored neighbors, we may
recolor it with a different color.

If 3 is not used on v and w, we can recolor u1, u4, u7, if necessary, so that 3 is not
used, then color u with 3. So, we may assume that v is colored 3. If w is colored 3
as well, then 1 or 2 is used at most once on u1, u4, u7, so we may color u with the
color. Thus, we may assume that w is colored 1. Now we recolor u4, if necessary,
with 1 or 3. Note that if one of u1 and u7 is not colored with 2, then we may color
u with 2. Assume that both u1 and u7 are colored 2. Now we may recolor u1 or u7
with different color if u2 or u6 is not colored 3, so we may assume that u2, u6 are
colored 3. Note that u2 and u6 cannot be both 4-vertices, for otherwise, u3, u4, u5 are
all 3-vertices, a contradiction to Lemma 2.2(2). It follows that u2 or u6 has a properly
colored neighbor, so it can be recolored so that it is not colored 3, then u1 or u7 can
be recolored so that it is not colored 2, hence we can color u with 2, a contradiction.

Case (b.2): The two 5-faces do not share a common edge. Let [uu1u2u3u4] and
[u5u6u7u8u] be the two 5-faces, and v be the fifth neighbor of u. It follows that
u1, u4, u5, u8 are 3-neighbors of u. By the minimality of G, G − {u, ui : 1 ≤ i ≤ 8}
can be colored, and furthermore, as each of ui , 1 ≤ i ≤ 8, has at most two colored
neighbors, we may properly color them. Now we try to color u.

As each of u1, u4, u5, u8 has at least one properly colored neighbor, they can be
recolored, if necessary, with a color different from 3. So if v is not colored 3, then we
can color u with 3 after recoloring the neighbors of u. Therefore, we may assume that
v is colored with 3. As u cannot be colored, 1 and 2 both appear exactly twice on the
neighbors of u.
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Note that u1 or u4 is adjacent to a 3-vertex, which is properly colored. We may
assume that u2 is a 3-vertex and u1 is colored with 1. If we can recolor u1 with 2 or 3,
then u can be colored with 1, so we may assume that u1 cannot be recolored. It follows
that u2 is colored with 3, but has a properly colored neighbor, so it can be recolored
differently from 3, then we can recolor u1 with 3 and color u with 1, a contradiction.

(c) Suppose to the contrary that a 5-vertex u is incident with one (5, 3, 3, 4, 3)-
face and three (5, 3, 3, 5+, 3)-faces. Assume that these four 5-cycles are f1 =
[uu1u2u3u4], f2 = [uu4u5u6u7], f3 = [uu7u8u9u10] and f4 = [uu10u11u12u13].
Then u1u2 . . . u13 is a path 13-path and N (u) = {u1, u4, u7, u10, u13} which consists
of 3-vertices. Let G ′ be the graph obtained from G by deleting u and all 4−-vertices
in {ui : 1 ≤ i ≤ 13}. By the minimality of G, we can color all vertices of G ′ except u
and all those 3-vertices on P . Note that the 4-vertex in {ui : 1 ≤ i ≤ 13} has only two
colored neighbors, so we may properly recolor it, if necessary. Now we can properly
color the 3-vertices that are not neighbors of u, and then the neighbors of u in a cyclic
order. We may assume that 1 and 2 are both used twice and 3 is used once on the
neighbors of u.

If the neighbor of u that is colored 3 has a properly colored neighbor, then we
may recolor it with a different color and color u with 3. Similarly, if a neighbor of
u that is colored 1 or 2 has two properly colored neighbors, then we may recolor it
with a different color, and then color u. Since P has at most three 5+-vertices, u has
a neighbor x that has no colored 5+-neighbors, that is, its two colored neighbors are
both properly colored. Clearly x is colored 1 or 2, say 1. Now x can be recolored with
2 and then u can be colored with 1, a contradiction. ��
Lemma 2.5 (a) A 6-vertex is incident with at most three (6, 3, 3, 4, 3)-faces.
(b) If a 6-vertex is incident with exactly three (6, 3, 3, 4, 3)-faces, then it is incident

with at most two (6, 3, 3, 5+, 3)-faces.
(c) A 7-vertex is incident with at most five (7, 3, 3, 4, 3)-faces.

Proof (a) Suppose to the contrary that a 6-vertex u is incident with four (6, 3, 3, 4, 3)-
faces. We consider three cases.

Case (a.1): The vertices on the four 5-faces other than u form a 13-path u1u2 . . . u13
so that u1, u4, u7, u10, u13 are neighbors of u. Let v be the other neighbor of u. In
this case, [uu1u2u3u4], [uu4u5u6u7], [uu7u8u9u10] and [uu10u11u12u13] are four
(6, 3, 3, 4, 3)-faces and N (u) − {v} consists of 3-vertices.

By the minimality of G, we may color G − {u, ui : 1 ≤ i ≤ 13}. Properly color
the 4-vertices, the 3-vertices not in N (u), and the 3-neighbors of u in that order. We
may assume that 1 and 2 both are used on at least two neighbors of u and 3 is used on
at least one neighbor of u.

For x ∈ {u4, u7, u10}, x is a 3-vertex with two properly colored neighbors, so x can
be recoloredwith a different color (not necessarily proper anymore). For x ∈ {u1, u13},
x can be recolored so that it is not colored with 3 as it has a properly colored neighbor.

Let v be colored 3. We first note that 1 or 2, say 1, is used at most once on u1
and u13. Then we recolor u4, u7, u10 so that 1 is not used on them. Then 1 is used
at most once on the neighbors of u, and we may color u with 1, a contradiction. By
symmetry, we may assume that v is colored 1. Recolor u1, u4, u7, u10 and u13 with a
color different from 3, then color u with 3.
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Case (a.2): The vertices on the four 5-faces other than u form two 7-paths
u1u2 . . . u7 and u8u9 . . . u14 so that N (u) = {u1, u4, u7, u8, u11, u14}. Then N (u)

consists of 3-vertices.
By the minimality of G, we may color G − {u, ui : 1 ≤ i ≤ 14}. Properly color

the 4-vertices, the 3-vertices not in N (u), and the 3-neighbors of u in that order. We
may assume that 1 and 2 both are used on at least two neighbors of u and 3 is used on
at least one neighbor of u.

For x ∈ {u4, u11}, x is a 3-vertex with two properly colored neighbors, so
x can be recolored with a different color (not necessarily proper anymore). For
x ∈ {u1, u7, u8, u14}, x can be recolored so that it is not colored with 3 as it has
a properly colored neighbor. So we may recolor the neighbors of u so that none of
them is colored 3, and then u could be colored with 3.

Case (a.3): The vertices on the four 5-faces other thanu forma10-pathsu1u2 . . . u10
and a 4-path u11u12u13u14 so that N (u) = {u1, u4, u7, u10, u11, u14}. Note that N (u)

consists of 3-vertices.
By the minimality of G, we may color G − {u, ui : 1 ≤ i ≤ 14}. Properly color

the 4-vertices, the 3-vertices not in N (u), and the 3-neighbors of u in the order. We
may assume that 1 and 2 both are used on at least two neighbors of u and 3 is used on
at least one neighbor of u.

For x ∈ {u4, u7}, x is a 3-vertex with two properly colored neighbors, so
x can be recolored with a different color (not necessarily proper anymore). For
x ∈ {u1, u10, u11, u14}, x can be recolored so that it is not colored with 3 as it has a
properly colored neighbor. So we may recolor the neighbors of u so that none of them
is colored 3 and color u with 3.

(b) Suppose to the contrary that a 6-vertex u is incident with six (6, 3, 3, 4+, 3)-
faces, only three of which are (6, 3, 3, 4, 3)-faces. Then the vertices on the
six 5-faces other than u from a 18-cycle, say u1u2 . . . u18, such that N (u) =
{u1, u4, u7, u10, u13, u16}. By Lemma 2.2 (2), we may assume that S = {u2, u5, u8,
u11, u14, u17} is the set of 4+-vertices. By the minimality of G, we may color
G − ({u, ui : 1 ≤ i ≤ 18} − S). Moreover, we may recolor, if necessary, the 4-
vertices in S so that they are properly colored. We can properly color the vertices in
{u j : u j /∈ S ∪ N (u), 1 ≤ j ≤ 18} and then properly color the vertices in N (u).

Note that at least three neighbors of u are adjacent to two 4−-vertices, which are
properly colored, we may recolor each of them with a different color. On the other
hand, each of the other neighbors of u are adjacent to at least one properly colored
neighbor, they can be recolored, if necessary, with colors different from 3. So we may
recolor, if necessary, all neighbors of u so that 3 is not used, and color u with 3, a
contradiction.

(c) Suppose to the contrary that a 7-vertex u is incident with six (7, 3, 3, 4, 3)-
faces. Then the vertices on the six 5-faces other than u form a path u1u2 . . . u19 so
that N (u) = {u1, u4, u7, u10, u13, u16, u19}. By the minimality of G, we may color
G − {u, ui : 1 ≤ i ≤ 19}. We can then properly color the 4-vertices, the 3-vertices
that are not neighbors of u, and the neighbors of u in the order. Note that each of the
neighbors of u has a properly color neighbor, so they can be recolored, if necessary,
with a color different from 3. Therefore, u can be colored with 3, a contradiction. ��
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3 Proof of Theorem 1.2

To complete the proof of Theorem 1.2, we reach a contradiction by a discharging
procedure. The initial charge is μ(x) = d(x)− 4 for x ∈ V (G)∪ F(G). By the Euler
formula,

∑
x∈V (G)∪F(G) μ(x) = −8.

We use the following discharging rules to redistribute charges among vertices
and faces. After the discharging process, we show that the final charge μ∗(x) ≥
0 for x ∈ V (G) ∪ F(G), contrary to the fact that

∑
x∈V (G)∪F(G) μ∗(x) =∑

x∈V (G)∪F(G) μ(x) = −8.

The discharging rules are defined as follows:

(R1) Let u be a 5+ vertex of G.
(R1.1) Vertex u sends 1

2 to each incident (3, 3, 5+, 3, 4)-face, 1
4 to each incident

(3, 3, 5+, 3, 5+)-face.
(R1.2) Vertex u sends 1

2 to each incident (4−, 4−, 5+)-face or (4−, 5+, 5+)-face,
and 1

3 to each incident (5+, 5+, 5+)-face.
(R2) Let f be a 5+-face of G.
(R2.1) Face f sends 1

3 to each adjacent (4−, 4, 4)-face, and 1
6 to each adjacent

(4−, 4−, 5+)-face.
(R2.2) Face f sends 1

2 to each incident 3-vertex, and when d( f ) ≥ 7, f sends 1
8 to

each incident bad 5-vertex.

We shall show that each x ∈ V (G) ∪ F(G), μ∗(x) ≥ 0. We first assume that G is
2-connected.

We first check the final charge for f ∈ F(G) with d( f ) = k. Note that k 
= 6. Let
n3 be the number of 3-vertices incident with f . By Lemma 2.2(2), there are at least
� k
3� vertices of degree at least 4, so

n3 ≤ k −
⌈
k

3

⌉

. (1)

Let f = [v1v2 . . . vk] and vivi+1 be an edge of a (3, 4, 4)-face. Note that if d(vi ) =
3, then d(vi−1) ≥ 4 by Lemma 2.2(5) and vi+1 is adjacent to a 5+-vertex or an isolated
4-vertex by Lemma 2.2(6) and (7); and if d(vi ) = d(vi+1) = 4, then each of vi and
vi+1 is adjacent to a 5+-vertex or an isolated 4-vertex. This implies that

Property (A): two (3, 4, 4)-faces adjacent to f do not share vertices on f , and
the 3-vertex on f and on a (3, 4, 4)-face must be between two 4+-vertices on f .

Let k = 3. By Lemma 2.1, every 3-face is adjacent to three 7+-faces.
By Lemma 2.2(2) and (4), f is either a (4−, 4, 4)-face or (4−, 4−, 5+)-face or
(4−, 5+, 5+)-face or (5+, 5+, 5+)-face. If f is a (4−, 4, 4)-face, then μ∗( f ) =
3−4+3· 13 = 0 by (R2.1). If f is a (4−, 4−, 5+)-face, then f receives 1

6 from each 7+-
face by (R2.2) and 1

2 from a 5+-vertex by (R1.2), so μ∗( f ) = 3− 4+ 3 · 1
6 + 1

2 = 0.
If f is a (4−, 5+, 5+)-face, then f receives 1

2 from each 5+-vertex by (R1.2), so
μ∗( f ) = −1 + 2 · 1

2 = 0. If f is a (5+, 5+, 5+)-face, then f receives 1
3 from each

5+-vertex by (R1.2), thus, μ∗( f ) = −1 + 3 · 1
3 = 0.
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Let k = 4. As 4-faces are not involved in the discharging process,μ∗( f ) = μ( f ) =
d( f ) − 4 = 4 − 4 = 0.

Let k = 5. By (1), n3 ≤ 3. If n3 = 3, then by Lemma 2.3, f is a (5+, 3, 3, 4, 3)-face
or (5+, 3, 3, 5+, 3)-face. By Lemma 2.1, f is not adjacent to any 3-face. By (R2.2),
f sends 1

2 to each incident 3-vertex. By (R1.1), f gets 1
2 from the incident 5+-vertex

in the former case, and gets 1
4 from each of the incident 5+-vertices by (R1.1) in the

latter case. Then μ∗( f ) ≥ 1 − 3 · 1
2 + min{ 12 , 2 · 1

4 } = 0. If n3 ≤ 2, then f sends out
at most 2 · 1

2 to incident 3-vertices. Thus, μ∗( f ) ≥ 1 − 2 · 1
2 = 0.

Now we consider the case that d( f ) = k ≥ 7. For the sake of counting, we claim
that f sends out no more than what the following rule does.

(R2*) f gives 2
3 to each incident 3-vertex on a 3-face, 1

2 to each of the other
3-vertices, 13 to each incident 4-vertex in a (4−, 4, 4)-face, and 1

8 to each incident
bad 5-vertices.

Indeed, by (R2.2), f sends 1
2 to each incident 3-vertex, nothing to each incident 4-

vertex, and 1
8 to each incident bad 5-vertex, while by (R2.1) it sends 1

3 to an adjacent
(4−, 4, 4)-face and 1

6 to an adjacent (4−, 4−, 5+)-face. Thus, by (R2∗), f gives out
an extra 1

3 to the 3-vertex on each (3, 4, 4)-face; f gives out an extra ( 13 + 1
3 )/2 = 1

3
to the two 4-vertices on each (4, 4, 4)-face; f gives out an extra 1

3 to the 3-vertices
on each (3, 4−, 5+)-face. This means that f sends out more charges by (R2∗) than by
(R2).

Thus, by (R2∗), the final charge of f is

μ∗( f ) ≥ k − 4 − 2

3
n3 − 1

3
(k − n3) = 2

3
k − 4 − 1

3
n3. (2)

Clearly, when k ≥ 9, μ∗( f ) ≥ 2
3k − 4 − 1

3 (k − � k
3�) = 1

3 (k + � k
3�) − 4 ≥ 0 since

n3 ≤ k − � k
3�. So we may just consider k ∈ {7, 8}.

Let k = 7. Note that μ∗( f ) ≥ 2
3 · 7 − 4 − 1

3n3 by (2) and n3 ≤ 4 by (1). So
μ∗( f ) ≥ 0 if n3 ≤ 2. Since G has no 6-cycle, a 3-face incident with a bad 5-vertex
is adjacent to two 7+-faces and a 5-face incident with a bad 5-vertex is adjacent to
a 5-face and a 7+-face. Thus, if f is incident with a bad 5-vertex, then it must be
adjacent to a 3-face and a 5-face.

First let n3 = 3. As each 3-vertex can only be in at most one triangle, f is adjacent
to at most five 3-faces, and among them, at most three could be (3, 4, 4)-faces by
Property (A). Assume that f has t adjacent (3, 4, 4)-faces. Then t ≤ 3 and there are
at most 4 − t bad 5-vertices on f , so by (R2),

μ∗( f ) ≥ 7 − 4 − 1

2
· 3 − 1

3
t − 1

6
(5 − t) − 1

8
(4 − t) = 1

6
− 1

24
t ≥ 1

6
− 3

24
> 0.

Now let n3 = 4. It follows that f is either a (3, 3, 4+, 3, 3, 4+, 4+)-face or a
(3, 3, 4+, 3, 4+, 3, 4+)-face by Lemma 2.2(2).

In the former case, f is clearly incident with at most three bad 5-vertices. If f is
incident with three bad 5-vertices, then by Lemma 2.2(5), f is adjacent to at most two
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3-faces, one being a (3+, 5, 5)-face and the other a (3, 3+, 5)-face, hence μ∗( f ) ≥
7−4−4· 12−3· 18− 1

6 = 11
24 by (R2). If f is incidentwith exactly twobad 5-vertices, then

by Property (A) f is incidentwith atmost three 3-faces and none ofwhich is (4−, 4, 4)-
face. In this case,μ∗( f ) ≥ 7−4−4· 12 −(3· 16 +2· 18 ) > 0. If f is incident with exactly
one bad 5-vertices, then by Property (A) f is incident with four 3-faces, at most one of
which is (4−, 4, 4)-face. In this case, μ∗( f ) ≥ 7− 4− 4 · 1

2 − ( 13 + 3 · 1
6 + 1 · 1

8 ) > 0.
Finally, assume that f has no bad 5-vertex. As each 3-vertex can be in at most one
3-face, f is adjacent to at most five 3-faces, and by Property (A), f is adjacent to at
most one (4−, 4, 4)-face. Hence by (R2), μ∗( f ) ≥ 7 − 4 − 4 · 1

2 − ( 13 + 4 · 1
6 ) = 0.

In the latter case, f is adjacent to at most four 3-faces since every 3-vertex on f
is incident with at most one 3-face. Moreover, by Property (A), no (3, 4, 4)-face is
incident with each of the two adjacent 3-vertices on f , hence f is adjacent to at most
two (4−, 4, 4)-faces, if any, a (3, 4, 4)-face. Note that if f is adjacent to exactly four 3-
faces, then f has no bad 5-vertex by Lemma 2.1. Let t be the number of (3, 4, 4)-faces
adjacent to f . Then, by (R2),

μ∗( f ) ≥
⎧
⎨

⎩

7 − 4 − 4 · 1
2 − 2 · 1

3 − 2 · 1
6 = 0, if t = 2,

7 − 4 − 4 · 1
2 − 1 · 1

3 − 3 · 1
6 − 1 · 1

8 > 0, if t = 1,
7 − 4 − 4 · 1

2 − max
{
4 · 1

6 , 3 · 1
6 + 3 · 1

8

}
> 0, if t = 0.

Let k = 8. Note that μ∗( f ) ≥ 8 · 2
3 − 4 − 1

3n3 by (2) and n3 ≤ 5 by (1). So if
n3 < 5, then μ∗( f ) ≥ 0. Therefore, we may assume that n3 = 5. It follows that
f is a (3, 3, 4+, 3, 3, 4+, 3, 4+)-face by Lemma 2.2(2). As each 3-vertex can only
be in at most one 3-face, there are at most five 3-faces adjacent to f , and among
them, at most one could be a (4−, 4, 4)-face by Property (A). So f gives at most
1
3 + 4 · 1

6 = 1 to adjacent 3-faces by (R2.1). As there are at most three bad 5-vertices,
μ∗( f ) ≥ 8 − 4 − 5 · 1

2 − 1 − 3 · 1
8 > 0 by (R2).

Now we consider the vertices. Let u be a vertex of G. Recall that mi (u) is the
number of i-faces incident with u.

(1) d(u) = 3. Then u is incident with at least two 5+-faces by Lemma 2.1. By (R2.3),
μ∗(u) ≥ 3 − 4 + 1

2 · 2 = 0
(2) d(u) = 4. Then μ∗(u) = μ(u) = d(u) − 4 = 4 − 4 = 0.
(3) d(u) = 5. By Lemma 2.1, m3(u) ≤ 2.

If m3(u) = 2, then u is not incident with 5-faces, so μ∗(u) ≥ 5 − 4 − 2 · 1
2 = 0

by (R1.2). If m3(u) = 1, then u is incident with at most two 5-faces and
at least two 7+-faces. If u is indeed incident with two 5-faces, then one is a
(5, 3+, 3+, 4+, 3+, )-face and the other is a (5, 3+, 3+, 5+, 3+)-face by Lem-
mas 2.2(2), 2.3 and 2.4 (b). By (R1.1) and (R2.2), if u is not bad, then it gives at
most max{ 12 , 2 · 1

4 } = 1
2 to the 5-faces, and if u is a bad 5-vertex, then it gives

1
2 + 1

4 to the 5-faces and gets 1
8 from each of the incident 7+-faces. Therefore,

by (R1), μ∗(u) ≥ 1 − 1
2 − 1

2 − 1
4 + 2 · 1

8 = 0. Let m3(u) = 0. If u is incident
with a (3, 3, 5, 3, 4)-face, then u is incident with exactly one (3, 3, 5, 3, 4)-face
by Lemma 2.4 (b) and at most two (3, 3, 5, 3, 5+)-faces by Lemma 2.4 (c); and if
u is not incident with any (3, 3, 5, 3, 4)-face, then u is incident with at most four
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(3, 3, 5, 3, 5+)-faces byLemma2.4 (a). Thus,μ∗(u) ≥ 1−max{ 12+2· 14 , 4· 14 } = 0
by (R1).

(4) d(u) ≥ 6. By (R1), u gives at most 1
2 to each incident 3- or 5-face. If m3(u) 
= 0,

then m3(u) + m5(u) ≤ d(u) − 2, so

μ∗(u) ≥ d(u) − 4 − 1

2
(m3(u) + m5(u)) ≥ d(u) − 4 − 1

2
(d(u) − 2) = 1

2
d(u)

−3 ≥ 6 · 1
2

− 3 = 0.

Thus, we may assume that m3(u) = 0. If d(u) ≥ 8, then μ∗(u) ≥ d(u) − 4 −
1
2m5(u) ≥ d(u) − 4 − 1

2d(u) = 1
2d(u) − 4 ≥ 8 · 1

2 − 4 = 0. If d(u) = 7,
then by Lemma 2.5 (c), u is incident with at most five (7, 3, 3, 4, 3)-faces, so by
(R1.1), μ∗(u) ≥ 7 − 4 − 5 · 1

2 − 2 · 1
4 = 0. Let d(u) = 6. Then u is incident

with at most three (3, 3, 6, 3, 4)-faces by Lemma 2.5 (a), and when it is incident
with three (6, 3, 3, 4, 3)-faces, it is incident with at most two (3, 3, 6, 3, 5+)-faces
by Lemma 2.5 (b). If u is incident with l (3, 3, 6, 3, 4)-faces, where 0 ≤ l ≤ 2
, then it is incident with at most 6 − l (3, 3, 6, 3, 5+)-faces. Thus, μ∗(u) ≥
6 − 4 − max{3 · 1

2 + 2 · 1
4 , 2 · 1

2 + 4 · 1
4 ,

1
2 + 5 · 1

4 , 6 · 1
4 } = 0 by (R1).

So far, we have proved that if G is 2-connected, then G is (1, 1, 0)-colorable. Thus,
we assume that G has cut vertices. Let B1, B2, . . . , Bt be the blocks of G such that
for each i , Bi has only one cut vertex bi of G and let ui ∈ V (Bi ) \ {bi }. Clearly
t ≥ 2. Let G ′ be the graph obtained from G by adding a new vertex u and edges
uu1, uu2, . . . , uut . If each cycle of G ′ containing u has length at least 7, let G∗ = G ′.
Thus, assume that C is a cycle of G ′ which contains u and some vertex ui where
1 ≤ i ≤ t and the length of C is less than 7. In this case, we take a copy, denoted
by B ′

i , of Bi . Let u
′
i and b′

i of B
′
i be the corresponding vertices of ui and bi in Bi .

Let G ′′ be the graph obtained from G ′ by deleting edge uui , then by identifying ui
in Bi with b′

i in B ′
i and adding an edge joining u to u′

i in B ′
i . It is clear that G

′′ has
a cycle containing u which has length more than one than its corresponding cycle in
G ′. Keeping this procedure until the resulting graph, denoted by G∗, has the property:
each cycle of G∗ containing u has length at least 7. Obviously, G∗ is a 2-connected
plane graph, G∗ has without 3-cycle adjacent to 4-cycle and without 6-cycle, and G
is a subgraph of G∗. Thus, G∗ is (1, 1, 0)-colorable and so is G.
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