

Every planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is *(***1***,* **1***,* **0***)***-colorable**

Ying Bai¹ • Xiangwen Li¹ • **Gexin Yu**^{1,2}

Published online: 13 June 2016 © Springer Science+Business Media New York 2016

Abstract Let c_1, c_2, \ldots, c_k be k non-negative integers. A graph G is (c_1, c_2, \ldots, c_k) colorable if the vertex set can be partitioned into *k* sets V_1, V_2, \ldots, V_k such that for every $i, 1 \le i \le k$, the subgraph $G[V_i]$ has maximum degree at most c_i . Steinberg (Ann Discret Math 55:211–248, [1993\)](#page-10-0) conjectured that every planar graph without 4- and 5 cycles is 3-colorable. Xu and Wang (Sci Math 43:15–24, [2013\)](#page-10-1) conjectured that every planar graph without 4- and 6-cycles is 3-colorable. In this paper, we prove that every planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is (1, 1, 0) colorable, which improves the result of Xu and Wang (Sci Math 43:15–24, [2013\)](#page-10-1), who proved that every planar graph without 4- and 6-cycles is (1, 1, 0)-colorable.

Keywords Planar graphs · Improper coloring · Cycle

1 Introduction

All graphs considered in this paper are finite simple graphs. For a planar graph *G*, we use V , E , and δ to denote its vertex set, edge set and minimum degree, respectively. For $u \in V(G)$, let $N(u)$ denote the neighbors of *u* in *G*. A *k*-*vertex* (resp. k^+ -*vertex*, *k*−- *vertex*) is a vertex of degree *k* (resp. at least *k*, at most *k*). The same notation will be used for faces.

Xiangwen Li: Supported by the National Natural Science Foundation of China (11571134).

 \boxtimes Xiangwen Li xwli68@mail.ccnu.edu.cn

¹ Department of Mathematics & Hubei Key Laboratory of Mathematical Sciences, Huazhong Normal University, Wuhan 430079, China

² Department of Mathematics, The College of William and Mary, Williamsburg, VA 23185, USA

It is well-known that the problem of deciding whether a planar graph is properly 3 colorable is NP-complete. In 1959, [Grötzsch](#page-10-2) [\(1959\)](#page-10-2) showed the famous theorem that every triangle-free planar graph is 3-colorable. In 1976, Steinberg raised the following famous conjecture.

Conjecture 1.1 [\[Steinberg](#page-10-0) [\(1993](#page-10-0))] *Every planar graph without 4- and 5-cycles is 3-colorable.*

This conjecture was disproved by [Cohen–Addad et al.](#page-10-3) [\(2016\)](#page-10-3) recently. However, Erdös suggested to find a constant *c* such that a planar graph without cycles of length from 4 to *c* is 3-colorable. [Abbott and Zhou](#page-9-0) [\(1991](#page-9-0)) proved that such a *c* exists and $c \le 11$. This bound was improved to $c \le 9$ by [Borodin](#page-9-1) [\(1996](#page-9-1)) and independently by [Sanders and Zhao](#page-10-4) [\(1995\)](#page-10-4), to $c \le 7$ by [Borodin et al.](#page-9-2) [\(2005](#page-9-2)). Up to now, it is unknown whether the bound can be decreased to 6.

Another relaxation of the conjecture is to allow some defects in the color classes. Let c_1, c_2, \ldots, c_k be *k* non-negative integers. A graph *G* is (c_1, c_2, \ldots, c_k) -colorable if the vertex set can be partitioned into k sets V_1, V_2, \ldots, V_k such that for every $i, 1 \leq i \leq k$, the subgraph $G[V_i]$ has maximum degree at most c_i . Thus, a graph is properly 3-colorable if and only if it is (0,0,0)-colorable. [Chang et al.](#page-9-3) [\(2011](#page-9-3)) showed that every planar graph without 4- and 5-cycles is $(4, 0, 0)$ -colorable and $(2, 1, 0)$ colorable. Improving the result of Chang *et al.*, it is proved that every planar graph without cycles of length 4 or 5 is $(3, 0, 0)$ -colorable [\(Hill et al. 2013\)](#page-10-5) and $(1, 1, 0)$ colorable [\(Hill and Yu 2013](#page-10-6); [Xu et al. 2014](#page-10-7)). As a variation, [Xu and Wang](#page-10-1) [\(2013\)](#page-10-1) conjectured that every planar graph without 4- and 6-cycles is 3-colorable and they proved that every planar graph without 4- and 6-cycles is $(3, 0, 0)$ - and $(1, 1, 0)$ colorable.

On the other hand, [Lih et al.](#page-10-8) [\(2001](#page-10-8)) proved that every planar graph without 4- and 6-cycles is (1, 1, 1)-choosable. As an improvement, [Chen et al.](#page-10-9) [\(2015\)](#page-10-9) proved that every planar graph without adjacent triangles or 6-cycles is $(1, 1, 1)$ -choosable, where two cycles are adjacent if they have an edge in common. Motivated by those results, we prove the following result.

Theorem 1.2 *Every planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is* (1, 1, 0)*-colorable.*

An *m*-face $f = [u_1u_2 \ldots u_m]$ is called an (a_1, a_2, \ldots, a_m) -face if $d(u_i) = a_i$ for $i = 1, 2, \ldots, m$. We use $m_i(u)$ to denote the number of *i*-faces incident with *u*. If a vertex u is incident with a face f , then its neighbor not incident with this face is called its *outer* neighbor. A 5-vertex *u* is *bad* if *u* is incident with a 3-face, a $(5, 3, 3, 4, 3)$ face and a $(5, 3, 3, 5^+, 3)$ -face, and *good* otherwise. A neighbor v' of a vertex v is *isolated* if no 3-face in *G* contains vv .

Like many similar results, we use a discharging procedure to prove Theorem [1.2.](#page-1-0) We show some reducible configurations in the next section, and then in the last section, use discharging argument to reach a contradiction.

2 Reducible configurations of *G*

Let *G* be a counterexample to Theorem [1.2](#page-1-0) with minimizing $|V(G)| + |E(G)|$. Thus, *G* is connected. Embed *G* into the plane, we get a plane graph $G = (V, E, F)$, where *F* is the set of faces of *G*. Since *G* has no 6-cycles and no adjacent 3- and 4-cycles, we have the following

Lemma 2.1 *No two* 4−*-faces are adjacent, and no* 3*-face is adjacent to a* 5*-face in G.*

Lemma 2.2 [\[Xu et al.](#page-10-7) [\(2014](#page-10-7))] *The following are some properties of G:*

- (1) $\delta(G) > 3$.
- (2) *Every 3-vertex is adjacent to at most one 3-vertex.*
- (3) *A 4-vertex has at least one* 4+*-neighbor.*
- (4) *There is no* (3, 3, 4−)*-face in G.*
- (5) *If a 3-vertex u is incident with a* (3, 4, 4)*-face, then the outer neighbor of u is a* 4+*-vertex.*
- (6) *If a 4-vertex is incident with exactly one* 3*-face that is a* (3, 4, 4)*-face, then it is adjacent to an isolated* 4+*-vertex.*
- (7) *If a 4-vertex is incident with two 3-faces one of which is a* (3, 4, 4)*-face, then it is adjacent to at least one* 5+*-vertex.*

Lemma 2.3 *There is no* (4, 3, 3, 4, 3)*-face in G.*

Proof Suppose to the contrary that $f = [u_1u_2u_3u_4u_5]$ is a (4, 3, 3, 4, 3)-face. By the minimality of *G*, we can first color $G - \{u_i : 1 \le i \le 5\}$. Color u_1 and u_4 properly. Assume first that u_1 is not colored 3. Let u'_5 be the outer neighbor of u_5 . If the colors of u_1 , u_4 and u'_5 are different, then color u_5 with the same color of u_1 since u_1 was colored 1 or 2. If at least two of u_1 , u_4 and u'_5 are colored the same color, then u_5 can be properly colored. Now we properly color u_2 . Let u'_3 be the outer neighbor of u_3 . If at least two of u_2 , u_4 and u'_3 are colored the same color, then u_3 can be properly colored. If the colors of u_2 , u_4 and u'_3 are different, then color u_3 with 1 or 2 since at least one of u_2 and u_4 is not colored with 3 (say u_2 and color u_3 with color of u_2), a contradiction. Thus, by symmetry, we assume that both u_1 and u_4 are colored 3. In this case, properly color u_5 and u_2 . The vertex u_3 can be either properly colored or colored with the color of u_2 , a contradiction.

Lemma 2.4 *Let u be a* 5*-vertex in G.*

- (a) *The vertex u is incident with at most four* $(5, 3, 3, 4^+, 3)$ *-faces.*
- (b) *The vertex u is incident with at most one* (5, 3, 3, 4, 3)*-faces.*
- (c) *If u is incident with a* (5, 3, 3, 4, 3)*-face, then it is incident with at most two* $(5, 3, 3, 5^+, 3)$ *-faces.*

Proof (a) Suppose to the contrary that *u* is incident with five $(5, 3, 3, 4^+, 3)$ -faces $f_1 = [uu_1u_2u_3u_4], f_2 = [uu_4u_5u_6u_7], f_3 = [uu_7u_8u_9u_{10}], f_4 = [uu_{10}u_{11}u_{12}u_{13}]$ and $f_5 = [uu_{13}u_{14}u_{15}u_1]$. Then $u_1u_2...u_{15}$ is a 15-cycle and $u_1, u_4, u_7, u_{10}, u_{13}$ are neighbors of *u*. Then the neighbors of *u* are all 3-vertices, and moreover, each of them must be adjacent to a 3-vertex and a 4^+ -vertex, as no 3-vertex is adjacent to two 3-vertices on the cycle by Lemma [2.2](#page-2-0) (2). We assume, without loss of generality, that each of u_3 , u_6 , u_9 , u_{12} and u_{15} is a 4⁺-vertex.

By the minimality of *G*, *G* − *N*[*u*] can be colored. Since each of u_2 , u_5 , u_8 , u_{11} and u_{14} has only two colored neighbors in $G - N[u]$, we can further assume that each of u_2 , u_5 , u_8 , u_{11} and u_{14} can be recolored (if necessary) so that they are properly colored. Note that each of u_1 , u_4 , u_7 , u_{10} and u_{13} has only two colored neighbors, one of which is properly colored. Observe two colored neighbors u_2 and u_{15} of u_1 . If at least one of u_1 and u_{15} is colored with 3, we can properly color u_1 with 1 or 2. Thus, assume that none of u_2 and u_{15} is colored with 3. If u_2 and u_{15} are colored with different colors, then we color u_1 with the color of u_2 ; if u_2 and u_1 ₅ are colored with the same color, we color u_1 with the color which is neither 3 nor the color used by u_2 and u_{15} . This means that we may also color u_1 so that 3 is not used. Similarly, we color each of u_4 , u_7 , u_{10} and u_{13} so that 3 is not used. Finally, u can be colored with 3, a contradiction since *G* is not (1, 1, 0)-colorable.

(b) Suppose to the contrary that u is incident with two $(5, 3, 3, 4, 3)$ -faces. Then the two 5-faces may or may not have a common edge. So we consider two cases.

Case (b.1): The two 5-faces share an common edge. Let $[uu_1u_2u_3u_4]$ and $[u_4u_5u_6u_7u]$ be the two 5-faces, and v, w be the other two neighbors of u. It follows that u_1, u_4, u_7 are 3-neighbors of *u*. By the minimality of *G*, $G - \{u, u_i : 1 \le i \le 7\}$ can be colored, and furthermore, as each of u_i , $1 \le i \le 7$, has at most two colored neighbors, we may properly color them. Now we try to color *u*.

Note that each of u_1 and u_7 has at least one properly colored neighbor, we may recolor them so that 3 is not used, and u_4 has two properly colored neighbors, we may recolor it with a different color.

If 3 is not used on v and w, we can recolor u_1 , u_4 , u_7 , if necessary, so that 3 is not used, then color u with 3. So, we may assume that v is colored 3. If w is colored 3 as well, then 1 or 2 is used at most once on u_1 , u_4 , u_7 , so we may color *u* with the color. Thus, we may assume that w is colored 1. Now we recolor u_4 , if necessary, with 1 or 3. Note that if one of u_1 and u_7 is not colored with 2, then we may color *u* with 2. Assume that both u_1 and u_7 are colored 2. Now we may recolor u_1 or u_7 with different color if u_2 or u_6 is not colored 3, so we may assume that u_2 , u_6 are colored 3. Note that u_2 and u_6 cannot be both 4-vertices, for otherwise, u_3 , u_4 , u_5 are all 3-vertices, a contradiction to Lemma [2.2\(](#page-2-0)2). It follows that u_2 or u_6 has a properly colored neighbor, so it can be recolored so that it is not colored 3, then u_1 or u_7 can be recolored so that it is not colored 2, hence we can color *u* with 2, a contradiction.

Case (b.2): The two 5-faces do not share a common edge. Let $[uu_1u_2u_3u_4]$ and $[u_5u_6u_7u_8u]$ be the two 5-faces, and v be the fifth neighbor of u. It follows that u_1, u_4, u_5, u_8 are 3-neighbors of *u*. By the minimality of *G*, *G* − {*u*, *u_i* : 1 ≤ *i* ≤ 8} can be colored, and furthermore, as each of u_i , $1 \le i \le 8$, has at most two colored neighbors, we may properly color them. Now we try to color *u*.

As each of u_1, u_4, u_5, u_8 has at least one properly colored neighbor, they can be recolored, if necessary, with a color different from 3. So if v is not colored 3, then we can color *u* with 3 after recoloring the neighbors of *u*. Therefore, we may assume that v is colored with 3. As *u* cannot be colored, 1 and 2 both appear exactly twice on the neighbors of *u*.

Note that u_1 or u_4 is adjacent to a 3-vertex, which is properly colored. We may assume that u_2 is a 3-vertex and u_1 is colored with 1. If we can recolor u_1 with 2 or 3, then u can be colored with 1, so we may assume that u_1 cannot be recolored. It follows that u_2 is colored with 3, but has a properly colored neighbor, so it can be recolored differently from 3, then we can recolor u_1 with 3 and color u with 1, a contradiction.

(c) Suppose to the contrary that a 5-vertex u is incident with one $(5, 3, 3, 4, 3)$ face and three $(5, 3, 3, 5^+, 3)$ -faces. Assume that these four 5-cycles are f_1 = $[uu_1u_2u_3u_4], f_2 = [uu_4u_5u_6u_7], f_3 = [uu_7u_8u_9u_{10}]$ and $f_4 = [uu_{10}u_{11}u_{12}u_{13}].$ Then $u_1 u_2 ... u_{13}$ is a path 13-path and $N(u) = \{u_1, u_4, u_7, u_{10}, u_{13}\}$ which consists of 3-vertices. Let *G'* be the graph obtained from *G* by deleting *u* and all 4[−]-vertices in $\{u_i : 1 \le i \le 13\}$. By the minimality of *G*, we can color all vertices of *G'* except *u* and all those 3-vertices on *P*. Note that the 4-vertex in $\{u_i : 1 \le i \le 13\}$ has only two colored neighbors, so we may properly recolor it, if necessary. Now we can properly color the 3-vertices that are not neighbors of *u*, and then the neighbors of *u* in a cyclic order. We may assume that 1 and 2 are both used twice and 3 is used once on the neighbors of *u*.

If the neighbor of u that is colored 3 has a properly colored neighbor, then we may recolor it with a different color and color *u* with 3. Similarly, if a neighbor of *u* that is colored 1 or 2 has two properly colored neighbors, then we may recolor it with a different color, and then color u . Since P has at most three 5^+ -vertices, u has a neighbor x that has no colored 5^+ -neighbors, that is, its two colored neighbors are both properly colored. Clearly *x* is colored 1 or 2, say 1. Now *x* can be recolored with 2 and then *u* can be colored with 1, a contradiction.

Lemma 2.5 (a) *A 6-vertex is incident with at most three* (6, 3, 3, 4, 3)*-faces.*

- (b) *If a* 6*-vertex is incident with exactly three* (6, 3, 3, 4, 3)*-faces, then it is incident with at most two* (6, 3, 3, 5+, 3)*-faces.*
- (c) *A 7-vertex is incident with at most five* (7, 3, 3, 4, 3)*-faces.*

Proof (a) Suppose to the contrary that a 6-vertex u is incident with four $(6, 3, 3, 4, 3)$ faces. We consider three cases.

Case (a.1): The vertices on the four 5-faces other than *u* form a 13-path $u_1u_2 \ldots u_{13}$ so that $u_1, u_4, u_7, u_{10}, u_{13}$ are neighbors of *u*. Let *v* be the other neighbor of *u*. In this case, $[uu_1u_2u_3u_4]$, $[uu_4u_5u_6u_7]$, $[uu_7u_8u_9u_{10}]$ and $[uu_{10}u_{11}u_{12}u_{13}]$ are four $(6, 3, 3, 4, 3)$ -faces and $N(u) - \{v\}$ consists of 3-vertices.

By the minimality of *G*, we may color $G - \{u, u_i : 1 \le i \le 13\}$. Properly color the 4-vertices, the 3-vertices not in $N(u)$, and the 3-neighbors of u in that order. We may assume that 1 and 2 both are used on at least two neighbors of *u* and 3 is used on at least one neighbor of *u*.

For $x \in \{u_4, u_7, u_{10}\}, x$ is a 3-vertex with two properly colored neighbors, so x can be recolored with a different color (not necessarily proper anymore). For $x \in \{u_1, u_1\}$, *x* can be recolored so that it is not colored with 3 as it has a properly colored neighbor.

Let v be colored 3. We first note that 1 or 2, say 1, is used at most once on u_1 and u_{13} . Then we recolor u_4 , u_7 , u_{10} so that 1 is not used on them. Then 1 is used at most once on the neighbors of *u*, and we may color *u* with 1, a contradiction. By symmetry, we may assume that v is colored 1. Recolor u_1 , u_4 , u_7 , u_{10} and u_{13} with a color different from 3, then color *u* with 3.

Case (a.2): The vertices on the four 5-faces other than *u* form two 7-paths $u_1u_2...u_7$ and $u_8u_9...u_{14}$ so that $N(u) = \{u_1, u_4, u_7, u_8, u_{11}, u_{14}\}.$ Then $N(u)$ consists of 3-vertices.

By the minimality of *G*, we may color $G - \{u, u_i : 1 \le i \le 14\}$. Properly color the 4-vertices, the 3-vertices not in $N(u)$, and the 3-neighbors of u in that order. We may assume that 1 and 2 both are used on at least two neighbors of *u* and 3 is used on at least one neighbor of *u*.

For $x \in \{u_4, u_{11}\}, x$ is a 3-vertex with two properly colored neighbors, so *x* can be recolored with a different color (not necessarily proper anymore). For $x \in \{u_1, u_7, u_8, u_{14}\}, x$ can be recolored so that it is not colored with 3 as it has a properly colored neighbor. So we may recolor the neighbors of *u* so that none of them is colored 3, and then *u* could be colored with 3.

Case (a.3): The vertices on the four 5-faces other than *u* form a 10-paths $u_1u_2 \ldots u_{10}$ and a 4-path $u_{11}u_{12}u_{13}u_{14}$ so that $N(u) = \{u_1, u_4, u_7, u_{10}, u_{11}, u_{14}\}.$ Note that $N(u)$ consists of 3-vertices.

By the minimality of *G*, we may color $G - \{u, u_i : 1 \le i \le 14\}$. Properly color the 4-vertices, the 3-vertices not in $N(u)$, and the 3-neighbors of *u* in the order. We may assume that 1 and 2 both are used on at least two neighbors of *u* and 3 is used on at least one neighbor of *u*.

For $x \in \{u_4, u_7\}$, x is a 3-vertex with two properly colored neighbors, so *x* can be recolored with a different color (not necessarily proper anymore). For $x \in \{u_1, u_{10}, u_{11}, u_{14}\}, x$ can be recolored so that it is not colored with 3 as it has a properly colored neighbor. So we may recolor the neighbors of *u* so that none of them is colored 3 and color *u* with 3.

(b) Suppose to the contrary that a 6-vertex u is incident with six $(6, 3, 3, 4^+, 3)$ faces, only three of which are $(6, 3, 3, 4, 3)$ -faces. Then the vertices on the six 5-faces other than *u* from a 18-cycle, say $u_1u_2...u_{18}$, such that $N(u)$ = $\{u_1, u_4, u_7, u_{10}, u_{13}, u_{16}\}$. By Lemma [2.2](#page-2-0) (2), we may assume that $S = \{u_2, u_5, u_8, u_9\}$ u_{11}, u_{14}, u_{17} is the set of 4⁺-vertices. By the minimality of *G*, we may color *G* − ($\{u, u_i : 1 \le i \le 18\}$ − *S*). Moreover, we may recolor, if necessary, the 4vertices in *S* so that they are properly colored. We can properly color the vertices in ${u_j : u_j \notin S \cup N(u), 1 \leq j \leq 18}$ and then properly color the vertices in $N(u)$.

Note that at least three neighbors of *u* are adjacent to two 4[−]-vertices, which are properly colored, we may recolor each of them with a different color. On the other hand, each of the other neighbors of *u* are adjacent to at least one properly colored neighbor, they can be recolored, if necessary, with colors different from 3. So we may recolor, if necessary, all neighbors of u so that 3 is not used, and color u with 3, a contradiction.

(c) Suppose to the contrary that a 7-vertex u is incident with six $(7, 3, 3, 4, 3)$ faces. Then the vertices on the six 5-faces other than *u* form a path $u_1u_2 \ldots u_{19}$ so that $N(u) = \{u_1, u_4, u_7, u_{10}, u_{13}, u_{16}, u_{19}\}$. By the minimality of *G*, we may color $G - \{u, u_i : 1 \le i \le 19\}$. We can then properly color the 4-vertices, the 3-vertices that are not neighbors of u , and the neighbors of u in the order. Note that each of the neighbors of *u* has a properly color neighbor, so they can be recolored, if necessary, with a color different from 3. Therefore, u can be colored with 3, a contradiction. \Box

3 Proof of Theorem [1.2](#page-1-0)

To complete the proof of Theorem [1.2,](#page-1-0) we reach a contradiction by a discharging procedure. The initial charge is $\mu(x) = d(x) - 4$ for $x \in V(G) \cup F(G)$. By the Euler formula, $\sum_{x \in V(G) \cup F(G)} \mu(x) = -8.$

We use the following discharging rules to redistribute charges among vertices and faces. After the discharging process, we show that the final charge $\mu^*(x) \geq$ 0 for $x \in V(G) \cup F(G)$, contrary to the fact that $\sum_{x \in V(G) \cup F(G)} \mu^*(x) =$ $\sum_{x \in V(G) \cup F(G)} \mu(x) = -8.$

The discharging rules are defined as follows:

- (R1) Let *u* be a 5^+ vertex of *G*.
- (R1.1) Vertex *u* sends $\frac{1}{2}$ to each incident (3, 3, 5⁺, 3, 4)-face, $\frac{1}{4}$ to each incident $(3, 3, 5^+, 3, 5^+)$ -face.
- (R1.2) Vertex *u* sends $\frac{1}{2}$ to each incident (4⁻, 4⁻, 5⁺)-face or (4⁻, 5⁺, 5⁺)-face, and $\frac{1}{3}$ to each incident $(5^+, 5^+, 5^+)$ -face.
- (R2) Let \tilde{f} be a 5⁺-face of *G*.
- (R2.1) Face *f* sends $\frac{1}{3}$ to each adjacent (4⁻, 4, 4)-face, and $\frac{1}{6}$ to each adjacent $(4^-, 4^-, 5^+)$ -face.
- (R2.2) Face f sends $\frac{1}{2}$ to each incident 3-vertex, and when $d(f) \ge 7$, f sends $\frac{1}{8}$ to each incident bad 5-vertex.

We shall show that each $x \in V(G) \cup F(G)$, $\mu^*(x) \geq 0$. We first assume that *G* is 2-connected.

We first check the final charge for $f \in F(G)$ with $d(f) = k$. Note that $k \neq 6$. Let n_3 be the number of 3-vertices incident with f . By Lemma [2.2\(](#page-2-0)2), there are at least $\lceil \frac{k}{3} \rceil$ vertices of degree at least 4, so

$$
n_3 \le k - \left\lceil \frac{k}{3} \right\rceil. \tag{1}
$$

Let $f = [v_1v_2 \ldots v_k]$ and $v_i v_{i+1}$ be an edge of a (3, 4, 4)-face. Note that if $d(v_i) =$ 3, then $d(v_{i-1}) \ge 4$ by Lemma [2.2\(](#page-2-0)5) and v_{i+1} is adjacent to a 5⁺-vertex or an isolated 4-vertex by Lemma [2.2\(](#page-2-0)6) and (7); and if $d(v_i) = d(v_{i+1}) = 4$, then each of v_i and v_{i+1} is adjacent to a 5⁺-vertex or an isolated 4-vertex. This implies that

Property (A): two (3, 4, 4)-faces adjacent to *f* do not share vertices on *f* , and the 3-vertex on f and on a $(3, 4, 4)$ -face must be between two 4^+ -vertices on f .

Let $k = 3$. By Lemma [2.1,](#page-2-1) every 3-face is adjacent to three 7^+ -faces. By Lemma [2.2\(](#page-2-0)2) and (4), *f* is either a $(4^-, 4, 4)$ -face or $(4^-, 4^-, 5^+)$ -face or $(4^-, 5^+, 5^+)$ -face or $(5^+, 5^+, 5^+)$ -face. If *f* is a $(4^-, 4, 4)$ -face, then $\mu^*(f)$ = $3-4+3\cdot\frac{1}{3}=0$ by (R2.1). If *f* is a $(4^-, 4^-, 5^+)$ -face, then *f* receives $\frac{1}{6}$ from each 7^+ face by (R2.2) and $\frac{1}{2}$ from a 5⁺-vertex by (R1.2), so $\mu^*(f) = 3 - 4 + 3 \cdot \frac{1}{6} + \frac{1}{2} = 0$. If *f* is a $(4^-, 5^+, 5^+)$ -face, then *f* receives $\frac{1}{2}$ from each 5⁺-vertex by (R1.2), so $\mu^*(f) = -1 + 2 \cdot \frac{1}{2} = 0$. If *f* is a $(5^+, 5^+, 5^+)$ -face, then *f* receives $\frac{1}{3}$ from each 5⁺-vertex by (R1.2), thus, $\mu^*(f) = -1 + 3 \cdot \frac{1}{3} = 0$.

Let $k = 4$. As 4-faces are not involved in the discharging process, $\mu^*(f) = \mu(f)$ $d(f) - 4 = 4 - 4 = 0.$

Let $k = 5$. By [\(1\)](#page-6-0), $n_3 \le 3$. If $n_3 = 3$, then by Lemma [2.3,](#page-2-2) f is a (5⁺, 3, 3, 4, 3)-face or $(5^+, 3, 3, 5^+, 3)$ -face. By Lemma [2.1,](#page-2-1) f is not adjacent to any 3-face. By (R2.2), *f* sends $\frac{1}{2}$ to each incident 3-vertex. By (R1.1), *f* gets $\frac{1}{2}$ from the incident 5⁺-vertex in the former case, and gets $\frac{1}{4}$ from each of the incident 5⁺-vertices by (R1.1) in the latter case. Then $\mu^*(f) \ge 1 - 3 \cdot \frac{1}{2} + \min\{\frac{1}{2}, 2 \cdot \frac{1}{4}\} = 0$. If *n*₃ ≤ 2, then *f* sends out at most 2 · $\frac{1}{2}$ to incident 3-vertices. Thus, $\mu^*(f) \ge 1 - 2 \cdot \frac{1}{2} = 0$.

Now we consider the case that $d(f) = k \ge 7$. For the sake of counting, we claim that f sends out no more than what the following rule does.

(R2^{*}) *f* gives $\frac{2}{3}$ to each incident 3-vertex on a 3-face, $\frac{1}{2}$ to each of the other 3-vertices, $\frac{1}{3}$ to each incident 4-vertex in a (4⁻, 4, 4)-face, and $\frac{1}{8}$ to each incident bad 5-vertices.

Indeed, by (R2.2), f sends $\frac{1}{2}$ to each incident 3-vertex, nothing to each incident 4vertex, and $\frac{1}{8}$ to each incident bad 5-vertex, while by (R2.1) it sends $\frac{1}{3}$ to an adjacent $(4^-, 4, 4)$ -face and $\frac{1}{6}$ to an adjacent $(4^-, 4^-, 5^+)$ -face. Thus, by $(R2^*)$, *f* gives out an extra $\frac{1}{3}$ to the 3-vertex on each (3, 4, 4)-face; *f* gives out an extra $(\frac{1}{3} + \frac{1}{3})/2 = \frac{1}{3}$ to the two 4-vertices on each $(4, 4, 4)$ -face; *f* gives out an extra $\frac{1}{3}$ to the 3-vertices on each (3, 4−, 5+)-face. This means that *f* sends out more charges by (R2∗) than by (R2).

Thus, by (R2∗), the final charge of *f* is

$$
\mu^*(f) \ge k - 4 - \frac{2}{3}n_3 - \frac{1}{3}(k - n_3) = \frac{2}{3}k - 4 - \frac{1}{3}n_3.
$$
 (2)

Clearly, when $k \ge 9$, $\mu^*(f) \ge \frac{2}{3}k - 4 - \frac{1}{3}(k - \lceil \frac{k}{3} \rceil) = \frac{1}{3}(k + \lceil \frac{k}{3} \rceil) - 4 \ge 0$ since $n_3 \leq k - \lceil \frac{k}{3} \rceil$. So we may just consider $k \in \{7, 8\}$.

Let $k = 7$. Note that $\mu^*(f) \ge \frac{2}{3} \cdot 7 - 4 - \frac{1}{3}n_3$ by [\(2\)](#page-7-0) and $n_3 \le 4$ by [\(1\)](#page-6-0). So $\mu^*(f) \ge 0$ if $n_3 \le 2$. Since G has no 6-cycle, a 3-face incident with a bad 5-vertex is adjacent to two 7^+ -faces and a 5-face incident with a bad 5-vertex is adjacent to a 5-face and a 7^+ -face. Thus, if f is incident with a bad 5-vertex, then it must be adjacent to a 3-face and a 5-face.

First let $n_3 = 3$. As each 3-vertex can only be in at most one triangle, f is adjacent to at most five 3-faces, and among them, at most three could be $(3, 4, 4)$ -faces by Property (A). Assume that *f* has *t* adjacent (3, 4, 4)-faces. Then $t \leq 3$ and there are at most $4 - t$ bad 5-vertices on f, so by (R2),

$$
\mu^*(f) \ge 7 - 4 - \frac{1}{2} \cdot 3 - \frac{1}{3}t - \frac{1}{6}(5 - t) - \frac{1}{8}(4 - t) = \frac{1}{6} - \frac{1}{24}t \ge \frac{1}{6} - \frac{3}{24} > 0.
$$

Now let $n_3 = 4$. It follows that f is either a $(3, 3, 4^+, 3, 3, 4^+, 4^+)$ -face or a $(3, 3, 4^+, 3, 4^+, 3, 4^+)$ -face by Lemma [2.2\(](#page-2-0)2).

In the former case, *f* is clearly incident with at most three bad 5-vertices. If *f* is incident with three bad 5-vertices, then by Lemma [2.2\(](#page-2-0)5), *f* is adjacent to at most two 3-faces, one being a $(3^+, 5, 5)$ -face and the other a $(3, 3^+, 5)$ -face, hence $\mu^*(f) \ge$ 7–4–4· $\frac{1}{2}$ –3· $\frac{1}{8}$ – $\frac{1}{6}$ = $\frac{11}{24}$ by (R2). If *f* is incident with exactly two bad 5-vertices, then by Property (A) *f* is incident with at most three 3-faces and none of which is(4−, 4, 4) face. In this case, $μ^*(f)$ ≥ 7-4-4· $\frac{1}{2}$ − (3· $\frac{1}{6}$ + 2· $\frac{1}{8}$) > 0. If *f* is incident with exactly one bad 5-vertices, then by Property (A) *f* is incident with four 3-faces, at most one of which is (4⁻, 4, 4)-face. In this case, $\mu^*(f) \ge 7 - 4 - 4 \cdot \frac{1}{2} - (\frac{1}{3} + 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{8}) > 0$. Finally, assume that *f* has no bad 5-vertex. As each 3-vertex can be in at most one 3-face, *f* is adjacent to at most five 3-faces, and by Property (A), *f* is adjacent to at most one (4⁻, 4, 4)-face. Hence by (R2), $\mu^*(f) \ge 7 - 4 - 4 \cdot \frac{1}{2} - (\frac{1}{3} + 4 \cdot \frac{1}{6}) = 0$.

In the latter case, *f* is adjacent to at most four 3-faces since every 3-vertex on *f* is incident with at most one 3-face. Moreover, by Property (A) , no $(3, 4, 4)$ -face is incident with each of the two adjacent 3-vertices on f , hence f is adjacent to at most two (4−, 4, 4)-faces, if any, a (3, 4, 4)-face. Note that if *f* is adjacent to exactly four 3 faces, then *f* has no bad 5-vertex by Lemma [2.1.](#page-2-1) Let *t* be the number of (3, 4, 4)-faces adjacent to f . Then, by $(R2)$,

$$
\mu^*(f) \ge \begin{cases}\n7-4-4 \cdot \frac{1}{2} - 2 \cdot \frac{1}{3} - 2 \cdot \frac{1}{6} = 0, & \text{if } t = 2, \\
7-4-4 \cdot \frac{7}{2} - 1 \cdot \frac{1}{3} - 3 \cdot \frac{7}{6} - 1 \cdot \frac{1}{8} > 0, & \text{if } t = 1, \\
7-4-4 \cdot \frac{7}{2} - \max\left\{4 \cdot \frac{1}{6}, 3 \cdot \frac{1}{6} + 3 \cdot \frac{1}{8}\right\} > 0, & \text{if } t = 0.\n\end{cases}
$$

Let $k = 8$. Note that $\mu^*(f) \ge 8 \cdot \frac{2}{3} - 4 - \frac{1}{3}n_3$ by [\(2\)](#page-7-0) and $n_3 \le 5$ by [\(1\)](#page-6-0). So if n_3 < 5, then $\mu^*(f) \geq 0$. Therefore, we may assume that $n_3 = 5$. It follows that *f* is a $(3, 3, 4^+, 3, 3, 4^+, 3, 4^+)$ -face by Lemma [2.2\(](#page-2-0)2). As each 3-vertex can only be in at most one 3-face, there are at most five 3-faces adjacent to f , and among them, at most one could be a (4−, 4, 4)-face by Property (A). So *f* gives at most $\frac{1}{3} + 4 \cdot \frac{1}{6} = 1$ to adjacent 3-faces by (R2.1). As there are at most three bad 5-vertices, $\mu^*(f) \ge 8 - 4 - 5 \cdot \frac{1}{2} - 1 - 3 \cdot \frac{1}{8} > 0$ by (R2).

Now we consider the vertices. Let *u* be a vertex of *G*. Recall that $m_i(u)$ is the number of *i*-faces incident with *u*.

- (1) $d(u) = 3$. Then *u* is incident with at least two 5⁺-faces by Lemma [2.1.](#page-2-1) By (R2.3), $\mu^*(u) \geq 3 - 4 + \frac{1}{2} \cdot 2 = 0$
- (2) $d(u) = 4$. Then $\mu^*(u) = \mu(u) = d(u) 4 = 4 4 = 0$.
- (3) $d(u) = 5$. By Lemma [2.1,](#page-2-1) $m_3(u) < 2$.

If $m_3(u) = 2$, then *u* is not incident with 5-faces, so $\mu^*(u) \ge 5 - 4 - 2 \cdot \frac{1}{2} = 0$ by (R1.2). If $m_3(u) = 1$, then *u* is incident with at most two 5-faces and at least two 7^+ -faces. If *u* is indeed incident with two 5-faces, then one is a $(5, 3^+, 3^+, 4^+, 3^+,)$ -face and the other is a $(5, 3^+, 3^+, 5^+, 3^+)$ -face by Lemmas [2.2\(](#page-2-0)2), [2.3](#page-2-2) and 2.4 (b). By (R1.1) and (R2.2), if *u* is not bad, then it gives at most max $\{\frac{1}{2}, 2 \cdot \frac{1}{4}\} = \frac{1}{2}$ to the 5-faces, and if *u* is a bad 5-vertex, then it gives $\frac{1}{2} + \frac{1}{4}$ to the 5-faces and gets $\frac{1}{8}$ from each of the incident 7⁺-faces. Therefore, by (R1), $\mu^*(u) \ge 1 - \frac{1}{2} - \frac{1}{2} - \frac{1}{4} + 2 \cdot \frac{1}{8} = 0$. Let $m_3(u) = 0$. If *u* is incident with a $(3, 3, 5, 3, 4)$ -face, then u is incident with exactly one $(3, 3, 5, 3, 4)$ -face by Lemma 2.4 (b) and at most two $(3, 3, 5, 3, 5^+)$ -faces by Lemma 2.4 (c); and if *u* is not incident with any $(3, 3, 5, 3, 4)$ -face, then *u* is incident with at most four

 $(3, 3, 5, 3, 5^+)$ -faces by Lemma 2.4 (a). Thus, $\mu^*(u) \ge 1 - \max\{\frac{1}{2} + 2\cdot\frac{1}{4}, 4\cdot\frac{1}{4}\} = 0$ by (R1).

(4) $d(u) \ge 6$. By (R1), *u* gives at most $\frac{1}{2}$ to each incident 3- or 5-face. If $m_3(u) \ne 0$, then $m_3(u) + m_5(u) \leq d(u) - 2$, so

$$
\mu^*(u) \ge d(u) - 4 - \frac{1}{2}(m_3(u) + m_5(u)) \ge d(u) - 4 - \frac{1}{2}(d(u) - 2) = \frac{1}{2}d(u) - 3 \ge 6 \cdot \frac{1}{2} - 3 = 0.
$$

Thus, we may assume that $m_3(u) = 0$. If $d(u) \ge 8$, then $\mu^*(u) \ge d(u) - 4$ $\frac{1}{2}m_5(u) \ge d(u) - 4 - \frac{1}{2}d(u) = \frac{1}{2}d(u) - 4 \ge 8 \cdot \frac{1}{2} - 4 = 0$. If $d(u) = 7$, then by Lemma 2.5 (c), \overline{u} is incident with at most five (7, 3, 3, 4, 3)-faces, so by (R1.1), $\mu^*(u) \ge 7 - 4 - 5 \cdot \frac{1}{2} - 2 \cdot \frac{1}{4} = 0$. Let $d(u) = 6$. Then *u* is incident with at most three $(3, 3, 6, 3, 4)$ -faces by Lemma 2.5 (a), and when it is incident with three $(6, 3, 3, 4, 3)$ -faces, it is incident with at most two $(3, 3, 6, 3, 5^+)$ -faces by Lemma 2.5 (b). If *u* is incident with *l* (3, 3, 6, 3, 4)-faces, where $0 \le l \le 2$, then it is incident with at most $6 - l$ (3, 3, 6, 3, 5⁺)-faces. Thus, $\mu^*(u) \ge$ $6 - 4 - \max\{3 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}, 2 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4}, \frac{1}{2} + 5 \cdot \frac{1}{4}, 6 \cdot \frac{1}{4}\} = 0$ by (R1).

So far, we have proved that if *G* is 2-connected, then *G* is (1, 1, 0)-colorable. Thus, we assume that *G* has cut vertices. Let B_1, B_2, \ldots, B_t be the blocks of *G* such that for each *i*, B_i has only one cut vertex b_i of *G* and let $u_i \in V(B_i) \setminus \{b_i\}$. Clearly $t > 2$. Let *G'* be the graph obtained from *G* by adding a new vertex *u* and edges *uu*₁, *uu*₂, ..., *uu*_t. If each cycle of *G*' containing *u* has length at least 7, let $G^* = G'$. Thus, assume that *C* is a cycle of G' which contains *u* and some vertex u_i where $1 \leq i \leq t$ and the length of C is less than 7. In this case, we take a copy, denoted by B'_i , of B_i . Let u'_i and b'_i of B'_i be the corresponding vertices of u_i and b_i in B_i . Let G'' be the graph obtained from G' by deleting edge uu_i , then by identifying u_i in B_i with b'_i in B'_i and adding an edge joining *u* to u'_i in B'_i . It is clear that G'' has a cycle containing *u* which has length more than one than its corresponding cycle in *G* . Keeping this procedure until the resulting graph, denoted by *G*∗, has the property: each cycle of *G*∗ containing *u* has length at least 7. Obviously, *G*∗ is a 2-connected plane graph, *G*∗ has without 3-cycle adjacent to 4-cycle and without 6-cycle, and *G* is a subgraph of G^* . Thus, G^* is $(1, 1, 0)$ -colorable and so is G .

Acknowledgements The authors would like to thank the anonymous referees for the valuable comments which improve the presentation.

References

Abbott HL, Zhou B (1991) On small faces in 4-critical graphs. Ars Combin 32:203–207

Borodin OV (1996) Structural properties of plane graphs without adjacent triangles and an application to 3-colorings. J Graph Theory 21:183–186

Borodin OV, Glebov AN, Raspaud A, Salavatipour MR (2005) Planar graphs without cycles of length from 4 to 7 are 3-colorable. J Comb Theory Ser B 93:303–311

Chang GJ, Havet F, Montassier M, Raspaud A (2011) Steinberg's Conjecture and near-colorings. Research Report 7669

- Chen M, Raspaud A, Wang W (2015) A (3, 1)∗-choosable theorem on planar graphs. J Comb Optim. doi[:10.](http://dx.doi.org/10.1007/s10878-015-9913-7) [1007/s10878-015-9913-7](http://dx.doi.org/10.1007/s10878-015-9913-7)
- Cohen-Addad V, Hebdege M, Král D, Li z, Salgado E (2016) Steinberg's conjecture is false, [arXiv:1604.05108v1](http://arxiv.org/abs/1604.05108v1)
- Grötzsch H (1959) Ein dreifarbensatz für dreikreisfreienetze auf der kugel. Math.-Nat.Reihe 8:109–120
- Hill O, Smith D, Wang Y, Xu L, Yu G (2013) Planar graphs without 4-cycles or 5-cycles are (3, 0, 0) colorable. Discret Math 313:2312–2317
- Hill O, Yu G (2013) A relaxation of Steinberg's conjecture. SIAM J Discret Math 27:584–596
- Lih K, Song Z, Wang W, Zhang K (2001) A note on list improper coloring planar graphs. Appl Math Lett 14:269–273
- Sanders DP, Zhao Y (1995) A note on the three color problem. Graphs Comb 11:91–94
- Steinberg R (1993) The state of the three color problem. Quo Vadis, Graph Theory? Ann Discret Math 55:211–248
- Xu L, Miao Z, Wang Y (2014) Every planar graph with cycles of length neither 4 nor 5 is(1, 1, 0)-colorable. J Comb Optim 28:774–786
- Xu L, Wang Y (2013) Improper colorability of planar graphs with cycles of length neither 4 nor 6. Sci Math 43:15–24 (in Chinese)