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Abstract A paired-dominating set of a graph G is a dominating set of vertices whose
induced subgraph has a perfect matching, while the paired-domination number is the
minimum cardinality of a paired-dominating set in the graph, denoted by γpr (G).
Let G be a connected {K1,3, K4 − e}-free cubic graph of order n. We show that
γpr (G) ≤ 10n+6

27 if G is C4-free and that γpr (G) ≤ n
3 + n+6

9(� 3
4 (go+1)�+1)

if G is

{C4,C6,C10, . . . ,C2go}-free for an odd integer go ≥ 3; the extremal graphs are char-
acterized; we also show that ifG is a 2 -connected, γpr (G) = n

3 . Furthermore, ifG is a
connected (2k + 1)-regular {K1,3, K4 − e}-free graph of order n, then γpr (G) ≤ n

k+1 ,
with equality if and only if G = L(F), where F ∼= K1,2k+2, or k is even and
F ∼= Kk+1,k+2.

Keywords Claw-free graphs · Cubic graphs · Domination · Paired-domination
number · Regular graphs

1 Introduction

All graphs considered in this paper are finite and simple. For a graph G = (V, E),
|V | and |E | are called the order and the size of G, respectively. As usual, δ(G) and
�(G) denote the minimum degree and the maximum degree of G, respectively. The
odd girth of a graphG, denoted by go(G), is the minimum length of an odd cycle inG.

Amatching in a graph G is a set of pairwise nonadjacent edges. If M is a matching,
the two ends of each edge of M are said to be matched under M , and each vertex
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incident with an edge of M is said to be covered by M . A perfect matching is one
which covers every vertex of the graph, a maximum matching one which covers as
many vertices as possible. The number of edges in a maximum matching of a graph
G, denoted α′(G), is called the matching number of G.

For a graph G, a set S ⊆ V (G) is called a dominating set of G if each vertex
v ∈ V (G) \ S has a neighbor in S. Furthermore, S is called a paired-dominating set
of G if the subgraph G[S] induced by S contains a perfect matching. Every graph
without isolated vertices has a paired domination set, since the end-vertices of any
maximal matching form such a set. The paired-domination number of G, denoted
γpr (G), is the minimum cardinality of a paired domination set. Paired-domination
was introduced by Haynes and Slater (1995), Haynes and Slater (1998) as a model for
assigning backups to guards for security purposes, and studied in Cheng et al. (2007),
Dorbec et al. (2007), Favaron and Henning (2004), Fitzpatrick and Hartnell (1998),
Goddard and Henning (2009), Henning (2007), Huang et al. (2013). We refer to an
excellent survey Desormeaux and Henning (2014) for known results and unsolved
research problems on paired domination of graphs.

Let G = (V (G), E(G)) be a graph. The line graph of G, denoted by L(G), is the
graph whose vertex set is E(G), in which two vertices are adjacent if and only if they
are adjacent in G as the edges of G. Let H be a family of graphs. As usual, Kn and
Cn denotes the complete graph and the cycle of order n. The complete bipartite graph
with parts of sizes m and n is denoted by Km,n . A graph G is called H-free if no
induced subgraph of G is isomorphic to any H ∈ H. In particular, we simply write
H -free instead of {H}-free ifH = {H}. A graph G is claw-free if it is K1,3-free. It is
well-known that every line graph is a claw-free graph. In 2004, Favaron and Henning
(2004) proved the following theorem for claw-free cubic graphs.

Theorem 1.1 (Favaron and Henning 2004) Let G be connected cubic graph G of
order n. Then

(1) if G is {K1,3, K4 − e}-free and is 2-connected, then γpr (G) ≤ n
3 ;

(2) if {K1,3, K4 − e,C4}-free and n ≥ 6, then γpr (G) ≤ 3
8n;

(3) if G is {K1,3, K4 − e}-free and n ≥ 6, then γpr (G) ≤ 2
5n;

(4) if G is claw-free, then γpr (G) ≤ n
2 .

The aim of this note is to improve the above results, and our main results are
summarized as follows.

Theorem 1.2 Let G be connected cubic graph G of order n. Then

(1) if G is {K1,3, K4 − e}-free and is 2-connected, then γpr (G) = n
3 ;

(2) if {K1,3, K4 − e,C4}-free and n ≥ 6, then γpr (G) ≤ 10n+6
27 ;

(3) if {K1,3, K4 − e,C4}-free and is C2i -free for each odd integer 3 ≤ i ≤ go, where
go is an odd integer at least 3, then

γpr (G) ≤ n

3
+ n + 6

9
(� 3

4 (go + 1)� + 1
) ;

Moreover, all the graphs achieving the equality in (2), (3) are characterized.
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Theorem 1.3 If G is a connected (2k+1)-regular {K1,3, K4 −e}-free graph of order
n, then γpr (G) ≤ n

k+1 , with equality if and only if G = L(F), where F ∼= K1,2k+2,
or k is even and F ∼= Kk+1,k+2.

We remark that (2) of Theorem 1.2 was proven in Favaron and Henning (2008),
although they impose the restriction that n ≥ 48. Their proof is identical to their earlier
proof in Favaron and Henning (2004), except that the proof Favaron and Henning
(2008) in uses the matching property due to Biedl et al. (2004) that the matching
number α′(G) of cubic graph G of order n is at least α′(G) ≥ 4n−1

9 . However, they
do not provide a characterization of the extremal graphs.

The proofs of our results will be given separately in Sect. 3.

2 Preparations

Biedl et al. (2004) proved that for any connected cubic graph of order n,α′(G) ≥ 4n−1
9 .

O andWest (2010) characterized those graphs attaining the lower bound. Let T be the
family of trees T such that every non-leaf vertex has degree 3 and all leaves have the
same color in a proper 2-coloring of T . Let F3 be the family of cubic graphs which
are obtained from trees in T by identifying each leaf of such a tree with the degree 2
vertex in a copy of B (the graph obtained from K4 by subdividing an edge).

Theorem 2.1 (Biedl et al. 2004; O and West 2010) If G is a connected cubic graph
of order n, then

α′(G) ≥ 4n − 1

9
,

with equality if and only if G ∈ F3.

Henning et al. (2012) extended the above result to a cubic graph of order n with an
odd girth go and characterized the extremal graphs.

For every odd integer go ≥ 3, we define a set of ϕ(go) of graphs using the gadgets
G(1),G(3),G(6) and G(4) in Fig. 1. Each of these gadgets is a graph plus two half
edges.

If go ≡ 1 mod 4, then a graph G belongs to ϕ(go) if it arises by arranging one
copy of G(1) and go−1

4 copies of G(4) in a cyclic order and connecting for every pair
(G ′,G ′′) of two cyclically consecutive gadgets G ′ andG ′′, one half edge fromG ′ with
one half edge from G ′′.

If go = 3, then ϕ(go) contains the graph that raises from G(3) by connecting its
two half edges.

Finally, if go ≡ −1 mod 4 and go ≥ 7, then a graph G belong to ϕ(go) if it arises
by arranging

• either one copy of G(1), one copy of G(6), and go−7
4 copies of G(4),

• or one copy of G(3) and go−3
4 copies of G(4) in a cyclic order and connecting for

every pair G ′,G ′′ of two cyclically consecutive gadgets G ′ and G ′′, one half edge
from G ′ with one half edge from G ′′.
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G(1)
G(3)

G(6)

G(4)

Fig. 1 G(1),G(3),G(6),G(4)

It is easy to check that every graph G in ϕ(go) has exactly one vertex of degree 2,
n(G) − 1 vertices of degree 3.

Theorem 2.2 (Henning et al. 2012) If G is a connected cubic graph of order n and
odd girth go < ∞, then

α′(G) ≥ n

2
− n + 2

6(� 3
4 (go − 1)� + 1)

,

with equality if and only if G arises from a tree T, where

• V(T) is the union of three independent sets X, R and S.
• there are no edges joining R to S.
• every vertex in X ∪ S has degree 3 in T, and
• every vertex in R has degree 1 in T, by adding |R| disjoint graphs Gu from ϕ(go)
with u ∈ R and identifying each vertex u in R with the unique vertex of degree 2 in
Gu.

For the simplicity, for an odd integer go ≥ 3,Fgo denotes the set of extremal graphs
defined the above theorem.

The following two theorems are well-known, see Hemminger and Beineke (1978)
or Kang et al. (2014).

Theorem 2.3 Let G be graph. Then G is a line graph of a triangle-free graph if and
only if G is {K1,3, K4 − e}-free.
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Theorem 2.4 If G is a connected {K1,3, K4 − e}-free (2k + 1)-regular graph on n
vertices, then G = L(F), where F = F[X,Y ] is a bipartite graph such that there
exists an integer l ∈ {1, . . . , k + 1}, dF (x) = 2k + 3− l for all x ∈ X and dF (y) = l
for all y ∈ Y .

Let G be claw-free cubic graph. In what follows, the symbol G∗ denotes the graph
obtained from G by contracting each triangle to a vertex; the subdivision graph S1(G)

denotes the graph obtained from G by inserting a new vertex into each edge. Note that
G∗ is also a cubic graph, but might have some parallel edges.

Corollary 2.5 For a cubic {K1,3, K4 − e}-free graph G, G ∼= L(S1(G∗)).

Proof It is obvious, and is left to the readers. ��

3 Cubic graphs

Favaron and Henning (2004) proved that if G is a 2-connected {K1,3, K4 − e}-free
cubic graph of order n ≥ 6, then γpr (G) ≤ n

3 . Indeed, next we show that γpr (G) = n
3

under the same conditions.

Theorem 3.1 If G is a 2-connected {K1,3, K4 − e}-free cubic graph of order n ≥ 6,
then γpr (G) = n

3 .

Proof By Corollary 2.5, G = L(S1(G∗)), where G∗ is a cubic graph of order n′ = n
3

and might have some parallel edges. Since G is 2-connected, G∗ is 2-connected. By
the well-known Petersen’s theorem Petersen (1891), G∗ has a perfect matching M ′.
Let S be a paired dominating set of G constructed from M ′ as follows: for each edge
u′v′ ∈ M ′, we select an edge uv ofG that joins a vertex u in the triangle corresponding
to u′ and a vertex v in the triangle corresponding to v′, and we add the vertices u and
v to S; Clearly S is a paired dominating set of G. So,

γpr (G) ≤ |S| = 2α′(G∗) = n′ = n

3
.

On the other hand, let S be aminimum paired dominating set ofG. Clearly, 2e(S) ≥
|S|. So,

3|S| = 2e(G[S]) + e(S, S) ≥ |S| + n − |S| = n,

implying that |S| ≥ n
3 . ��

Theorem 3.2 If G is a connected {K1,3, K4−e,C4}-free cubic graph of order n ≥ 6,
then

γpr (G) ≤ 10n + 6

27
,

with equality if and only if G = L(S1(G∗)) with G∗ ∈ F3.
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Proof Since G is a connected {K1,3, K4 − e}-free cubic graph, by Corollary 2.5,
G = L(S1(G∗)), where G∗ is a cubic graph of order n′ = n

3 . Moreover, since G is
C4-free, G∗ is simple. Since each vertex of G belong to a unique triangle of G, we
take a vertex from each triangle of G and denote by T the resulting subset. Trivially,
|T | = n′. Let T0 be such a set as constructed above, with an additional property that
e(G[T0]) is as large as possible. It is clear that α′(G∗) = e(G[T0]).

Now we construct a paired dominating set S of G: for each edge uv ∈ E(G[T0]),
we add the vertices u and v to S; for an isolated vertex w in G[T0], we put w′ and w′′
into S, where w,w′, w′′ induces a triangle in G. Clearly, S is a paired dominating set
of G.

By Theorem 2.1, e(G[T0]) = α′(G∗) ≥ 4n′−1
9 , and thus

|S| = 2e(G[T0]) + 2(|T0| − 2e(G[T0])) = 2(|T0| − e(G[T0])).

Therefore,

γpr (G) ≤ |S| = 2(|T0| − e(G[T0])) ≤ 2

(
n′ − 4n′ − 1

9

)
= 10n′ + 2

9
= 10n + 6

27
.

If γpr (G) = 10n+6
27 , then we have the equality throughout this inequality chain,

then α′(G∗) = 4n−1
9 . By Theorem 2.1, G∗ ∈ F3.

Conversely, we assume that G = L(S1(G∗)) for a graph G∗ ∈ F3. We show that
γpr (G) ≥ 10n+6

27 . Let S be a minimum paired dominating set of G and let M is perfect
matching of G[S]. Let M ′ consists of those edges e ∈ M , which do not belong to a
triangle in G. Let S′ be those vertices of S covered by an edge of M ′ and S′′ = S \ S′.
So,

|S| = |S′| + |S′′| = 2|M ′| + 2(n′ − 2|M ′|) = 2(n′ − |M ′|)
≥ 2(n′ − α′(G∗)) ≥ 10n + 6

27
.

So, the proof is completed. ��
Theorem 3.3 Let G be a connected {K1,3, K4 − e,C4}-free graph cubic graph of
order n ≥ 6. If {C6,C10, . . . ,C2go )-free for an odd integer go ≥ 3, then

γpr (G) ≤ n

3
+ n + 6

9
(� 3

4 (go + 1)� + 1
) ,

with equality if and only if G = L(S1(G∗)), where G∗ ∈ Fgo .

Proof First we show the necessity. Since G is a connected {K1,3, K4 − e,C4}-free
cubic graph, by Corollary 2.5, G = L(S1(G∗)), where G∗ is a simple connected
cubic graph of order n′ = n

3 . Furthermore, since G is {C6,C10, · · · ,C2go}-free, G∗
is {C3,C5, · · · ,Cgo}-free. Let M ′ be a maximum matching of G∗. Let S be a paired
dominating set as constructed in the proof of Theorem 3.2.
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Since |S| = 2|M ′| + 2(n′ − 2|M ′|) = 2(n′ − |M ′|) = 2(n′ − α′(G∗)),

γpr (G) ≤ 2(n′ − α′(G∗))

≤ 2

(

n′ − n′

2
+ n′ + 2

6(� 3
4 (go + 1)� + 1)

)

= n′ + n′ + 2

3
(� 3

4 (go + 1)� + 1
)

= n

3
+ n + 6

9
(� 3

4 (go + 1)� + 1
) .

If γpr (G) = n
3 + n+6

9(� 3
4 (go+1)�+1)

, then we have equality throughout this inequality

chain, then α′(G∗) = n′
2 − n′+2

6(� 3
4 (go+1)�+1)

. By Theorem 2.2, G∗ ∈ Fgo .

Conversely, we assume that G = L(S1(G∗)) for a graph G∗ ∈ Fgo . To show that

γpr (G) = n

3
+ n + 6

9
(� 3

4 (go + 1)� + 1
) ,

let S be a minimum paired dominating set of G and let M is a perfect matching of
G[S]. M ′ consists of those edges e of M , which do not belong to a triangle in G. Let
S′ be those vertices of S covered by an edge of M ′ and S′′ = S \ S′. So,

|S| = |S′| + |S′′|
= 2|M ′| + 2(n′ − 2|M ′|)
= 2(n′ − |M ′|)
≥ 2(n′ − α′(G∗))

≥ n

3
+ n + 6

9
(� 3

4 (go + 1)� + 1
) .

So, the proof is completed. ��

4 Odd-regular graphs

Theorem 4.1 LetG bea connected (2k+1)-regular {K1,3, K4−e}-free graphof order
n, then γpr (G) ≤ n

k+1 , with equality if and only if G = L(F), where F ∼= K1,2k+2,
or k is even and F ∼= Kk+1,k+2.

Proof Since G is a (2k + 1)-regular {K1,3, K4 − e}-free graph of order n, by Theo-
rem 2.4, G = L(F), where F = F[X,Y ] is a bipartite graph such that there exists an
integer l ∈ {1, . . . , k + 1}, dF (x) = 2k + 3 − l for all x ∈ X and dF (y) = l for all
y ∈ Y .
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Clearly, |Y | = 2k+3−l
l |X |. Let X1 ⊆ X with |X1| as large as possible, subject to

the following property: |X1| is even, X1 can be partitioned into |X1|
2 pairs of vertices

such that each pair of vertices has a common neighbor in Y . Let X2 = X \ X1. By
the choice of X1, no two distinct vertices of X2 have a common neighbor in Y , thus
|X2| ≤ |Y |

2k+3−l . For each i (1 ≤ i ≤ |X1|
2 ), let xi and x ′

i be a pair of vertices in X1 with
a common neighbor yi in Y . Moreover, let ei = xi yi and e′

i = x ′
i yi . Let

E1 =
⋃

1≤i≤ |X1|
2

{ei , e′
i }.

For a vertex x ∈ X2, let ex , e′
x be two edges incident with x in F . Let

E2 =
⋃

x∈S2
{ex , e′

x }.

Note that E1 ∪ E2 is a paired dominating set of G = L(F). Therefore

γpr (G) ≤ |E1| + |E2|
= |X1| + 2|X2|
= |X | + |X2|
≤ |X | + |Y |

2k + 3 − l

= |X | +
2k+3−l

l |X |
2k + 3 − l

= (l + 1)|X |
l

= (l + 1)

l

n

2k + 3 − l

≤ n

k + 1
.

Conversely, we assume that γpr (G) = n
k+1 . By the above proof, l ∈ {1, k + 1} and

|X2|(2k + 3 − l) = |Y |. If l = 1, then G = L(K1,2k+2) = K2k+2. Next we consider
the case when l = k + 1.

Claim 1 N (xi ) = N (x ′
i ) for each i ∈ {1, . . . , |X1|

2 }.
By contradiction, suppose that N (xi ) �= N (x ′

i ). Let vi ∈ N (xi ) \ N (x ′
i ) and v′

i ∈
N (x ′

i )\N (xi ). Since |X2|(2k+3−l) = |Y |, there exist twodistinct verticesui , u′
i ∈ X2

such that vi ui ∈ E(F) and v′
i u

′
i ∈ E(F). Let X ′

1 = X1 ∪ {ui , u′
i }. Note that X ′

1 ⊆ X

can be partitioned into |X1|
2 + 1 pairs of vertices such that each pair of vertices has a

common neighbor in Y (xi and ui are paired, and x ′
i and u

′
i are paired), contradicting

the maximality of X1.
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Claim 2 |N (N (xi )) ∩ X2| = 1 for each i ∈ {1, . . . , |X1|
2 }.

By contradiction, suppose that |N (N (xi )) ∩ X2| ≥ 2. Take two distinct vertices
ui , u′

i from N (N (xi )) ∩ X2. Let vi ∈ N (xi ) and v′
i ∈ N (x ′

i ) such that vi ui ∈ E(F)

and v′
i u

′
i ∈ E(F). Let X ′

1 = X1 ∪ {ui , u′
i }. Note that X ′

1 ⊆ X can be partitioned into
|X1|
2 + 1 pairs of vertices such that each pair of vertices has a common neighbor in Y

(xi and ui are paired, and x ′
i and u′

i are paired), contradicting the maximality of X1.

For an integer i ∈ {1, . . . , |X1|
2 }, Let wi be the unique vertex in N (N (xi )) ∩ X2.

Let vi ∈ N (xi ). Since dF (vi ) = k + 1, |N (vi ) ∩ (X1 \ {xi , x ′
i })| = k − 2.

Claim 3 For any x j ∈ N (vi ) ∩ (X1 \ {xi , x ′
i }), N (x j ) = N (xi ).

First we prove that x ′
j ∈ N (vi )∩ (X1 \ {xi , x ′

i }). Suppose this is not the case. Since
N (x j ) = N (x ′

j ) by Claim 1, vi x ′
j ∈ E(F), a contradiction.

Next we suppose that N (x j ) �= N (xi ). Take a vertex v j ∈ N (x j ) \ N (xi ). Let
X ′
1 = X1 ∪ {wi , w j }. Note that X ′

1 ⊆ X can be partitioned into |X1|
2 + 1 pairs of

vertices such that each pair of vertices has a common neighbor in Y (wi and x j are
paired, and w j and x ′

j are paired), contradicting the maximality of X1.
So, we conclude that F ∼= Kk+1,k+2. Since |X2|(2k + 3− l) = |Y |, l = k + 1 and

|Y | = k + 2, we have |X2| = 1. Furthermore, Since k + 1 = |X | = |X1| + |X2| and
|X1| is even, it follows that k is even.

So, the proof of the theorem is completed. ��

5 For further research

It is an interesting problem to determine the sharp upper bound for the paired domi-
nation number of a connected r -regular claw-free graph of order n.
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