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Abstract Adaptive two-echelon capacitated vehicle routing problem (A2E-CVRP)
proposed in this paper is a variant of the classical 2E-CVRP. Comparing to 2E-CVRP,
A2E-CVRP has multiple depots and allows the vehicles to serve customers directly
from the depots. Hence, it has more efficient solution and adapt to real-world environ-
ment. This paper gives a mathematical formulation for A2E-CVRP and derives a lower
bound for it. The lower bound is used for deriving an upper bound subsequently, which
is also an approximate solution of A2E-CVRP. Computational results on benchmark
instances show that the A2E-CVRP outperforms the classical 2E-CVRP in the costs
of routes.

Keywords Modern logistics - Adaptive two-echelon capacitated vehicle routing
problem - Lagrangian relaxation

1 Introduction

In modern logistics, the capacitated vehicle routing problem (CVRP) which was
introduced by Dantzig and Ramser (1959) has economic significance. However, the
classical vehicle problem could not describe the complicated real-world environments,
and hence researchers introduce many variants of CVRP, for example, the two-echelon
vehicle routing problem (2E-CVRP) which was described by Feliu et al. (2007). In the
classical 2E-CVRP, the customer demands are firstly delivered from the depot to satel-
lites, then from satellites to customers. The depot and satellites both have homogenous
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vehicle fleets. The goal of 2E-CVRP is to find a set two-level routes of minimum total
cost, in which first-level routes are from the depot to satellites, and second-level routes
are from satellites to customers.

The integer linear program formulation of 2E-CVRP could be divided into the vehi-
cle flow formulation and the set-partitioning based formulation which were detailed
by Toth and Vigo (2001). Jepsen et al. (2013) proposed a vehicle flow formulation of
2E-CVRP and presented a branch-and-cut algorithm to solve it. Baldacci et al. (2013)
used the ng-route relaxation which was proposed by Baldacci et al. (2011) to derive
a lower bound on the set-partitioning based formulation of 2E-CVRP, and then used
the lower bound and the g-route relaxation which was proposed by Christofideds et al.
(1981) to generate approximately exact solutions.

There is much work concerning on solving 2E-CVRP which are mainly consid-
ered in deterministic environment, and formulated in form of integer linear program.
Because CVRPis NP-hard, 2E-CVRP also cannot be solved in polynomial time. There-
fore, approximation algorithms such as those described by Das (2011) and heuristic
algorithms (Ghannadpour et al. 2014; Li et al. 2014; Zhang et al. 2014) are employed.
Approximation algorithms could ensure a limited ratio for the solutions, however, it is
also difficult to find good approximation ratio for CVRP. As proved by Wghlk (2008),
finding a 3/2-approximation for the Capacitated Arc Routing Problem (CARP) is NP-
hard, and it goes worse when the edges do not satisfy the triangle inequality. Because
each CARP instance could be transformed to CVRP, finding 3/2-approximation for
CVRP is also NP-hard. To deal with large scale instances, heuristic algorithms are
largely be developed, such as the cutting plane method described by Baldacci et al.
(2008) and the column generation method described by Baldacci and Mingozzi (2009),
in which the lower and upper bounds influence the performance ratio significantly.

In order to find a much more efficient solution for handling CVRP and let the
problem adapt real-world environment, this paper extends 2E-CVRP and introduces a
new model, i.e., the adaptive two-echelon capacitated vehicle routing problem (A2E-
CVRP), in which there are multiple depots, such as airports, train stations and sea
ports, and these depots could deliver the demands directly to the nearby customers,
rather than transport them to satellites firstly. Because of this adaptive nature, A2E-
CVRP generalizes the classical 2E-CVRP, and theoretically, its optimum route set has
less cost than that of 2E-CVRP.

This paper introduces a mathematical formulation for A2E-CVRP. We derive a
lower bound based on the method proposed by Baldacci et al. (2013), and then use
it to derive an upper bound which is also an approximate solution of A2E-CVRP. In
the computational results, we show that both the lower and the upper bounds of A2E-
CVRP are smaller than those of the classical 2E-CVRP. Besides, the lower and the
upper bounds could be further used to generate solutions closer to optimality. Based
on the computational results on benchmark instances, the A2E-CVRP outperforms
the classical 2E-CVRP in the costs of routes.

The remaining part of this paper is organized as below. In Sect. 2, we describe the
A2E-CVRP in detail and give its mathematical formulation. Sections 3 and 4 describe
the lower bound and the algorithm for generating the lower and upper bounds. To
reduce the length of the paper, the proof of the lower and upper bounds is not included.
Computation results are listed in Sect.5, and some conclusive remarks are given in
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Sect. 6. Besides, the proof of the theorems in this paper could be found in the e-
companion of this paper.

2 Problem introduction and mathematical formulation

The map of A2E-CVRP is an undirected complete graph G (N, E), which is abstract
from some real-world logistics environments. The vertex set N = Np U NgU N¢, and
edge set E consists of all the edges connecting the vertices in N, where Np represents
the depot sets, Ng represents the satellites set, and N is the customer set.

Each customer i € N¢ has a positive integer demand ¢;, and each edge in E has
a routing cost, which is commonly the road length. Each depot d € Np can deliver
the demand (<B dl) to satellites by m é homogeneous vehicles of load capacity Q1, and
each k € Ng U Np can deliver the demand ( SB,?) to customers by m,% homogeneous
vehicles of load capacity Q5. Bé < méQl and B,g < m,%Qg always hold.

The dynamic process of A2E-CVRP is illustrated in Fig. 1. The squares, triangles
and circles represent depots, satellites and customers respectively. The solid lines
represent the first-level routes, which deliver demands from depots to satellites. The
dashed lines represent the second-level routes, which deliver demands from satellites
to customers. The bold solid lines represent the adaptive routes, which deliver demands
from depots directly to customers. Our goal is to find a set consisting of the kind of
routes with the minimum routing costs.

The linear program formulation of A2E-CVRP is give below. Let M, be the index
set of each first-level routes dr of cost g4, starting from depot d, and .#;, be the
subset of .#,, in which dr must visit satellite s. Furthermore, let %) be the index set
of each second-level (or adaptive) routes k! of cost cg; starting from satellite (or depot)
k, and Z;i be the subset %}, in which k/ must visit customer i. Finally, let wy; be the
total demand that is delivered by a second-level or adaptive route kI.

The decision variables xj; and yg, equal 1 if and only if the corresponding routes are
selected in the optimum solution, and 0 otherwise. The decision variable gy,4 denotes
the demand that is delivered by the first-level route r starting from depot d and visiting

Fig. 1 The dynamic process of A2E-CVRP
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satellite s.

dF)y=min > D" gayar+ D, D curu

deNp re.#y keNsUNp [eZy

S.t.

Z Zx/d:l, i € N¢ 1)

keNsUNp leZii

Zxkzémi, ke NsUNp (2)
lE%k

Zxklwkl < B}, keNsUNp 3)
[E%k

Z Z qsrd = szlwslv s € Ng “)
deNp reMsq 1e%s

> yar <ml. deNp ©)
rey

> awa<Qi.deNp, re.ty 6)
SERy,

> > gwa<Bj. deNp (7
re.#y SER4,

xi €{0,1}, 1€ %, ke NgUNp (8)
var €{0,1}, r e .#y, d e Np 9
gsra €T, seNs, re.#y, deNp (10)

The second-level and adaptive constraints are given by (1)—(3). (1) Ensures each
customer is visited exactly once. (2) Ensures that a depot or satellite uses at most
all its own second-level vehicles. (3) Ensures a depot or satellite will not supply
demands beyond its service ability. The first-level constraints are (5)—(7). (5) Ensures
a depot uses at most all its own first-level vehicles. (6) Ensures a first-level vehicle
will not deliver demands beyond its load capacity. (7) Ensures a depot will not supply
demands beyond its service ability. Constraint (4) connects the first-level and second-
level routes, that is to say, the demands received by a satellite must equal to those it
delivered. Constraints (8)—(10) describes the decision variables.

3 The lower bound of A2E-CVRP
The lower bound is formulated in Theorems 1 and 3. Theorem 1 relaxes the model of

A2E-CVRP in a lagrangian fashion, and subsequently, Theorem 3 relaxes the formu-
lation in Theorem 1 to improve the effectiveness in running time.
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3.1 Lower bound z(RF)

Theorem 1 firstly introduces the dual variables A; € R, i € N¢ of constraint (1) and
ux € R,k € Ng U Np of constraint (2), and then defines the marginal routing cost
Bix for the second-level or adaptive route kI which serves customer i € N¢.

Z ikl Pik < e — Z Qihi — k, | € %y, ke NsUNp (1D

ieNc ieNc
ok means the number of times that customer i € N is visited by route kl. &;; equals

1 if and only if the demand of customer i € Nc is delivered from k. The relaxation
RF is given as below.

ZRFB, Ao ) =min D > &xfiu+ > D Yargar

keNgsUNp ieN¢c deNp re.#y
+ Z Ai + Z pmy
iENc keNgUNp
S.t.

> =1, ieNc (12)
keNsUNp
> &ikqi <B{. keNcUNp (13)
ieNc
> D dwa= D &isqi. s€Ns (14)
deNp re sy ieNc

(5)—=(7), (9) and (10)
£, €{0,1}, ieNc, ke NsUNp. (15)

Theorem 1 z(RF (B, A, 1)) is a lower bound of z(F), for any Bix defined in (11),
Ai € Rand py € R™.

Corollary 1 Let z(U B) be an upper bound of z(F). For any Bix defined in (11),
Ai € Rand pu € R™, define the reduced cost as below.

G=cu— D (B +r)— x>0, 1€, ke NgUNp  (16)

ieNc

Then, any optimum solution of the mathematical formulation of A2E-CVRP can-
not contain a second-level or adaptive route whose reduced cost ¢y > z(UB) —
Z(RF(B, A, ).
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Theorem 2 Let z(L F) be the optimum solution of the linear relaxation of A2E-CVRP,
then the following inequality holds.

max z(RF(B, A, n)) = z(LF).
(B, A, ) P ”

3.2 Lower bound z(RF)

The lower bound z(ﬁ(ﬂ, A, (b)) is the solution of the linear program ﬁ(ﬂ , A, W),
In the optimum solution, &, equals 1 if and only if the first-level route dr deliver
demand w, and &, equals 1 if and only if the depot d deliver demand w by using its
adaptive vehicles.

ZREB, 2o ) =min D> D" D" (gar + barw)earw + », D, bawbaw

deNp re Mg weWyy deNp weWy

+Zli+ Z ,ukm,%

ieNc keNpUNp

S.t.

Z z z wé:drw+ Z Z Wédw = qror 17

deNp retly weWy, deNp weWy

D> D trw<l, D &w<l, deNp,re.y (18)
re My weWy, weWy

Eirw €1{0, 1}, d e Np; re . #yand w e Wy, (19)
Eqw €10, 1}, d € Np; r e #yand w e Wy, (20)

The ¢4 and ¢4y, are detailed as below.

¢drw = min z (min ﬂm) Zi, @dw = min Z Biazi
SERy,

ieNc ieNc

S.t.

> qizi=w @1)
ieNc

0<z <1, ieNc (22)

darw 1s a lower bound of the second-level route costs for delivering some demand w
from the satellites Ry, which are visited by the first-level route r € .#y; pgy is a
lower bound of the adaptive route costs for delivering some demand w from the depot
d.

Theorem 3 z(RF(B, A, w)) < z(F), for any Bix defined in (11), 1; € R and
ur € R™.
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Corollary 2 Let z(U B) be an upper bound of z(F). Then, any optimum solution of the
mathematical formulation of A2ZE-CVRP cannot contain a second-level or adaptive
route whose reduced cost ¢y > z(UB) — z(RF (B, X, n)).

3.3 The smaller range of demand

The demand range W, and W, could be reduced as blow, so that the computation for
the lower bound could speed up.
Wy ={weZ": wZ’ri” < w < wj™}, where

W = max{0, ¢}, and W} = min{Q, Z BS. Bys Giot)s where
NS

I / Vi
q" = qrot — qa — q15; — 4151 Where

2 : 1 2
W= X B d=mn| 3 8 Xl
deNp deNp\{d} SENg

g1y, = min {B(ﬁ, max{0, m}l — l)}

W, = {w eZt: wZ’i” <w< wzwx}, where

Wi = max{0, q'}, and wi** = min{Bj, gio}, where
4 =i —Qist = qa. Qe =min | Bg. DBt qw= D, Bj
sens deNp\(d)

4 The algorithm for the bounds

This section details the algorithm for generating the lower and upper bounds as
below, which generalizes the algorithm proposed by Baldacci et al. (2013). Especially
for computing the upper bound (UB), we directly use the corresponding procedure
described by Baldacci et al. (2013), by abandoning its improvement stage. Our com-
putational results show that it still generates approximate solutions within toleration.
Besides, we compute UB each time when the micro iteration is finished to improve
the upper bound.

1. Initialization
Ry = {(k,i,k)}, ke NgUNp
A =0,i € N¢
wr =0, ke NgsUNp
LB=0and UB = o0
2. Iteration (Macro times)
(1) Tteration (Micro times)
(i) Setz*=0
(ii) Compute Bix, i € N¢, k € Ns U Np by routes set %y and Theorem 4.
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(iii) Compute z(RF) as described in Sect. 4.2
Set z* = z(RF) once z(RF) > z*, and
SetB* =B, A" =A, u* =pu
(vi) Compute A and p by the subgradient method, which is described in
Sect. 4.2.
(2) Compute UB
(3) Update Ry, = Ry U A, where N = Ry \ Ry.
If each 4, = @ and z* > LB, then LB = z*.

4.1 Computing B;x

We define the marginal cost Bis and B4 for each satellite and each depot respectively,
whose computing formulas are combined into (23) in Theorem 4. Because only a
subset %, C @k could be used for computing z* = z(RF), B is valid only if
both the second-level routes and the adaptive routes are not generated, and so does
7* = z(RF). The routes are generated in form of ng-routes (Baldacci et al. 2011).

Theorem 4 Let ﬂ?k D % be the index set of second-level or adaptive (nonnecessarily
elementary) routes, a feasible Bji satisfying (11) could be computed as below.

Bik = gi - min

Ckl = DjeNe ikihi — Kk
e

, ke NNUNp, i € Ng. (23)
ZieNc Aiklqi

4.2 Generating z(RF)

The solution z(RF) is generated by solving the following integer program. Here,
h}l(w) is the minimum cost of depot d, whose delivering demand is w. h}l(w) equals
to the sum of the costs of its first-level routes and some lower bound ¢4, on the
correspondingly second-level routes. h’d“ (w) is the minimum cost of depot d, whose
demand is w and delivered by its adaptive routes. Contraint (24) ensures that all the
delivered demands equal to the total demands, and Contraint (25) ensures that a depot
must deliver exactly one certain demand by its first-level routes or adaptive routes.
Finally, p aliw and ,o;?w are the decision variables. This integer program could be solved
within time toleration by CPLEX (2012) or even by pure enumeration, because the
number of all the depots is a small constant in the environment of real-world logistics.

h = min Z htll(w) . ,oéw + Z hfi‘(w) . p;?w

deNp deNp
S.t.
D weph,t D W ok = diar (24)
deNp deNp
D i<l D phy <1=qw, deNp (25)
weW, weWy
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ol €10,1}, deNp (26)
o €{0,1}, deNp (27)

In the right side of the objective function, hﬁ (w) and h é(w) are the vectors of the
results by solving (28) and the dynamic program (29) respectively.

hy (W) = ¢aw, d €N (28)
h(w) = min Ry —1,w). 29)

0w’ <minfw, wl**}

4.3 Searching direction

The procedure for computing the searching direction in the subgradient method is
given as below. In our experiments, the length of search step e is set to a constant
1.0. However, the best value e varies among different instances. A good way to set
the value is adopting the changeable length, i.e., e is set to a small value firstly,
then is increased when z(RF) increases slowly and reduced when z(RF) increases
quickly.

(1) Input
optimum solution of RF: Errw and &gy
optimum solution of @g,, and Piy,: zi
(2) Computation ~
Obtain route sets % = {/(i, k)} and %4 = {I(i, d)}
(i) (@) init Z, =@, k € Ng
(b) and [(i,d) =0,i € N¢,d € Np
(i1) (a) for each first-level route dr, such that &;,, = 1,
get k(i) = (k| minge,, Bix). i € V(d.r, w)
set[(i, k(i)) = the route corresponding to Bix, i € V(d, r, w)
foreachi € V(d, r, w), get Zriy = Zray Y LL(i, k(i))}
(b) for each depot d, such that &;,, = 1,
getd(i) ={d},i € V(d, w)
set [(i, a_f(i)) = the route corresponding to B4, € V(d, w)
foreach i € V(d, w), get Zaiy = Zaay U {1, d(i)))
(3) Output
Ai=Xri—€-y - (s+aip—1)
px = min{0, pur =¢€-y - (0 —my)}
g =min{0, pg =€-y - (8g —ma)}
ajs = ZSENS Zlegs Qjsl - X5, 1 € Nc
%D =D geNy Z,E% Qidr - Xai, i € Nc
Sy = Zle@s Xs1, S € Ng
8 = zle@d Xdl, S € Np

X5t = 2ieNcia(i,s)= (@ist - qi)/ (ZieNC isl ~61i) , 1€, seNs
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Xal = 2ieNciat.ay= @idl - 4i)/ (ZieNC ®idl 'qz') ., 1€, deNp
02RF(B..11)

r= :
2iene @istaip— 1)2""2561‘/5 (85 —ms)z-FZdeND (8a—ma)?

5 Computational results

The algorithm for computing the lower and upper bounds are coded in Matlab, with
CPLEX (2012) for solving linear programs and mix-integer programs. The experi-
ments are performed on the environment of Inter Core i5-3470 CPU (3.20GHz), 4
GB RAM Memory and Window 7 operation system. The data sets are from Set 1, Set
2 and Set 3 which are used by Baldacci et al. (2013). The computational results are
detailed in Tables 1 and 2. In practice, the parameter Macro is set to 50, Micro is set
to 5, eissetto 0.1, and |Ni| is set to 12 for instances in Set 1. For Set 2, Macro is set
to 15, Micro is set to 20, e is set to 0.1, and |Ni| is set to 21.

Table 1 shows the results of instances from Set 1, each of which has 1 depot, 2 satel-
lites and 13 customers. The “Solution” column lists the solution of A2E-CVRP. The
“z(F)” sub-column shows the optimum costs computed directly by CPLEX (2012).
The “n,/ng” sub-column shows the numbers of the used and total satellites in the
optimum solutions. In “N 5 — N2"¢ _ N@” sub-column, the numbers from left to right
denote the numbers of the first-level routes, second-level routes and adaptive routes
respectively used by the optimum solutions. In the “Lower Bound” column, “LB”
shows the lower bound computed by our algorithm, and “LB/z” shows the percent-
ages of the lower bounds on the corresponding optimum solutions. The “Comparison”
column shows the solution of classical 2E-CVRP. The “z1(F)” sub-column shows the
optimum solutions of 2E-CVRP, the “SC” sub column shows the save costs, i.e.,
z1(F) — z(F), and the “SC/z1” sub-column shows the percentages of the saved costs
on z1(F). The bold results in the column of Lower Bound show the exact solutions.
The bold results in the column of Comparison show that the saved costs become large
when the satellites are located far away from the depot.

Table 2 shows the results of all the instances with 22 customers from Set 2 and 3.
When the customer number goes up to 20, the computing time of generating all possible
routes is beyond toleration. So, we use the algorithm for computing UB described
in Sect. 4 to output approximate solutions. The “Bounds” column shows the lower
bounds and upper bounds on the instances, and the LB/UB shows the percentages.
The “Comparison” shows the comparison to the computational results of Baldacci
et al. (2013), in which “z1(F)” and “LD1” denote the solutions and lower bounds
computed by their algorithm DP1. The “SC” sub-column denotes the saved costs,
which equal to z1(F) minus UB. The “SC/z1” sub-column shows the percentages of
SC on z1(F). The italic results show that there are two solutions which are worse than
the compared ones.

Figure 2 shows the comparison of the results in Table 1. The lower bounds, z(F)
and z1(F) are shown in forms of dashed line, solid line and dotted line respectively.
The X-axis shows the instance numbers and the Y-axis show the costs. It is easy to see
that z(F) is always lower than z1(F), which demonstrates that the solution of A2E-
CVRP is always better than that of classical 2E-CVRP. The z(F) becomes lower and

@ Springer



J Comb Optim (2017) 33:1145-1167 1155
Table 1 Computational results on the instances of set 1
Instances Solution Lower Bound Comparison

«F) n'm* NN LB %(LB/z) zI(F) SC  %(SClzl)

Nd

1. E-n13-k4-1 260 272 1-4-1 251.65  96.79 280 20 7.14
2. E-n13-k4-2 268 272 1-4-1 25429  94.88 286 18 629
3. E-n13-k4-3 268 212 1-4-1 24895  92.89 284 16 5.63
4. E-n13-k4-4 210 172 1-3-1 210 100 218 8  3.67
5. E-n13-k4-5 210 172 1-3-1 210 100 218 8  3.67
6. E-n13-k4-6 222 12 1-4-1 219.44  98.82 230 8 348
7. E-n13-k4-7 216 12 1-3-1 216 100 224 8  3.57
8. E-n13-k4-8 228 12 1-3-1 22321 979 236 8 339
9. E-n13-k4-9 236 12 1-4-1 225.19 9542 244 8 329
10. E-n13-k4-10 260 172 1-3-1 240.4 92.46 268 8 299
11.E-nl13-k4-11 268  1/2 1-3-1 249.02 9292 276 8 29
12. E-n13-k4-12 270 272 1-4-1 25296  93.69 290 20 69
13. E-nl13-k4-13 270 172 1-3-1 250.34  92.72 288 18 625
14.E-n13-k4-14 210 12 1-3-1 210 100 228 18 79
15. E-n13-k4-15 210 12 1-3-1 210 100 228 18 79
16. E-n13-k4-16 222 12 1-4-1 218.49  98.42 238 16 672
17. E-n13-k4-17 216 172 1-3-1 215.08  99.57 234 18 7.7
18. E-n13-k4-18 228 172 1-3-1 223.18 97.89 246 18 732
19. E-n13-k4-19 236 12 1-4-1 22487 95.28 254 18 7.09
20. E-n13-k4-20 260 172 1-3-1 24229 93.19 276 16 58
21.E-n13-k4-21 268 1/2 1-3-1 24992 93.25 286 18 629
22.E-nl13-k4-22 268  2/2 1-3-2 250 93.28 312 44 141
23.E-n13-k4-23 210 12 1-3-1 210 100 242 32 1322
24.E-n13-k4-24 210 12 1-3-1 210 100 242 32 1322
25.E-n13-k4-25 222 12 1-4-1 22093 99.52 252 30 119
26.E-n13-k4-26 216  1/2 1-3-1 216 100 248 32 129
27.E-n13-k4-27 228 12 1-3-1 22633 99.27 260 32 1231
28.E-n13-k4-28 236  1/2 1-4-1 227.81  96.53 268 32 11.94
29.E-n13-k4-29 260 1/2 1-3-1 24434  93.98 290 30 10.34
30. E-n13-k4-30 268  1/2 1-3-1 251.72  93.93 300 32 10.67
31.E-nl13-k4-31 210 172 1-3-1 210 100 246 36 14.63
32.E-n13-k4-32 210 12 1-3-1 210 100 246 36 14.63
33.E-n13-k4-33 222 12 1-4-1 22096 99.53 258 36 13.95
34.E-n13-k4-34 216 12 1-3-1 216 100 252 36 1429
35.E-n13-k4-35 228 1/2 1-3-1 22559 98.94 264 36 13.67
36. E-nl13-k4-36 234 272 1-5-1 22772 97.32 272 38 1397
37.E-n13-k4-37 252 272 1-4-1 237.71 9433 296 44 14.86
38.E-nl13-k4-38 256  2/2 1-4-1 24529 95.82 304 48 1579
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Table 1 continued

Instances Solution Lower Bound Comparison
«F) n'm* NN LB %(LB/z) zI(F) SC  %(SC/zl)
Na

39. E-nl3-k4-39 202  2/2 1-3-1 199.98 99 248 46 18.55
40. E-n13-k4-40 202 22 1-4-1 201.97  99.99 254 52 2047
41. E-n13-k4-41 204 272 1-4-1 20295 99.49 256 52 20.31
42.E-n13-k4-42 210 172 1-3-1 208.82  99.44 262 52 19.85
43.E-nl13-k4-43 210 12 1-3-1 207.12  98.63 262 52 19.85
44.E-nl3-k4-44 210 12 1-3-1 210 100 262 52 19.85
45.E-n13-k4-45 210 12 1-3-1 210 100 262 52 19.85
46. E-n13-k4-46 210 22 1-4-1 209.03 99.54 280 70 25
47.E-n13-k4-47 204 272 1-5-1 203.95  99.96 274 70 2555
48.E-n13-k4-48 210 172 1-3-1 207.96  99.03 280 70 25
49.E-n13-k4-49 210 172 1-3-1 210 100 280 70 25
50. E-n13-k4-50 210 172 1-3-1 210 100 280 70 25
51. E-n13-k4-51 210 172 1-3-1 210 100 280 70 25
52.E-nl13-k4-52 210 272 1-5-1 209.99  99.99 292 82  28.08
53.E-nl13-k4-53 222 22 1-5-1 219.06  98.68 300 78 26
54.E-nl13-k4-54 216 22 1-3-1 214.4 99.26 304 88  28.95
55.E-nl3-k4-55 222 12 1-4-1 220.19  99.18 310 88  28.39
56. E-nl3-k4-56 222 1/2 1-4-1 22091  99.51 310 88  28.39
57.E-nl3-k4-57 214 272 1-4-1 214 100 326 112 34.36
58.E-nl3-k4-58 216 12 1-3-1 216 100 326 110 33.74
59. E-n13-k4-59 216 172 1-3-1 216 100 326 110 33.74
60. E-n13-k4-60 216 172 1-3-1 216 100 326 110 33.74
61. E-n13-k4-61 228 172 1-3-1 227.84 9993 338 110 32.54
62. E-n13-k4-62 228 12 1-3-1 228 100 350 122 34.86
63. E-nl13-k4-63 228 12 1-3-1 228 100 350 122 34.86
64. E-nl13-k4-64 236 12 1-4-1 234.67 99.44 358 122 34.08
65. E-nl13-k4-65 236 22 1-4-1 234.81 995 358 122 34.08
66. E-n13-k4-66 260  2/2 1-4-1 24172 9297 400 140 35

lower than z1(F), when the satellites are located further away from depots. Besides,
the lower bounds generated by our algorithm are close to z(F'), and there are 22 results
out of 66 which are equal to z(F).

Figure 3 shows the comparison of the results in Table 2. The lower bounds, upper

bounds and z1(F) are showed in forms of dashed line, solid line and dotted line
respectively. The meaning of X-axis and the Y-axis is same as that in Fig. 2. The com-
putational results show that the upper bounds are smaller than the optimum solutions
of classical 2E-CVRP. There are only two exceptions in the instances, whose lower

bounds are close to the optimum solutions of the corresponding 2E-CVRP.
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Table 2 Computational results on the instances of n22 instances of set 2 and set 3

Instances Bounds Comparison
LB UB %(LB/UB)  zI(F) %(LD1/z1)  SC %(SClz1)

1. E-n22-k4-s6-17 373.08 3753 99.4 417.07  99.9 4177 10.01
2. E-n22-k4-s8-14 368.28 37433 98.38 38496 995 10.63  2.76
3. E-n22-k4-s9-19 368.95 376.51 98 470.6 95.4 94.09  19.99
4. E-n22-k4-s10-14 362 374.63  96.63 3715 99.6 =313 -
5. E-n22-k4-s11-12 372.85 375.28 99.35 42722 96.5 51.94 1216
6. E-n22-k4-s12-16 367.96  383.09 96.05 39278 96.7 9.69 2.47
7. E-n22-k4-s13-14 457.09 517.76  88.28 526.15 964 8.39 1.59
8. E-n22-k4-s13-16 449.27 468.24 9595 521.09 949 52.85 10.14
9. E-n22-k4-s13-17 460.56  496.82  92.7 496.38  96.8 —0.44 -
10. E-n22-k4-s14-19  463.09  478.63  96.75 498.8 93.2 20.17  4.04
11. E-n22-k4-s17-19  486.39  496.58  97.95 512.8 95.5 1622 3.16
12. E-n22-k4-s19-21  492.83 51595 95.52 52042 949 4.47 0.86

4007 L

o—a—a  zI(F)
o—o——o z(F)
A—a—n Lower Bounds

350

300,

Costs

250/

200

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
246 81012141618202224262830323436384042444648 505254565860 626466
Instance Numbers of Table 1

150

Fig. 2 Comparison of the results in Table 1

6 Conclusions
In this paper, we described the mathematical formulation of the adaptive two ech-

elon vehicle routing problems. Then, a lower bound of A2E-CVRP is given, after
which the upper bound could be generated as an approximate solution. The solution
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540 \ T
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A—4A—A  Lower Bounds

500

480

460

Costs

440

‘
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Instance Numbers of Table 2

Fig. 3 Comparison of the results in Table 2

of A2E-CVREP is better than that of 2E-CVRP both in theory and our computational
experiments.

Tables 1 and 2 show that the saved costs become large when the satellites are located
far away from the depot. Besides, the lower bound and upper bound could be further
used to derive algorithm for generating solutions closer to the optimality, such as that
described by Baldacci et al. (2013) or some branch and bound methods.
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China with grant no. 11371004, and Shenzhen Overseas High Level Talent Innovation and Entrepreneurship
Special Fund with grant no. KQCX20150326141251370.

Appendix 1: Proofs of Theorem 1 and Corollary 1

Consider an optimal solution (x, y, g) of cost zZ(F), and we define

Jo={leRy:xy=1}, ke NgUNp
Ly={reMyg:ys =1}, deNp
Vi={ieRy:lel), keNgUNp
st{ieRr:reLk:keND

Np = deND:Z)Ed1>1
leRy
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Let z(RF (B, A, ) be the optimal cost, of a valid group of (8, A, u). So, from (11),
we have

Gu=cu— D - (Bik+r)—mk >0, ke NsUNp, 1€Ry

€N,
Then
Do Dldu= D, Dlew— D D> - Butr)— D Dk
keNgUNp l€Jk keNsUNp l€Jk keNgUNp l€Jk ieN, keNgUNp L€k
(30)
and obviously,
DD i (B +2i) = D (Bik+hi),k € NsUNp 31)
leJiieN, ieVi
D Dm= D Mz YL mi-m (32)
kENsU]\_/D leJi kENsU]\_/D kEN3UND
move (31), (32) into (30), we get
2 2= 2L Deut 2D vargar
keNsUNp [€Jk keNsUNp l€Jk deNgreMy
D D vargar+ D D BuAr+ DL mim | (33)
deNgreMy keNsUNp ieVy keNgUNp

In (33), the left side > 0, the first and the second terms of the right side = z(F'), and
the remaining terms of the right side = the cost Z(R F («, B8, y)) of feasible solution of

=3
E&r=1,1i¢€ Vi, k € NgU Np; 0, otherwise
qg=q
so,
> D@ <IF) —z(RF(B, A, 1) (34)
kelvsUND leJk
and

2(F) —z(RF(B, A ) 20
It is obvious that corollary 1 hold by (34).
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Appendix 2: Proof of Theorem 2

z(dualLF):maxZui+ Z m,%'vk—i— Z B/?'Uk-i‘zm(]i‘ﬂd

ieEN, keNsUNp keNsUNp

1303w

deNydeNp reMy

S.t.

ZMi+U‘v+wsl'Us_wsl'a<Csla s € Ns,l € Ry

ieRy;

> li+va+wal o4 <cal, deNp.leRy
i€Ry

nd — Q1 ®dr + Var < 8ar, d € Na,vr € My
o +wir <0, i €Ng,de Ng,r € My

un € R, v, o, ak, Nk, Okr, Vgr < 0.

Construct (8, A, p) satisfying (11)

Firstly, let

MkZU;:, ke NsUNp
ﬂiszﬂ;k‘i‘%'(as*_a;k)a i € Ne,s € Ng
Bia =uf +qi-oj, i€ Nc.deNp
Ai=0, ieN,

By the definition of a;i;, it’s obvious that

> ai-qi =wu. k€ NsUNp, | €%
i€N.

then, we have

DBk =D aiw - u +wi - of —wy e, s €Nl €T

ieN, ieEN,

and

> i a= D dia-ui +wa-of. deNp.ley

i€N: ieN.:
Zaikl Bk <cu—vf, keNsUN,leZ
i€N,
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Prove maxg,y,u) > 2(RF (B, A, ) > z(dual LF)
For i and v

Let (§%, y*, ¢*) be the optimal solution of z(RF (8, A, (t)). By definition (8, A, ),
we have

ZRF(B A )= D D W +agi-(of —el)) &+ D D Wi +qi-of) &

SEN; ieN, deNpieN,
2
DL D Vgt D kit DL wiemy
deNp rety €N, keN; UND
* * * *
S DI RO I I
i€N, SENy SEN i€N.
* *
SIS DI
SENs ieN.
* * * *
WA DWATD I b
€N, deNp deNp €N,
2
+ 2 D Virsart DL viemp
deNp re#y keNs UNp

By (12), we have
S ¥ oa)-2u
€N, keNs;UNp €N,

For 1 and ¢
By (37), we have

DD e Y= D, 20 Y= D D, 01 0ar -y,

deNp re.#y deNp re.#y deNp re.#y
k
+ 2 2 VY
deNp re.#y

Then, because 1)} < 0, and by (13), we have

Z "y - Zy*dr z Zﬂ*d‘mé

deNp rey deNp
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and because z?j < 0, we have

Z ﬁ*d 'y*a'r > Z ﬁ*d

re My rey

For o
From above, we have

SRFBropw) = D ui+ > or [ D agh | = D et | D aitsh

ieN. SEN; ieN. seNg ieN.
* * * * * 1
+ 2 | 2+ 2o | 2k |+ 2 e mg
ieN, deNp deNp ieN. deNp
2
=2 2 0@ Yt 2 D Va3 e
deNp re#y deNp re#y keNsUNp

Because o; < 0 and by (13), we have:

> [ 2aE]) 2 > ol B

keNsUNp i€N, keNsUNp

For o and w
By (14), we have

Do (g =2 [ 2 D i

SEN ieN, SENy deNp re My

=22 2 %

SENs deNp re My

=22 2 % 4

ieNs deNp re My

Because a)zr < 0, and by (6), we have:

DD oty 00 = DL D [ —otar DD dha

deNp re.#y deNp re.#y i€Rgy

= > > D otu-ahy)

deNp re.# iRy,

=SS S i)

deNp reM;q i€Ns

=D D> D (0l

i€ENs keNp re My
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and because (38), we have

_Z“f:' Z%S; —z ZQl'w*kr‘y*kr

keNy ieN, keNp re #

2_2 z Zai*'qi*rk

i€Ns keNp re My

+ O D> D otk )

i€Ns keNp reMix
* * *
- Y T @ o
ieNs keNp re iy
>0

Finally, by all above, we get z(RF (B, A, n)) = z(dualLF)

Appendix 3: Proofs of Theorem 3 and Corollary 2

We define the optimum solution of ¢y, : z;.k(d, r,w), i € Ne.LetV(d,r,w)={i €
Nc : z7(d, r,w) > 0} be the set of supplied customers, and &, = 1 if and only if
route r € .4, delivers demand w in the optimum solution.

Step 1: Prove ¢;,,, defined by (£, 7, 7) is a feasible solution

Let (£, 7, @) be an optimum solution of z(RF(B, A, /1)), and we define My =
(re #My:yg =1}, Vg =1{i € Nc : &, = 1}. For any r € .#,, define
Wyr = ZseRd, Gsra. For all Ly, set Cgrw = 1, when r € A4 and w = Wy, ; set
Carw = 0, when r € M 4 but w # Wyy; set Cgrw = 0, when d € .y \/_//d. For
Np =1{d € Np : ZieNC qi - &iqg > 0}, we define wy = ZieNC qi - &iq. For all &gy,
set Zgw = 1, whend € Np and w # wg; set Ly =0, when d € Np \ Np.

Its’ obvious that ¢4, satisfies (18), now we prove that Edrw satisfies (17). By (14),
we have

ZZéid'qz’+ZZ Zésrd= Z Zéik'%’-

deNpieN, seNsdeNp re Mg keNsUNp ieN,

By Gsra, whenr € My \Zd, s € Ng,Gsra =0, whenr € M4, s € Ns\ Rar,
and the definition of wg, and &gy, We have

DD D Gwa= D, DL D dwa= D, D> D welarw

seNsdeNp re My deNp rel g SERar deNp re My weWy,

and

DD wlaw= D, D - ai

deNp weWy deNpieN,

@ Springer



1164 J Comb Optim (2017) 33:1145-1167

By (12), we have
Z Zéis'%’= Z qi - Zéi&
SeENgieN, iEN. SENg
and
S DlEka=> la D E|=D 4 =du0
keNsUNp ieN, ieN, keNsUNp ieN,

From the above 4 equations, we prove g:drw satisfies (17).
Step 2: Prove 6, defined by (£, y, ¢) is a feasible solution
Fori € N¢, we define 0;;,. When s € Ng, r € .#y and Mg = Myy,

09 if élé = O
Oisra = £

qsrd ; —
- i is = 1
ZdeND zre%m Gord’ f gzs

Whend € Np,

0. — 0, if %id=0
= if Ea=1

Then, ford € Np. r € M a, w = Way, we define Z; (r, Wa,) = X e, Oisra - and
ford € Np, w = wg, we define Z; (wy) = ;4. It’s obvious that 0 < z; < 1, now we
prove z; satisfies the constraint »_; eNe di "% = W.

Part 1

Ford € Np,r € ]d, w = wqr, we have

D ai-Zi(wa) =D qi- D, bisra-
ieNc ieNc SERy,
By the definition of 6;,4, it is easy to have

ZQi' Z Oisra = Z Z qi * Oisra = Z Z%"eis‘rd

ieNc SERy, ieNc sERy, SERy, i€V

Z Z gi Cisrd

s€Rar \ieV, 2.deNp 2y Tord

Since > ey, Zre%m Gsrd = 2_;cv, 4i> We have

Z Z qi q_srd = Z q_srd = Wyr-

seRar \icV, ZdeND Zre]m qsrd SERy
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From the above 3 equations, we get

> qi - Zi (. ibay) = Wy

ieNc

Part 2
Ford € Np, w = wy, by the definition of 6;4, it is easy to have

Zqz'-Zi(V,u_)d)= Zéﬁ'em: Z‘Ii'eidzu_)d~

ieNc ieNc ieVe

Step 3: Prove z(RF (B, A, i) > z(RF (B, %, iv))

By the_ definition of 6;5.-4 and 6;4 , it is easy to know that, when z_ is served by
s € Ng, &5 = szND Zre]Sk Oisra; When i is served by d € Np, &g = 6i4. So,

we have
ZRFB ) =min = > > Ex-Bu+ > D Jar- gar
keNgUNp ieN, deNp rey
+ Z Ai Z Mk m/%
€N, keNsUNp
=min D D &P+ D, D Ea-Buat D, D, Var
sENgieN, deNp ieN, deNp re#y
+ Z Ai Z Mk m/%
€N, keNgUNp
=m1nzz Z ngrd ‘lgix+z ngr
seNgieN. \deNp re]xd deNp rE]d
+ z Zéid'ﬂid-i-z)»i-i- Z i - my
deNp ieNc i€N, keNyUNp

It’s obvious that:

ZZ z z Oisra '5”2222 Z Oisrd - Bis

sENs;ieN, \deNp re]xd sENsieN.deNp VE%.rd

= Z Z Z Z Oisrd - Bis-

deNp i€Ne SENs re 77 4

= Z Z Z Zeisrd'ﬁis

deNp ieN, "6]0[ SERy,

= z Z Z Z Oisrd - Bis

deNp rE]d ieN; SERy,

- 8dr
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By Zi(r, War) = 2 ey, Oisrds Z2i(Wa) = i = €4, and the definition of ¢z, and
Caw, We have

Z Z Bis  Cisra = Z (minseRd,ﬂis) : Z Oisrd
ieN. SERy, ieN. SER
= > (minser,, Bis) - Zi(r, War) = bari,
iEN,
and
DD Bia-bia= Y Zi(a) - Bia = bain,-
1EN, sER ieNc
S0,

ZRFB. ) >min D " Gariy, + 8ar) + baing + D A+ D, ko my.

deNp re#y €N, keNgUNp

Finally, we conclude that

Z(RF(B, A, 1)) = Z(RF (B, A, ) = Z(RF (B, &, ) = z(RF(B, h, ).
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