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Abstract Adaptive two-echelon capacitated vehicle routing problem (A2E-CVRP)
proposed in this paper is a variant of the classical 2E-CVRP. Comparing to 2E-CVRP,
A2E-CVRP has multiple depots and allows the vehicles to serve customers directly
from the depots. Hence, it has more efficient solution and adapt to real-world environ-
ment. This paper gives amathematical formulation for A2E-CVRP and derives a lower
bound for it. The lower bound is used for deriving an upper bound subsequently, which
is also an approximate solution of A2E-CVRP. Computational results on benchmark
instances show that the A2E-CVRP outperforms the classical 2E-CVRP in the costs
of routes.

Keywords Modern logistics · Adaptive two-echelon capacitated vehicle routing
problem · Lagrangian relaxation

1 Introduction

In modern logistics, the capacitated vehicle routing problem (CVRP) which was
introduced by Dantzig and Ramser (1959) has economic significance. However, the
classical vehicle problem could not describe the complicated real-world environments,
and hence researchers introducemany variants of CVRP, for example, the two-echelon
vehicle routing problem (2E-CVRP) which was described by Feliu et al. (2007). In the
classical 2E-CVRP, the customer demands are firstly delivered from the depot to satel-
lites, then from satellites to customers. The depot and satellites both have homogenous
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vehicle fleets. The goal of 2E-CVRP is to find a set two-level routes of minimum total
cost, in which first-level routes are from the depot to satellites, and second-level routes
are from satellites to customers.

The integer linear program formulation of 2E-CVRP could be divided into the vehi-
cle flow formulation and the set-partitioning based formulation which were detailed
by Toth and Vigo (2001). Jepsen et al. (2013) proposed a vehicle flow formulation of
2E-CVRP and presented a branch-and-cut algorithm to solve it. Baldacci et al. (2013)
used the ng-route relaxation which was proposed by Baldacci et al. (2011) to derive
a lower bound on the set-partitioning based formulation of 2E-CVRP, and then used
the lower bound and the q-route relaxation which was proposed by Christofideds et al.
(1981) to generate approximately exact solutions.

There is much work concerning on solving 2E-CVRP which are mainly consid-
ered in deterministic environment, and formulated in form of integer linear program.
BecauseCVRP isNP-hard, 2E-CVRPalso cannot be solved in polynomial time.There-
fore, approximation algorithms such as those described by Das (2011) and heuristic
algorithms (Ghannadpour et al. 2014; Li et al. 2014; Zhang et al. 2014) are employed.
Approximation algorithms could ensure a limited ratio for the solutions, however, it is
also difficult to find good approximation ratio for CVRP. As proved byWøhlk (2008),
finding a 3/2-approximation for the Capacitated Arc Routing Problem (CARP) is NP-
hard, and it goes worse when the edges do not satisfy the triangle inequality. Because
each CARP instance could be transformed to CVRP, finding 3/2-approximation for
CVRP is also NP-hard. To deal with large scale instances, heuristic algorithms are
largely be developed, such as the cutting plane method described by Baldacci et al.
(2008) and the column generationmethod described byBaldacci andMingozzi (2009),
in which the lower and upper bounds influence the performance ratio significantly.

In order to find a much more efficient solution for handling CVRP and let the
problem adapt real-world environment, this paper extends 2E-CVRP and introduces a
new model, i.e., the adaptive two-echelon capacitated vehicle routing problem (A2E-
CVRP), in which there are multiple depots, such as airports, train stations and sea
ports, and these depots could deliver the demands directly to the nearby customers,
rather than transport them to satellites firstly. Because of this adaptive nature, A2E-
CVRP generalizes the classical 2E-CVRP, and theoretically, its optimum route set has
less cost than that of 2E-CVRP.

This paper introduces a mathematical formulation for A2E-CVRP. We derive a
lower bound based on the method proposed by Baldacci et al. (2013), and then use
it to derive an upper bound which is also an approximate solution of A2E-CVRP. In
the computational results, we show that both the lower and the upper bounds of A2E-
CVRP are smaller than those of the classical 2E-CVRP. Besides, the lower and the
upper bounds could be further used to generate solutions closer to optimality. Based
on the computational results on benchmark instances, the A2E-CVRP outperforms
the classical 2E-CVRP in the costs of routes.

The remaining part of this paper is organized as below. In Sect. 2, we describe the
A2E-CVRP in detail and give its mathematical formulation. Sections 3 and 4 describe
the lower bound and the algorithm for generating the lower and upper bounds. To
reduce the length of the paper, the proof of the lower and upper bounds is not included.
Computation results are listed in Sect. 5, and some conclusive remarks are given in
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Sect. 6. Besides, the proof of the theorems in this paper could be found in the e-
companion of this paper.

2 Problem introduction and mathematical formulation

The map of A2E-CVRP is an undirected complete graph G(N , E), which is abstract
from some real-world logistics environments. The vertex set N = ND ∪NS ∪NC , and
edge set E consists of all the edges connecting the vertices in N , where ND represents
the depot sets, NS represents the satellites set, and NC is the customer set.

Each customer i ∈ NC has a positive integer demand qi , and each edge in E has
a routing cost, which is commonly the road length. Each depot d ∈ ND can deliver
the demand (≤B1

d ) to satellites bym
1
d homogeneous vehicles of load capacity Q1, and

each k ∈ NS ∪ ND can deliver the demand (≤B2
k ) to customers by m2

k homogeneous
vehicles of load capacity Q2. B1

d ≤ m1
d Q1 and B2

k ≤ m2
k Q2 always hold.

The dynamic process of A2E-CVRP is illustrated in Fig. 1. The squares, triangles
and circles represent depots, satellites and customers respectively. The solid lines
represent the first-level routes, which deliver demands from depots to satellites. The
dashed lines represent the second-level routes, which deliver demands from satellites
to customers. The bold solid lines represent the adaptive routes, which deliver demands
from depots directly to customers. Our goal is to find a set consisting of the kind of
routes with the minimum routing costs.

The linear program formulation of A2E-CVRP is give below. Let Md be the index
set of each first-level routes dr of cost gdr starting from depot d, and Msd be the
subset ofMd , in which dr must visit satellite s. Furthermore, letRk be the index set
of each second-level (or adaptive) routes kl of cost ckl starting from satellite (or depot)
k, andRik be the subsetRk , in which kl must visit customer i . Finally, let wkl be the
total demand that is delivered by a second-level or adaptive route kl.

The decision variables xkl and ydr equal 1 if and only if the corresponding routes are
selected in the optimum solution, and 0 otherwise. The decision variable qsrd denotes
the demand that is delivered by the first-level route r starting from depot d and visiting

Fig. 1 The dynamic process of A2E-CVRP
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satellite s.

z(F) = min
∑

d∈ND

∑

r∈Md

gdr ydr +
∑

k∈NS∪ND

∑

l∈Rk

ckl xkl

s.t.

∑

k∈NS∪ND

∑

l∈Rik

xkl = 1, i ∈ NC (1)

∑

l∈Rk

xkl � m2
k, k ∈ NS ∪ ND (2)

∑

l∈Rk

xklwkl � B2
k , k ∈ NS ∪ ND (3)

∑

d∈ND

∑

r∈Msd

qsrd =
∑

l∈Rs

xslwsl , s ∈ NS (4)

∑

r∈Md

ydr � m1
d , d ∈ ND (5)

∑

s∈Rdr

qsrd � Q1, d ∈ ND, r ∈ Md (6)

∑

r∈Md

∑

s∈Rdr

qsrd � B1
d , d ∈ ND (7)

xkl ∈ {0, 1}, l ∈ Rk, k ∈ NS ∪ ND (8)

ydr ∈ {0, 1}, r ∈ Md , d ∈ ND (9)

qsrd ∈ Z
+, s ∈ NS, r ∈ Md , d ∈ ND (10)

The second-level and adaptive constraints are given by (1)–(3). (1) Ensures each
customer is visited exactly once. (2) Ensures that a depot or satellite uses at most
all its own second-level vehicles. (3) Ensures a depot or satellite will not supply
demands beyond its service ability. The first-level constraints are (5)–(7). (5) Ensures
a depot uses at most all its own first-level vehicles. (6) Ensures a first-level vehicle
will not deliver demands beyond its load capacity. (7) Ensures a depot will not supply
demands beyond its service ability. Constraint (4) connects the first-level and second-
level routes, that is to say, the demands received by a satellite must equal to those it
delivered. Constraints (8)–(10) describes the decision variables.

3 The lower bound of A2E-CVRP

The lower bound is formulated in Theorems 1 and 3. Theorem 1 relaxes the model of
A2E-CVRP in a lagrangian fashion, and subsequently, Theorem 3 relaxes the formu-
lation in Theorem 1 to improve the effectiveness in running time.
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3.1 Lower bound z(RF)

Theorem 1 firstly introduces the dual variables λi ∈ R, i ∈ NC of constraint (1) and
μk ∈ R

−, k ∈ NS ∪ ND of constraint (2), and then defines the marginal routing cost
βik for the second-level or adaptive route kl which serves customer i ∈ NC .

∑

i∈NC

αiklβik � ckl −
∑

i∈NC

αiklλi − μk, l ∈ Rk, k ∈ NS ∪ ND (11)

αikl means the number of times that customer i ∈ NC is visited by route kl. ξik equals
1 if and only if the demand of customer i ∈ NC is delivered from k. The relaxation
RF is given as below.

z(RF(β, λ, μ)) = min
∑

k∈NS∪ND

∑

i∈NC

ξikβik +
∑

d∈ND

∑

r∈Md

ydr gdr

+
∑

i∈NC

λi +
∑

k∈NS∪ND

μkm
2
k

s.t.

∑

k∈NS∪ND

ξik = 1, i ∈ NC (12)

∑

i∈NC

ξikqi � B2
k , k ∈ NC ∪ ND (13)

∑

d∈ND

∑

r∈Msd

qsrd =
∑

i∈NC

ξisqi , s ∈ NS (14)

(5)−(7), (9) and (10)

ξik ∈ {0, 1}, i ∈ NC , k ∈ NS ∪ ND . (15)

Theorem 1 z(RF(β, λ, μ)) is a lower bound of z(F), for any βik defined in (11),
λi ∈ R and μk ∈ R

−.

Corollary 1 Let z(UB) be an upper bound of z(F). For any βik defined in (11),
λi ∈ R and μk ∈ R

−, define the reduced cost as below.

c̃kl = ckl −
∑

i∈NC

αikl(βik + λi ) − μk � 0, l ∈ Rk, k ∈ NS ∪ ND (16)

Then, any optimum solution of the mathematical formulation of A2E-CVRP can-
not contain a second-level or adaptive route whose reduced cost c̃kl � z(UB) −
z(RF(β, λ, μ)).
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Theorem 2 Let z(LF) be the optimum solution of the linear relaxation of A2E-CVRP,
then the following inequality holds.

max
(β, λ, μ)

z(RF(β, λ, μ)) � z(LF).

3.2 Lower bound z(RF)

The lower bound z(RF(β, λ, μ)) is the solution of the linear program RF(β, λ, μ).
In the optimum solution, ξkrw equals 1 if and only if the first-level route dr deliver
demand w, and ξkrw equals 1 if and only if the depot d deliver demand w by using its
adaptive vehicles.

z(RF(β, λ, μ)) = min
∑

d∈ND

∑

r∈Md

∑

w∈Wdr

(gdr + φdrw)ξdrw +
∑

d∈ND

∑

w∈Wd

φdwξdw

+
∑

i∈NC

λi +
∑

k∈ND∪ND

μkm
2
k

s.t.
∑

d∈ND

∑

r∈Md

∑

w∈Wdr

wξdrw +
∑

d∈ND

∑

w∈Wd

wξdw = qtot (17)

∑

r∈Md

∑

w∈Wdr

ξdrw � 1,
∑

w∈Wd

ξdw � 1, d ∈ ND, r ∈ Md (18)

ξdrw ∈ {0, 1}, d ∈ ND; r ∈ Md and w ∈ Wdr (19)

ξdw ∈ {0, 1}, d ∈ ND; r ∈ Md and w ∈ Wdr (20)

The φdrw and φdw are detailed as below.

φdrw = min
∑

i∈NC

(
min
s∈Rdr

βis

)
zi , φdw = min

∑

i∈NC

βid zi

s.t.
∑

i∈NC

qi zi = w (21)

0 � zi � 1, i ∈ NC (22)

φdrw is a lower bound of the second-level route costs for delivering some demand w

from the satellites Rdr , which are visited by the first-level route r ∈ Md ; φdw is a
lower bound of the adaptive route costs for delivering some demand w from the depot
d.

Theorem 3 z(RF(β, λ, μ)) � z(F), for any βik defined in (11), λi ∈ R and
μk ∈ R

−.
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Corollary 2 Let z(UB) be an upper bound of z(F). Then, any optimum solution of the
mathematical formulation of A2E-CVRP cannot contain a second-level or adaptive
route whose reduced cost c̃kl > z(UB) − z(RF(β, λ, μ)).

3.3 The smaller range of demand

The demand rangeWdr andWd could be reduced as blow, so that the computation for
the lower bound could speed up.

Wdr = {w ∈ Z
+ : wmin

dr � w � wmax
dr }, where

Wmin
d = max{0, q ′}, and wmax

dr = min{Q1,
∑

s∈Rdr

B2
s , B1

d , qtot }, where

q ′ = qtot − qa − q ′
1st − q ′′

1st , where

qa =
∑

d∈ND

B2
d , q ′

1st = min

⎧
⎨

⎩
∑

d∈ND\{d}
B1
d ,

∑

s∈NS

B2
s

⎫
⎬

⎭,

q ′′
1st = min

{
B1
d , max{0, m1

d − 1)
}

Wd =
{
w ∈ Z

+ : wmin
d � w � wmax

d

}
, where

Wmin
d = max{0, q ′}, and wmax

d = min{B2
d , qtot }, where

q ′ = qtot − q1st − qa, q1st = min

⎧
⎨

⎩B1
d ,

∑

s∈NS

B2
s

⎫
⎬

⎭ , qa′ =
∑

d∈ND\{d}
B2
d .

4 The algorithm for the bounds

This section details the algorithm for generating the lower and upper bounds as
below, which generalizes the algorithm proposed by Baldacci et al. (2013). Especially
for computing the upper bound (UB), we directly use the corresponding procedure
described by Baldacci et al. (2013), by abandoning its improvement stage. Our com-
putational results show that it still generates approximate solutions within toleration.
Besides, we compute UB each time when the micro iteration is finished to improve
the upper bound.

1. Initialization
Rk = {(k, i, k)}, k ∈ NS ∪ ND

λi = 0, i ∈ NC

μk = 0, k ∈ NS ∪ ND

LB = 0 and U B = ∞
2. Iteration (Macro times)

(1) Iteration (Micro times)
(i) Set z∗ = 0
(ii) Compute βik, i ∈ NC , k ∈ NS ∪ ND by routes setRk and Theorem 4.
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(iii) Compute z(RF) as described in Sect. 4.2
Set z∗ = z(RF) once z(RF) > z∗, and
Set β∗ = β, λ∗ = λ,μ∗ = μ

(vi) Compute λ and μ by the subgradient method, which is described in
Sect. 4.2.

(2) Compute UB
(3) Update Rk = Rk ∪ Nk, where Nk = R̂k \ R̄k .

If each Nk = ∅ and z∗ > LB, then LB = z∗.

4.1 Computing βi k

We define themarginal cost βis and βid for each satellite and each depot respectively,
whose computing formulas are combined into (23) in Theorem 4. Because only a
subset R̄k ⊆ R̂k could be used for computing z∗ = z(RF), βik is valid only if
both the second-level routes and the adaptive routes are not generated, and so does
z∗ = z(RF). The routes are generated in form of ng-routes (Baldacci et al. 2011).

Theorem 4 Let R̂k ⊇ Rk be the index set of second-level or adaptive (nonnecessarily
elementary) routes, a feasible βik satisfying (11) could be computed as below.

β̂ik = qi · min
l∈R̂ik

{
ckl − ∑

i∈NC
αiklλi − μk∑

i∈NC
αiklqi

}
, k ∈ NS ∪ ND, i ∈ NS . (23)

4.2 Generating z(RF)

The solution z(RF) is generated by solving the following integer program. Here,
h1d(w) is the minimum cost of depot d, whose delivering demand is w. h1d(w) equals
to the sum of the costs of its first-level routes and some lower bound φdrw on the
correspondingly second-level routes. hA

d (w) is the minimum cost of depot d, whose
demand is w and delivered by its adaptive routes. Contraint (24) ensures that all the
delivered demands equal to the total demands, and Contraint (25) ensures that a depot
must deliver exactly one certain demand by its first-level routes or adaptive routes.
Finally, ρ1

dw and ρA
dw are the decision variables. This integer program could be solved

within time toleration by CPLEX (2012) or even by pure enumeration, because the
number of all the depots is a small constant in the environment of real-world logistics.

h = min
∑

d∈ND

h1d(w) · ρ1
dw +

∑

d∈ND

hA
d (w) · ρA

dw

s.t.
∑

d∈ND

w · ρ1
dw +

∑

d∈ND

w · ρA
dw = qtot (24)

∑

w∈Wdr

ρ1
dw � 1,

∑

w∈Wd

ρA
dw � 1 = qtot , d ∈ ND (25)
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ρ1
dw ∈ {0, 1}, d ∈ ND (26)

ρA
dw ∈ {0, 1}, d ∈ ND (27)

In the right side of the objective function, hA
d (w) and h1d(w) are the vectors of the

results by solving (28) and the dynamic program (29) respectively.

hA
d (w) = φdw, d ∈ Nd (28)

h1d(w) = min
0�w′�min{w,wmax

dr }
h1d(r − 1, w′). (29)

4.3 Searching direction

The procedure for computing the searching direction in the subgradient method is
given as below. In our experiments, the length of search step e is set to a constant
1.0. However, the best value e varies among different instances. A good way to set
the value is adopting the changeable length, i.e., e is set to a small value firstly,
then is increased when z(RF) increases slowly and reduced when z(RF) increases
quickly.

(1) Input
optimum solution of RF : ξkrw and ξkw
optimum solution of φkrw and φkw: zi

(2) Computation
Obtain route sets R̃k = {l(i, k)} and R̃d = {l(i, d)}
(i) (a) init R̃k = ∅, k ∈ NS

(b) and l(i, d) = 0, i ∈ NC , d ∈ ND

(ii) (a) for each first-level route dr , such that ξdrw = 1,
get k̄(i) = {k|mink∈Rdr βik}, i ∈ V (d, r, w)

set l(i, k̄(i)) = the route corresponding to βik, i ∈ V (d, r, w)

for each i ∈ V (d, r, w), get R̃k(i) = R̃k(i) ∪ {l(i, k(i))}
(b) for each depot d, such that ξdw = 1,

get d̄(i) = {d}, i ∈ V (d, w)

set l(i, d̄(i)) = the route corresponding to βid , i ∈ V (d, w)

for each i ∈ V (d, w), get R̃d(i) = R̃d(i) ∪ {l(i, d(i))}
(3) Output

λi = λi − ε · γ · (αi S + αi D − 1)
μk = min{0, μk = ε · γ · (δk − mk)}
μd = min{0, μd = ε · γ · (δd − md)}
αi S = ∑

s∈NS

∑
l∈R̃s

αisl · x̃sl , i ∈ NC

αi D = ∑
d∈ND

∑
l∈R̃d

αidl · x̃dl , i ∈ NC

δs = ∑
l∈R̃s

x̃sl , s ∈ NS

δd = ∑
l∈R̃d

x̃dl , s ∈ ND

x̃sl = ∑
i∈NC :l(i,s)=l(αisl · qi )/

(∑
i∈NC

αisl · qi
)

, l ∈ R̃s, s ∈ NS
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x̃dl = ∑
i∈NC :l(i,d)=l(αidl · qi )/

(∑
i∈NC

αidl · qi
)

, l ∈ R̃d , d ∈ ND

r = 0.2RF(β,λ,μ)∑
i∈NC (αi S+αi D−1)2+∑

s∈NS (δs−ms )2+∑
d∈ND

(δd−md )2
.

5 Computational results

The algorithm for computing the lower and upper bounds are coded in Matlab, with
CPLEX (2012) for solving linear programs and mix-integer programs. The experi-
ments are performed on the environment of Inter Core i5-3470 CPU (3.20GHz), 4
GB RAMMemory and Window 7 operation system. The data sets are from Set 1, Set
2 and Set 3 which are used by Baldacci et al. (2013). The computational results are
detailed in Tables 1 and 2. In practice, the parameter Macro is set to 50, Micro is set
to 5, e is set to 0.1, and |Ni | is set to 12 for instances in Set 1. For Set 2, Macro is set
to 15, Micro is set to 20, e is set to 0.1, and |Ni | is set to 21.

Table 1 shows the results of instances from Set 1, each of which has 1 depot, 2 satel-
lites and 13 customers. The “Solution” column lists the solution of A2E-CVRP. The
“z(F)” sub-column shows the optimum costs computed directly by CPLEX (2012).
The “nu/ns” sub-column shows the numbers of the used and total satellites in the
optimum solutions. In “N 1st−N 2nd−Na” sub-column, the numbers from left to right
denote the numbers of the first-level routes, second-level routes and adaptive routes
respectively used by the optimum solutions. In the “Lower Bound” column, “LB”
shows the lower bound computed by our algorithm, and “LB/z” shows the percent-
ages of the lower bounds on the corresponding optimum solutions. The “Comparison”
column shows the solution of classical 2E-CVRP. The “z1(F)” sub-column shows the
optimum solutions of 2E-CVRP, the “SC” sub column shows the save costs, i.e.,
z1(F) − z(F), and the “SC/z1” sub-column shows the percentages of the saved costs
on z1(F). The bold results in the column of Lower Bound show the exact solutions.
The bold results in the column of Comparison show that the saved costs become large
when the satellites are located far away from the depot.

Table 2 shows the results of all the instances with 22 customers from Set 2 and 3.
When the customer number goes up to 20, the computing timeof generating all possible
routes is beyond toleration. So, we use the algorithm for computing UB described
in Sect. 4 to output approximate solutions. The “Bounds” column shows the lower
bounds and upper bounds on the instances, and the LB/UB shows the percentages.
The “Comparison” shows the comparison to the computational results of Baldacci
et al. (2013), in which “z1(F)” and “LD1” denote the solutions and lower bounds
computed by their algorithm DP1. The “SC” sub-column denotes the saved costs,
which equal to z1(F) minus UB. The “SC/z1” sub-column shows the percentages of
SC on z1(F). The italic results show that there are two solutions which are worse than
the compared ones.

Figure 2 shows the comparison of the results in Table 1. The lower bounds, z(F)

and z1(F) are shown in forms of dashed line, solid line and dotted line respectively.
The X-axis shows the instance numbers and the Y-axis show the costs. It is easy to see
that z(F) is always lower than z1(F), which demonstrates that the solution of A2E-
CVRP is always better than that of classical 2E-CVRP. The z(F) becomes lower and
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Table 1 Computational results on the instances of set 1

Instances Solution Lower Bound Comparison

z(F) nu /ns N1st–N2nd–
Na

LB %(LB/z) z1(F) SC %(SC/z1)

1. E-n13-k4-1 260 2/2 1–4–1 251.65 96.79 280 20 7.14

2. E-n13-k4-2 268 2/2 1–4–1 254.29 94.88 286 18 6.29

3. E-n13-k4-3 268 2/2 1–4–1 248.95 92.89 284 16 5.63

4. E-n13-k4-4 210 1/2 1–3–1 210 100 218 8 3.67

5. E-n13-k4-5 210 1/2 1–3–1 210 100 218 8 3.67

6. E-n13-k4-6 222 1/2 1–4–1 219.44 98.82 230 8 3.48

7. E-n13-k4-7 216 1/2 1–3–1 216 100 224 8 3.57

8. E-n13-k4-8 228 1/2 1–3–1 223.21 97.9 236 8 3.39

9. E-n13-k4-9 236 1/2 1–4–1 225.19 95.42 244 8 3.29

10. E-n13-k4-10 260 1/2 1–3–1 240.4 92.46 268 8 2.99

11. E-n13-k4-11 268 1/2 1–3–1 249.02 92.92 276 8 2.9

12. E-n13-k4-12 270 2/2 1–4–1 252.96 93.69 290 20 6.9

13. E-n13-k4-13 270 1/2 1–3–1 250.34 92.72 288 18 6.25

14. E-n13-k4-14 210 1/2 1–3–1 210 100 228 18 7.9

15. E-n13-k4-15 210 1/2 1–3–1 210 100 228 18 7.9

16. E-n13-k4-16 222 1/2 1–4–1 218.49 98.42 238 16 6.72

17. E-n13-k4-17 216 1/2 1–3–1 215.08 99.57 234 18 7.7

18. E-n13-k4-18 228 1/2 1–3–1 223.18 97.89 246 18 7.32

19. E-n13-k4-19 236 1/2 1–4–1 224.87 95.28 254 18 7.09

20. E-n13-k4-20 260 1/2 1–3–1 242.29 93.19 276 16 5.8

21. E-n13-k4-21 268 1/2 1–3–1 249.92 93.25 286 18 6.29

22. E-n13-k4-22 268 2/2 1–3–2 250 93.28 312 44 14.1

23. E-n13-k4-23 210 1/2 1–3–1 210 100 242 32 13.22

24. E-n13-k4-24 210 1/2 1–3–1 210 100 242 32 13.22

25. E-n13-k4-25 222 1/2 1–4–1 220.93 99.52 252 30 11.9

26. E-n13-k4-26 216 1/2 1–3–1 216 100 248 32 12.9

27. E-n13-k4-27 228 1/2 1–3–1 226.33 99.27 260 32 12.31

28. E-n13-k4-28 236 1/2 1–4–1 227.81 96.53 268 32 11.94

29. E-n13-k4-29 260 1/2 1–3–1 244.34 93.98 290 30 10.34

30. E-n13-k4-30 268 1/2 1–3–1 251.72 93.93 300 32 10.67

31. E-n13-k4-31 210 1/2 1–3–1 210 100 246 36 14.63

32. E-n13-k4-32 210 1/2 1–3–1 210 100 246 36 14.63

33. E-n13-k4-33 222 1/2 1–4–1 220.96 99.53 258 36 13.95

34. E-n13-k4-34 216 1/2 1–3–1 216 100 252 36 14.29

35. E-n13-k4-35 228 1/2 1–3–1 225.59 98.94 264 36 13.67

36. E-n13-k4-36 234 2/2 1–5–1 227.72 97.32 272 38 13.97

37. E-n13-k4-37 252 2/2 1–4–1 237.71 94.33 296 44 14.86

38. E-n13-k4-38 256 2/2 1–4–1 245.29 95.82 304 48 15.79
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Table 1 continued

Instances Solution Lower Bound Comparison

z(F) nu /ns N1st–N2nd–
Na

LB %(LB/z) z1(F) SC %(SC/z1)

39. E-n13-k4-39 202 2/2 1–3–1 199.98 99 248 46 18.55

40. E-n13-k4-40 202 2/2 1–4–1 201.97 99.99 254 52 20.47

41. E-n13-k4-41 204 2/2 1–4–1 202.95 99.49 256 52 20.31

42. E-n13-k4-42 210 1/2 1–3–1 208.82 99.44 262 52 19.85

43. E-n13-k4-43 210 1/2 1–3–1 207.12 98.63 262 52 19.85

44. E-n13-k4-44 210 1/2 1–3–1 210 100 262 52 19.85

45. E-n13-k4-45 210 1/2 1–3–1 210 100 262 52 19.85

46. E-n13-k4-46 210 2/2 1–4–1 209.03 99.54 280 70 25

47. E-n13-k4-47 204 2/2 1–5–1 203.95 99.96 274 70 25.55

48. E-n13-k4-48 210 1/2 1–3–1 207.96 99.03 280 70 25

49. E-n13-k4-49 210 1/2 1–3–1 210 100 280 70 25

50. E-n13-k4-50 210 1/2 1–3–1 210 100 280 70 25

51. E-n13-k4-51 210 1/2 1–3–1 210 100 280 70 25

52. E-n13-k4-52 210 2/2 1–5–1 209.99 99.99 292 82 28.08

53. E-n13-k4-53 222 2/2 1–5–1 219.06 98.68 300 78 26

54. E-n13-k4-54 216 2/2 1–3–1 214.4 99.26 304 88 28.95

55. E-n13-k4-55 222 1/2 1–4–1 220.19 99.18 310 88 28.39

56. E-n13-k4-56 222 1/2 1–4–1 220.91 99.51 310 88 28.39

57. E-n13-k4-57 214 2/2 1–4–1 214 100 326 112 34.36

58. E-n13-k4-58 216 1/2 1–3–1 216 100 326 110 33.74

59. E-n13-k4-59 216 1/2 1–3–1 216 100 326 110 33.74

60. E-n13-k4-60 216 1/2 1–3–1 216 100 326 110 33.74

61. E-n13-k4-61 228 1/2 1–3–1 227.84 99.93 338 110 32.54

62. E-n13-k4-62 228 1/2 1–3–1 228 100 350 122 34.86

63. E-n13-k4-63 228 1/2 1–3–1 228 100 350 122 34.86

64. E-n13-k4-64 236 1/2 1–4–1 234.67 99.44 358 122 34.08

65. E-n13-k4-65 236 2/2 1–4–1 234.81 99.5 358 122 34.08

66. E-n13-k4-66 260 2/2 1–4–1 241.72 92.97 400 140 35

lower than z1(F), when the satellites are located further away from depots. Besides,
the lower bounds generated by our algorithm are close to z(F), and there are 22 results
out of 66 which are equal to z(F).

Figure 3 shows the comparison of the results in Table2. The lower bounds, upper
bounds and z1(F) are showed in forms of dashed line, solid line and dotted line
respectively. The meaning of X-axis and the Y-axis is same as that in Fig. 2. The com-
putational results show that the upper bounds are smaller than the optimum solutions
of classical 2E-CVRP. There are only two exceptions in the instances, whose lower
bounds are close to the optimum solutions of the corresponding 2E-CVRP.
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Table 2 Computational results on the instances of n22 instances of set 2 and set 3

Instances Bounds Comparison

LB UB %(LB/UB) z1(F) %(LD1/z1) SC %(SC/z1)

1. E-n22-k4-s6-17 373.08 375.3 99.4 417.07 99.9 41.77 10.01

2. E-n22-k4-s8-14 368.28 374.33 98.38 384.96 99.5 10.63 2.76

3. E-n22-k4-s9-19 368.95 376.51 98 470.6 95.4 94.09 19.99

4. E-n22-k4-s10-14 362 374.63 96.63 371.5 99.6 −3.13 –

5. E-n22-k4-s11-12 372.85 375.28 99.35 427.22 96.5 51.94 12.16

6. E-n22-k4-s12-16 367.96 383.09 96.05 392.78 96.7 9.69 2.47

7. E-n22-k4-s13-14 457.09 517.76 88.28 526.15 96.4 8.39 1.59

8. E-n22-k4-s13-16 449.27 468.24 95.95 521.09 94.9 52.85 10.14

9. E-n22-k4-s13-17 460.56 496.82 92.7 496.38 96.8 −0.44 –

10. E-n22-k4-s14-19 463.09 478.63 96.75 498.8 93.2 20.17 4.04

11. E-n22-k4-s17-19 486.39 496.58 97.95 512.8 95.5 16.22 3.16

12. E-n22-k4-s19-21 492.83 515.95 95.52 520.42 94.9 4.47 0.86

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66150
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Fig. 2 Comparison of the results in Table 1

6 Conclusions

In this paper, we described the mathematical formulation of the adaptive two ech-
elon vehicle routing problems. Then, a lower bound of A2E-CVRP is given, after
which the upper bound could be generated as an approximate solution. The solution
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of A2E-CVRP is better than that of 2E-CVRP both in theory and our computational
experiments.

Tables 1 and 2 show that the saved costs become largewhen the satellites are located
far away from the depot. Besides, the lower bound and upper bound could be further
used to derive algorithm for generating solutions closer to the optimality, such as that
described by Baldacci et al. (2013) or some branch and bound methods.

Acknowledgements This work was financially supported by National Natural Science Foundation of
Chinawith grant no. 11371004, and ShenzhenOverseas High Level Talent Innovation and Entrepreneurship
Special Fund with grant no. KQCX20150326141251370.

Appendix 1: Proofs of Theorem 1 and Corollary 1

Consider an optimal solution (x̄, ȳ, q̄) of cost z̄(F), and we define

Jk = {l ∈ Rk : x̄kl = 1}, k ∈ NS ∪ ND

Lk = {r ∈ Md : ȳdr = 1}, d ∈ ND

V̄k = {i ∈ Rkl : l ∈ Jk}, k ∈ NS ∪ ND

N̄S = {i ∈ Rr : r ∈ Lk : k ∈ ND

N̄D =
⎧
⎨

⎩d ∈ ND :
∑

l∈Rd

x̄dl � 1

⎫
⎬

⎭
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Let z(RF(β, λ, μ)) be the optimal cost, of a valid group of (β, λ, μ). So, from (11),
we have

c̃kl = ckl −
∑

i∈Nc

αikl · (βik + λi ) − μk � 0, k ∈ NS ∪ ND, l ∈ Rk

Then

∑

k∈N̄S∪N̄D

∑

l∈Jk

c̃kl =
∑

k∈N̄S∪N̄D

∑

l∈Jk

ckl −
∑

k∈N̄S∪N̄D

∑

l∈Jk

∑

i∈Nc

αikl ·(βik +λi )−
∑

k∈N̄S∪N̄D

∑

l∈Jk

μk

(30)
and obviously,

∑

l∈Jk

∑

i∈Nc

αikl · (βik + λi ) =
∑

i∈V̄k
(βik + λi ), k ∈ N̄S ∪ N̄D (31)

∑

k∈N̄S∪N̄D

∑

l∈Jk

μk =
∑

k∈N̄S∪N̄D

|Jk | · μk �
∑

k∈N̄S∪N̄D

m2
k · μk (32)

move (31), (32) into (30), we get

∑

k∈N̄S∪N̄D

∑

l∈Jk

c̃kl =
∑

k∈N̄S∪N̄D

∑

l∈Jk

ckl +
∑

d∈Nd

∑

r∈Md

ydr · gdr

−
⎛

⎝
∑

d∈Nd

∑

r∈Md

ydr · gdr +
∑

k∈N̄S∪N̄D

∑

i∈V̄k
(βik + λi ) +

∑

k∈N̄S∪N̄D

m2
k · μk

⎞

⎠ (33)

In (33), the left side � 0, the first and the second terms of the right side = z̄(F), and
the remaining terms of the right side = the cost z̃(RF(α, β, γ )) of feasible solution of

ỹ = ȳ

ξik = 1, i ∈ V̄k, k ∈ N̄S ∪ N̄D; 0, otherwise

q̃ = q̄

so, ∑

k∈N̄S∪N̄D

∑

l∈Jk

c̃kl � z̄(F) − z(RF(β, λ, μ)) (34)

and

z̄(F) − z(RF(β, λ, μ)) � 0

It is obvious that corollary 1 hold by (34).
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Appendix 2: Proof of Theorem 2

z(dual LF) = max
∑

i∈Nc

ui +
∑

k∈NS∪ND

m2
k · υk +

∑

k∈NS∪ND

B2
k · σk +

∑

d∈ND

m1
d · ηd

+
∑

d∈Nd

∑

d∈ND

∑

r∈Md

ϑdr

s.t.

∑

i∈Rsl

μi + υs + wsl · σs − ωsl · α � csl , s ∈ Ns, l ∈ Rs (35)

∑

i∈Rdl

μi + υd + ωdl · σd � cdl, d ∈ ND, l ∈ Rk (36)

ηd − Q1 · ωdr + ϑdr � gdr , d ∈ Nd , r ∈ Md (37)

αi + ωdr � 0, i ∈ Ns, d ∈ Nd , r ∈ Mid (38)

μ ∈ R, υk, σk, αk, ηk, ωkr , ϑkr � 0. (39)

Construct (β, λ,μ) satisfying (11)

Firstly, let

μk = υ∗
k , k ∈ NS ∪ ND

βis = μ∗
i + qi (σ

∗
s − α∗

s ), i ∈ Nc, s ∈ NS

βid = u∗
i + qi · σ ∗

d , i ∈ Nc, d ∈ ND

λi = 0, i ∈ Nc

By the definition of aikl , it’s obvious that

∑

i∈Nc

aikl · qi = wkl , k ∈ NS ∪ ND, l ∈ Rk

then, we have

∑

i∈Nc

aikl · βik =
∑

i∈Nc

aikl · u∗
i + wkl · σ ∗

k − wkl · α∗
k , s ∈ NS, l ∈ Rk

and

∑

i∈Nc

aidl · βid =
∑

i∈Nc

aidl · u∗
i + wdl · σ ∗

d , d ∈ ND, l ∈ Rd

∑

i∈Nc

aikl · βik ≤ ckl − v∗
k , k ∈ NS ∪ND , l ∈ Rk
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Prove max(β,λ,μ) � z(RF(β, λ,μ)) � z(dual LF)

For μ and υ

Let (ξ∗, y∗, q∗) be the optimal solution of z(RF(β, λ, μ)). By definition (β, λ, μ),
we have

z (RF (β, λ, μ)) =
∑

s∈Ns

∑

i∈Nc

(u∗
i + qi ·

(
σ ∗
s − α∗

s

)
) · ξ∗

is +
∑

d∈ND

∑

i∈Nc

(u∗
i + qi · σ ∗

d ) · ξ∗
id

+
∑

d∈ND

∑

r∈Md

y∗
dr · gdr +

∑

i∈Nc

λi +
∑

k∈Ns ∪ND

v∗
k · m2

k

=
∑

i∈Nc

u∗
i ·

⎛

⎝
∑

s∈Ns

ξ∗
is

⎞

⎠+
∑

s∈Ns

σ ∗
s ·

⎛

⎝
∑

i∈Nc

qiξ
∗
is

⎞

⎠

−
∑

s∈Ns

α∗
s ·

⎛

⎝
∑

i∈Nc

qiξ
∗
is

⎞

⎠

+
∑

i∈Nc

u∗
i ·

⎛

⎝
∑

d∈ND

ξ∗
id

⎞

⎠ +
∑

d∈ND

σ ∗
d ·

⎛

⎝
∑

i∈Nc

qiξ
∗
id

⎞

⎠

+
∑

d∈ND

∑

r∈Md

y∗
dr · gdr +

∑

k∈Ns ∪ ND

v∗
k · m2

k

By (12), we have

∑

i∈Nc

u∗
i ·

⎛

⎝
∑

k∈Ns ∪ ND

ξ∗
ik

⎞

⎠ =
∑

i∈Nc

u∗
i

For η and ϑ

By (37), we have

∑

d∈ND

∑

r∈Md

gdr · y∗
dr �

∑

d∈ND

∑

r∈Md

η∗
d · y∗

dr −
∑

d∈ND

∑

r∈Md

Q1 · ω∗
dr · y∗

dr

+
∑

d∈ND

∑

r∈Md

ϑ∗
dr · y∗

dr

Then, because η∗
d � 0, and by (13), we have

∑

d∈ND

⎛

⎝η∗
d ·

∑

r∈Md

y∗
dr

⎞

⎠ ≥
∑

d∈ND

η∗
d · m1

d
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and because ϑ∗
d � 0, we have

∑

r∈Md

ϑ∗
d · y∗

dr �
∑

r∈Md

ϑ∗
d

For σ

From above, we have

z (RF (β, λ, μ)) �
∑

i∈Nc

u∗
i +

∑

s∈Ns

σ ∗
s ·

⎛

⎝
∑

i∈Nc

qiξ
∗
is

⎞

⎠ −
∑

s∈NS

α∗
s ·

⎛

⎝
∑

i∈Nc

qiξ
∗
is

⎞

⎠

+
∑

i∈Nc

u∗
i ·

⎛

⎝
∑

d∈ND

ξ∗
id

⎞

⎠ +
∑

d∈ND

σ ∗
d ·

⎛

⎝
∑

i∈Nc

qiξ
∗
id

⎞

⎠ +
∑

d∈ND

η∗
d · m1

d

−
∑

d∈ND

∑

r∈Md

Q1 · ω∗
dr · y∗

dr +
∑

d∈ND

∑

r∈Md

ϑ∗
dr +

∑

k∈NS ∪ ND

v∗
k · m2

k

Because σ ∗
d � 0 and by (13), we have:

∑

k∈NS ∪ ND

σ ∗
k ·

⎛

⎝
∑

i∈Nc

qiξ
∗
ik

⎞

⎠ ≥
∑

k∈NS ∪ ND

σ ∗
k · B2

k

For α and ω

By (14), we have

∑

s∈Ns

α∗
s ·

⎛

⎝
∑

i∈Nc

qiξ
∗
is

⎞

⎠ =
∑

s∈Ns

α∗
s ·

⎛

⎝
∑

d∈ND

∑

r∈Msd

q∗
srd

⎞

⎠

=
∑

s∈Ns

∑

d∈ND

∑

r∈Msd

α∗
s · q∗

srd

=
∑

i∈Ns

∑

d∈ND

∑

r∈Mid

α∗
i · q∗

srd

Because ω∗
kr � 0, and by (6), we have:

∑

d∈ND

∑

r∈Md

(−ω∗
dr y

∗
dr Q1) �

∑

d∈ND

∑

r∈Md

⎛

⎝−ω∗
dr

∑

i∈Rdr

q∗
srd

⎞

⎠

=
∑

d∈ND

∑

r∈Md

∑

i∈Rdr

(−ω∗
dr · q∗

srd)

=
∑

d∈ND

∑

r∈Mid

∑

i∈NS

(−ω∗
dr · q∗

srd)

=
∑

i∈NS

∑

k∈ND

∑

r∈Mik

(−ω∗
kr · q∗

jrk)
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and because (38), we have

−
∑

k∈Ns

α∗
k ·

⎛

⎝
∑

i∈Nc

qiξ
∗
ik

⎞

⎠ −
∑

k∈ND

∑

r∈Mk

Q1 · ω∗
kr · y∗

kr

� −
∑

i∈Ns

∑

k∈ND

∑

r∈Mik

α∗
i · q∗

irk

+
∑

i∈Ns

∑

k∈ND

∑

r∈Mik

(−ω∗
kr · q∗

jrk)

= −
∑

i∈Ns

∑

k∈ND

∑

r∈Mik

(α∗
i + ω∗

kr ) · q∗
jrk

� 0

Finally, by all above, we get z(RF(β, λ, μ)) � z(dualLF)

Appendix 3: Proofs of Theorem 3 and Corollary 2

We define the optimum solution of φkrw : z∗i (d, r, w), i ∈ NC . Let V (d, r, w) = {i ∈
NC : z∗i (d, r, w) > 0} be the set of supplied customers, and ξkrw = 1 if and only if
route r ∈ Md delivers demand w in the optimum solution.

Step 1: Prove ζkrw defined by (ξ̄ , ȳ, q̄) is a feasible solution
Let (ξ̄ , ȳ, q̄) be an optimum solution of z(RF(β, λ, μ)), and we define M d =

{r ∈ Md : ȳdr = 1}, V d = {i ∈ NC : ξ̄dr = 1}. For any r ∈ Md , define
w̄dr = ∑

s∈Rdr
q̄srd . For all ζ̄drw, set ζ̄drw = 1, when r ∈ M d and w = w̄dr ; set

ζ̄drw = 0, when r ∈ M d but w �= w̄dr ; set ζ̄drw = 0, when d ∈ Md \ M d . For
ND = {d ∈ ND : ∑

i∈NC
qi · ξ̄id > 0}, we define w̄d = ∑

i∈NC
qi · ξ̄id . For all ζ̄dw,

set ζ̄dw = 1, when d ∈ ND and w �= w̄d ; set ζ̄dw = 0, when d ∈ ND \ ND .
Its’ obvious that ζdrw satisfies (18), now we prove that ζ̄drw satisfies (17). By (14),

we have

∑

d∈ND

∑

i∈Nc

ξ̄id · qi +
∑

s∈NS

∑

d∈ND

∑

r∈Msk

q̄srd =
∑

k∈NS∪ND

∑

i∈Nc

ξ̄ik · qi .

By q̄srd , when r ∈ Md \M d , s ∈ NS , q̄srd = 0, when r ∈ M d , s ∈ NS \ Rdr ,
and the definition of w̄dr and ζ̄drw, we have

∑

s∈NS

∑

d∈ND

∑

r∈Msd

q̄srd =
∑

d∈ND

∑

r∈M d

∑

s∈Rdr

q̄srd =
∑

d∈ND

∑

r∈Md

∑

w∈Wdr

w · ζ̄drw

and

∑

d∈ND

∑

w∈Wd

w · ζ̄dw =
∑

d∈ND

∑

i∈Nc

ξ̄id · qi .
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By (12), we have

∑

s∈NS

∑

i∈Nc

ξ̄is · qi =
∑

i∈Nc

⎛

⎝qi ·
∑

s∈NS

ξ̄is

⎞

⎠

and

∑

k∈NS∪ND

∑

i∈Nc

ξ̄ik · qi =
∑

i∈Nc

⎛

⎝qi ·
∑

k∈NS∪ND

ξ̄ik

⎞

⎠ =
∑

i∈Nc

qi = qtot .

From the above 4 equations, we prove ζ̄drw satisfies (17).
Step 2: Prove θikr defined by (ξ̄ , ȳ, q̄) is a feasible solution
For i ∈ NC , we define θikr . When s ∈ NS, r ∈ Md and Msd = Msd ,

θisrd =
{
0, i f ξ̄is = 0

q̄srd∑
d∈ND

∑
r∈Msd

q̄srd
, i f ξ̄is = 1

When d ∈ ND ,

θid =
{
0, i f ξ̄id = 0
1, i f ξ̄id = 1

Then, for d ∈ ND, r ∈ M d , w = w̄dr , we define z̄i (r, w̄dr ) = ∑
s∈Rdr

θisrd , and
for d ∈ ND, w = w̄d , we define z̄i (w̄d) = θid . It’s obvious that 0 � zi � 1, now we
prove z̄i satisfies the constraint

∑
i∈NC

qi · zi = w.
Part 1
For d ∈ ND, r ∈ M d , w = w̄dr , we have

∑

i∈NC

qi · z̄i (r, w̄dr ) =
∑

i∈NC

qi ·
∑

s∈Rdr

θisrd .

By the definition of θisrd , it is easy to have

∑

i∈NC

qi ·
∑

s∈Rdr

θisrd =
∑

i∈NC

∑

s∈Rdr

qi · θisrd =
∑

s∈Rdr

∑

i∈V s

qi · θisrd

=
∑

s∈Rdr

⎛

⎝
∑

i∈V s

qi

⎞

⎠ · q̄srd∑
d∈ND

∑
r∈M sd

q̄srd
.

Since
∑

d∈ND

∑
r∈M sd

q̄srd = ∑
i∈V s

qi , we have

∑

s∈Rdr

⎛

⎝
∑

i∈V s

qi

⎞

⎠ · q̄srd∑
d∈ND

∑
r∈M sd

q̄srd
=

∑

s∈Rdr

q̄srd = w̄dr .
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From the above 3 equations, we get

∑

i∈NC

qi · z̄i (r, w̄dr ) = w̄dr .

Part 2
For d ∈ ND, w = w̄d , by the definition of θid , it is easy to have

∑

i∈NC

qi · z̄i (r, w̄d) =
∑

i∈NC

qi · θid =
∑

i∈VC

qi · θid = w̄d .

Step 3: Prove z(RF(β, λ, μ)) � z(RF(β̄, λ̄, μ̄))

By the definition of θisrd and θid , it is easy to know that, when i is served by
s ∈ NS, ξ̄is = ∑

d∈ND

∑
r∈M sk

θisrd ; When i is served by d ∈ ND, ξ̄id = θid . So,
we have

z̄(RF(β, λ, μ)) = min
∑

k∈NS∪ND

∑

i∈Nc

ξ̄ik · βik +
∑

d∈ND

∑

r∈Md

ȳdr · gdr

+
∑

i∈Nc

λi +
∑

k∈Ns∪ND

μk · m2
k

= min
∑

s∈NS

∑

i∈Nc

ξ̄ik · βis +
∑

d∈ND

∑

i∈Nc

ξ̄id · βid +
∑

d∈ND

∑

r∈Md

ȳdr · gdr

+
∑

i∈Nc

λi +
∑

k∈Ns∪ND

μk · m2
k

= min
∑

s∈NS

∑

i∈Nc

⎛

⎝
∑

d∈ND

∑

r∈M sd

θsrd

⎞

⎠ · βis +
∑

d∈ND

∑

r∈M d

gdr

+
∑

d∈ND

∑

i∈NC

θ̄id · βid +
∑

i∈Nc

λi +
∑

k∈Ns∪ND

μk · m2
k

It’s obvious that:

∑

s∈Ns

∑

i∈Nc

⎛

⎝
∑

d∈ND

∑

r∈M sd

θisrd

⎞

⎠ · βis =
∑

s∈Ns

∑

i∈Nc

∑

d∈ND

∑

r∈M sd

θisrd · βis

=
∑

d∈ND

∑

i∈Nc

∑

s∈Ns

∑

r∈M sd

θisrd · βis .

=
∑

d∈ND

∑

i∈Nc

∑

r∈M d

∑

s∈Rdr

θisrd · βis

=
∑

d∈ND

∑

r∈M d

⎛

⎝
∑

i∈Nc

∑

s∈Rdr

θisrd · βis

⎞

⎠ .
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By z̄i (r, w̄dr ) = ∑
s∈Rdr

θisrd , z̄i (w̄d) = θid = ξ̄id , and the definition of ζdrw and
ζdw, we have

∑

i∈Nc

∑

s∈Rdr

βis · θisrd ≥
∑

i∈Nc

(
mins∈Rdr βis

) ·
⎛

⎝
∑

s∈Rdr

θisrd

⎞

⎠

=
∑

i∈Nc

(
mins∈Rdr βis

) · z̄i (r, w̄dr ) = φ̄drw̄dr

and

∑

i∈Nc

∑

s∈Rdr

βid · θid =
∑

i∈NC

z̄i (w̄d) · βid = φ̄dw̄d ,

so,

z̄(RF(β, λ, μ)) � min
∑

d∈ND

∑

r∈Md

(φ̄drw̄dr + gdr ) + φ̄dw̄d +
∑

i∈Nc

λi +
∑

k∈Ns∪ND

μk · m2
k .

Finally, we conclude that

z(RF(β, λ, μ)) = z̄(RF(β, λ, μ)) � z̄(RF(β, λ, μ)) � z(RF(β, λ, μ)).
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