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Abstract For an edge-weighted graph G = (V, E, w), in which the vertices are
partitioned into k clustersR = {R1, R2, . . . , Rk}, a spanning tree T ofG is a clustered
spanning tree if T can be cut into k subtrees by removing k − 1 edges such that each
subtree is a spanning tree for one cluster. In this paper, we show the inapproximability
of finding a clustered spanning tree with minimum routing cost, where the routing cost
is the total distance summed over all pairs of vertices. We present a 2-approximation
for the case that the input is a complete weighted graph whose edge weights obey
the triangle inequality. We also study a variant in which the objective function is the
total distance summed over all pairs of vertices of different clusters. We show that the
problem is polynomial-time solvable when the number of clusters k is 2 and NP-hard
for k = 3. Finally, we propose a polynomial-time 2-approximation algorithm for the
case of three clusters.

Keywords Approximation algorithm · NP-hard · Spanning tree · Graph algorithm

1 Introduction

Finding a minimum cost spanning tree of an edge-weighted graph is one of the most
well-studied problems in applied mathematics and theoretical computer science, and
it can be applied in many areas such as telecommunications and logistics. Several
problems with different cost functions and requirements have been extensively stud-
ied in the literature, for example, minimum spanning trees, Steiner minimum trees,
shortest-path trees, and minimum routing cost spanning trees (Wu and Chao 2004).
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In some network applications, terminals may be grouped into clusters such that the
communications between terminals of the same cluster should be routed “locally”
for the sake of efficiency and safety. In such cases, we look for a spanning tree in
which vertices of each cluster should be clustered together. More precisely speaking,
the subtree spanning the vertices of a cluster should not contain any vertex from a
different cluster.

Let G = (V, E, w) be a graph with nonnegative edge length function w. For any
spanning tree T ofG, the routing cost between two vertices is defined as their distance
on T , i.e., the sum of the costs of the edges of the unique tree path between them.
The routing cost of T is the total distance summed over all pairs of vertices in T , i.e.,
c(T ) = ∑

u,v∈V (T ) dT (u, v), where dT (u, v) is the distance between u and v on T . A
minimum routing cost spanning tree (MRCT) is a spanning tree withminimum routing
cost among all possible spanning trees. For a clustered tree problem, in addition to
a graph G = (V, E, w), we are also given a partition R = {R1, R2, . . . , Rk} of V .
A tree T is a clustered spanning tree if all the vertices in the same cluster (Ri ) are
clustered together in T . That is, T can be cut into k subtrees by removing k − 1
edges such that each subtree is a spanning tree for one cluster Ri . The complexity
and approximability of the following problem will be discussed in the first part of this
paper.
Minimum Routing Cost Clustered Tree problem (CluMRCT)

Instance: A graph G = (V, E, w) and a partition R = {R1, R2, . . . , Rk} of V .
Goal: Find a clustered spanning tree forR such that the routing cost is as small

as possible.

Since the communication cost between vertices of different clusters may be more
important in some applications, we study theminimum inter-cluster routing cost clus-
tered tree problem (InterCluMRCT), in which the goal is to find a clustered spanning
tree such that the sum of the inter-cluster distances is as small as possible. That
is, we want to find a tree T minimizing cI (T ) = ∑k

i=1
∑

j �=i dT (Ri , R j ), where
dT (Ri , R j ) = ∑

u∈Ri

∑
v∈R j

dT (u, v). For an integer k > 1, let k-InterCluMRCT

denote the variant of InterCluMRCT such that the number of clusters is k.
The minimum routing cost spanning tree problem is NP-hard (Garey and Johnson

1979) and the first approximation algorithm appeared in Wong (1980) with ratio two.
The approximation ratio was improved to (4/3 + ε) for any fixed ε > 0 in Wu
et al. (2000) and furthermore a polynomial time approximation scheme (PTAS) was
presented in Wu et al. (2000). Applications of MRCT problem arise in the fields
of network design, computational biology and transportation. There are also several
variants and extensions in the literature, such as on special graphs (Dahlhaus et al.
2004; Fischetti et al. 2002) with multiple sources (Wu 2002; Chen et al. 2006) finding
a swapping edge (Bilò et al. 2014; Wu et al. 2008) building a network instead of a tree
(Wu et al. 2002). Formore variants and their approximation algorithms, we refer toWu
and Chao (2004). An experimental study can also be found in the literature (Tan and
Due 2013). There are also distributed algorithms (Hochuli et al. 2014) and algorithms
using the bio-computing approach (Singh and Sundar 2011). Some extensions to more
complicated objective functions were still developed recently (Ravelo and Ferreira
2015a, b).
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In Wu (2006), another similar problem was studied, which looks for a spanning
tree with minimum average inter-cluster distance, and a 2-approximation algorithm
was proposed. Different from InterCluMRCT, in Wu (2006) the solution could be
any spanning tree, rather than a clustered spanning tree.

The concept of finding clustered solutions also appeared as variants of the traveling
salesperson problem (TSP) and the Steiner tree problem. For clustered TSP problem,
the goal is to find a minimum cost Hamiltonian path such that the vertices of each
cluster are visited consecutively (Bao and Liu 2012; Chisman 1975; Guttmann-beck
et al. 2000). For the clustered Steiner tree problem, the required vertices are partitioned
into clusters, and the goal is to find a clustered spanning tree of minimum total edge
cost (Wu and Lin 2015). In the literature, there are some other problems in which
the feasibility conditions are also expressed in terms of the clusters but different
from the definition in this paper. In the review paper by Feremans et al. (2003), such
generalized versions of theminimum spanning tree problem, the travelling salesperson
problem and the shortest path problem are surveyed. Three variants of the problems
are discussed in their paper such that a feasible solution must contain exactly one, at
least one, or at most one vertex from each cluster, respectively.

In this paper, we study the complexities and approximabilities of CluMRCT and
InterCluMRCT and show the following results.

– Unless NP=P, CluMRCT cannot be approximated with any polynomial factor in
polynomial time. As an intermediate problem, we show the inapproximability of
the shortest clustered st-path problem, which asks for a shortest clustered path
between two specified vertices. The problem is also interesting in itself.

– A metric graph is a complete graph with edge lengths satisfying the triangle
inequality. We design a 2-approximation algorithm with time complexity O(n2)
for CluMRCT on metric graphs, where n is the number of vertices of input graph.

– When there are only two clusters, 2-InterCluMRCT can be solved in O(mn +
n2 log n) time, where m and n are numbers of edges and vertices, respectively.

– k-InterCluMRCT is NP-hard for any fixed k > 2, and we present a 2-
approximation algorithm for 3-InterCluMRCT.

The rest of the paper is organized as follows. In Sect. 2, we give some notation
and definitions. In Sect. 3, we study the shortest clustered st-path problem and show
the inapproximability result of CluMRCT. In Sect. 4, we show the 2-approximation
algorithm for CluMRCT on metric graphs. The results for InterCluMRCT are in
Sect. 5. Concluding remarks are in the last section.

2 Notation and definitions

In this paper, a graph is a simple, connected and undirected graph. For a graph
G = (V, E, w), V and E are the vertex and the edge sets, respectively, and w is
the nonnegative edge length function. Let n = |V | and m = |E |. An edge between
vertices u and v is denoted by (u, v), and its weight is denoted byw(u, v). For a graph
G, V (G) and E(G) denote the vertex and the edge sets, respectively. For a vertex
subset U , the subgraph of G induced by U is denoted by G[U ]. For a vertex set V ,
a collection R = {Ri | 1 ≤ i ≤ k} of subsets of V is a partition of V if the subsets
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Fig. 1 An example of the
clustered spanning tree. There
are three inter-cluster edges and
each circle is a local tree for one
cluster

are mutually disjoint and their union is exactly V . A path of G is simple if no vertex
appears more than once on the path. In this paper we consider only simple paths.

Definition 1 For a tree T spanning S, i.e., S ⊆ V (T ), the local tree of S on T is the
subtree of T induced by T [S].
Definition 2 Let R = {Ri | 1 ≤ i ≤ k} be a partition of V . A spanning tree T is a
clustered spanning tree for R if the local trees of all Ri ∈ R are mutually disjoint,
i.e., there exists a cut set C ⊆ E(T ) with |C | = k − 1 such that each component of
T − C is a spanning tree Ti for Ri for all 1 ≤ i ≤ k. The edges in the cut set C are
called inter-cluster edges.

Figure 1 illustrates a clustered spanning tree. It canbepartitioned into four local trees
by removing three inter-cluster edges. For an arbitrary vertex partition of a graph, it is
possible that there does not exist any clustered spanning tree. The following sufficient
and necessary condition can be easily shown. In the remaining paper we shall assume
that the input always satisfies the condition.

Proposition 1 Fora connectedgraphG andvertex partitionR, there exists a clustered
spanning tree forR iff G[Ri ] is a connected subgraph for each i .

For a subgraph H of G = (V, E, w) and u, v ∈ V , let dH (u, v) denote the shortest
path length between u and v on H . Let dH (v,U ) = ∑

u∈U dH (v, u) for a vertex v and
a vertex subsetU . For vertex subsetsU1 andU2, let dH (U1,U2) = ∑

u∈U1
dH (u,U2).

Definition 3 Let G = (V, E, w) be a graph andR = {R1, R2, . . . , Rk} be a partition
of V . For a clustered spanning tree T forR, the inter-cluster distance between clusters
Ri and R j on T is dT (Ri , R j ). The inter-cluster distance (cost) of T is cI (T ) =
∑k

i=1
∑

j �=i dT (Ri , R j ).

An st-path is a path with endpoints s and t . Let P = (v0, v1, . . . , vp) be a v0vp-
path passing through v1,v2,. . . , vp−1 in this order. For 0 ≤ i ≤ j ≤ p, the subpath
between vi and v j of P is denoted by P[vi , v j ]. An edge (x, y) is also thought of as
a path. For an xy-path P1 and a yz-path P2, let P1 ◦ P2 denote the concatenation of
the two paths.
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3 Shortest clustered st-path problem

In this section, we first give the formal definition of the shortest clustered st-path
problem (Shortest CluPath) and show its NP-hardness. Then, we show the inap-
proximability of CluMRCT in general graphs.

Definition 4 Given a graph G = (V, E, w), where vertices are partitioned into
clusters R = {R1, R2, . . . , Rk}, a path P = (v0, ..., vp) is a clustered path if the
vertices from the same cluster appear consecutively, that is, if {vi , v j } ⊆ Rh then
V (P[vi , v j ]) ⊆ Rh for any 0 ≤ i < j ≤ p.

In other words, a clustered path P can be partitioned into P = P1 ◦ P2 ◦ . . . ◦ Pr ,
such that each Pi consists of vertices from the same cluster and for i �= j , V (Pi ) and
V (Pj ) are from different clusters. We define the problem Shortest st- CluPath as
follows.
Shortest Clustered st-path Problem (Shortest st- CluPath)

Instance: An undirected graphG = (V, E, w), a partitionR of V , and two specific
vertices s and t .

Goal: Find a shortest clustered st-path in G.

Shortest st- CluPath coincides with the shortest path problemwhen all clusters
are singletons or the number of clusters k is one. Consider the following problem in
which we only need to determine the existence of any clustered st-path.
Clustered st-path Problem (st- CluPath)

Instance: An undirected graphG = (V, E, w), a partitionR of V , and two specific
vertices s and t .

Question: Whether there is a clustered st-path in G.

We shall show that st- CluPath is NP-complete by a transformation from the
undirected version of “path with forbidden pairs” (FP) problem. The directed FP
problem is a well known NP-complete problem (Garey and Johnson 1979). The undi-
rected version has also been shown to be NP-complete (Hajiaghayi et al. 2012). Let
G = (V, E) be an undirected graph with two specific vertices s, t ∈ V and let
F = {{a1, b1}, . . . , {ar , br }} be a set of forbidden pairs of vertices. An st-path in G
is called F-path if it contains at most one vertex from each pair in F . The problem
Undirected FP is to determine whether there is an F-path. The following result
appeared in Hajiaghayi et al. (2012).

Theorem 1 (Hajiaghayi et al. 2012) Unless P = N P, Undirected FP admits no
(1 − ρ) · n approximation ratio, where n is the number of vertices and ρ > 0 is a
universal constant. The same holds for directed acyclic graphs.

We shall show the NP-completeness of the Disjoint Undirected FP problem,
which is a variant of Undirected FP such that the forbidden problem pairs are
mutually disjoint. Let δ(v) be the degree of vertex v, i.e., the number of edges incident
to v.

Lemma 1 Disjoint Undirected FP is NP-complete.
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Fig. 2 An example of the edge gadgets. The new added vertices are drawn by white circles. a Subdivisions
of the edges incident to u. b Subdivisions of the edges incident to x . c Subdivisions of the edges incident
to y

Proof Let G = (V, E), F and s, t be an instance of Undirected FP. We want to
construct a new instance G ′ = (V ′, E ′) and F ′ in polynomial time such that each
vertex appears in at most one forbidden pair. For each vertex u we subdivide all the
edges incident to u by inserting degree-2 vertices as follows:

Let {u, v1}, ..., {u, vh} be the forbidden pairs containing u. Let (u, w j ) be the
edges incident to u, where 1 ≤ j ≤ δ(v). Let q = δ(v1) + δ(v2) + · · · + δ(vh).
We subdivide each of the edge (u, w j ) by q new vertices.

Note that the above gadget is applied to all vertices, and therefore for 1 ≤ i ≤ h, there
is a group of δ(u) degree-2 vertices corresponding to u at each of the edge incident to
vi , as well as possibly some other groups if vi is in more than one forbidden pair.

An example is illustrated in Fig. 2, where {u, x} and {u, y} are the two forbidden
pairs containing u. Suppose that δ(u) = 3, δ(x) = 2, and δ(y) = 3. We subdivide the
first edge of u by inserting five new vertices ux1,1,u

x
1,2,u

y
1,1,u

y
1,2, and uy

1,3. Similarly,
we subdivide the second and third edges of u by new obtained 5 vertices. The resulting
gadget is shown in Fig. 2a. Likewise, the subdivisions of edges incident to x and y
are shown in Fig. 2b, c, respectively. Then, we replace the forbidden pair {u, x} by the
following six pairs: {ux1,1, xu1,1},{ux2,1, xu1,2}, {ux3,1, xu1,3},{ux1,2, xu2,1}, {ux2,2, xu2,2}, and{ux3,2, xu2,3}. The similar transformation is applied on {u, y}. At this point each vertex
appears in at most one forbidden pair. Furthermore, after the above transformation,
if {u, v} is an original forbidden pair, then there is a forbidden pair for every edge
incident to u and every edge incident to v. Thus, the solution does not change.

For each forbidden pair, we construct O(n2) forbidden pairs, and then the total
number of new forbidden pairs is bounded by O(n2|F |). As a result, the transformation
can be done in polynomial time, and this completes the proof. �	
Theorem 2 Shortest st- CluPath is NP-hard and cannot be approximated with a
factor of any polynomial time computable function, unless N P = P.

Proof We reduce Disjoint Undirected FP to st- CluPath. Let an instance of
Disjoint Undirected FP consist of G = (V, E), two specified vertices s, t ∈ V
and a set F = {{ai , bi } | 1 ≤ i ≤ r} of pairs of disjoint vertices. We transform the
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instance into an instance of st- CluPath as follows. First, we construct a weighted
graph G ′ from G by inserting a “long” edge (ai , bi ) for 1 ≤ i ≤ r . The weight of
each long edge is α(n) and all the other edges have unit length, where α(n) ≥ n is any
polynomial computable function. Next, there is a cluster Ci = {ai , bi } for 1 ≤ i ≤ r
and each vertex not appearing in any forbidden pair is itself a singleton cluster. To
complete the proof, we claim that

1. if there is an F-path P in G, then there is a clustered st-path P ′ of length at most
n − 1 in G ′; and

2. if there is no F-path P in G, then the length of any clustered st-path in G ′ is at
least α(n).

Since the gap between the two cases can be any polynomial time computable
function, the inapproximability result follows.

If there exists an F-path P in G from s to t , then it contains at most one vertex
from each pair inF . Since P contains at most one vertex from each cluster, it must be
a clustered path by definition. The length of the path is at most n − 1 since it passes
through at most n − 2 vertices and no any long edge.

Conversely, if P ′ is a clustered path inG ′, then either each pair {ai , bi } successively
appears on P ′ or at most one vertex from each pair {ai , bi } is on P ′. If the length of P ′
is less than α(n), the clustered path won’t traverse through such a long edge between
ai and bi . Therefore, we can find a path P that contains at most one vertex from each
pair in F . �	

SinceShortest st- CluPath is NP-hard, this implies the inapproximability result
for CluMRCT.

Corollary 1 CluMRCT cannot be approximated within any polynomial factor in
polynomial time, unless NP = P.

Proof Let q(n) be a polynomial. Let G ′ be the instance of Shortest st- CluPath
in the proof of Theorem 2. We construct a graph G ′′ from G ′ by adding q(n) − 1 new
leaves adjacent to both s and t with zero-weight edges. Let S be the set containing
s and the new leaves adjacent to s. Similarly let T the set containing t and the new
leaves adjacent to t .

If there is anF-path P for theDisjoint Undirected FP problem, thenwe can find
a clustered spanning tree Y containing P . For any u ∈ S and v ∈ T , dY (u, v) < n.
We have dY (S, T ) = dY (T, S) < |S||T | · n = q2(n) · n. For any other pair of
vertices, the distance is less than n · α(n). Thus, the routing cost of Y is less than
2q2(n) · n+ (2q(n)+ n)n · n ·α(n). On the other hand, if there is no F-path P for the
Disjoint Undirected FP problem, then on any clustered spanning tree, the distance
between s and t is at leastα(n), and therefore the routing cost of any clustered spanning
tree is larger than 2q2(n) · α(n). The cost ratio of the two cases is asymptomatically
q(n)/n2 when α(n) � q(n) � n.

Thus, if there is a polynomial-time algorithm approximating CluMRCT with a
polynomial factor, then we can solve Disjoint Undirected FP in polynomial time.

�	
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Fig. 3 AnR-star Y . Each circle
is for one local star. The topmost
vertex is the center of both the
inter-cluster star (bold lines) and
its local star

4 CluMRCT on metric graphs

In this section we investigate CluMRCT on metric graphs. A metric graph is a
complete graph with edge lengths satisfying the triangle inequality, i.e., w(x, y) ≤
w(x, z) + w(z, y) for all x, y, z ∈ V .
Metric CluMRCT Problem

Instance: A metric graph G = (V, E, w) and a partitionR = {R1, R2, . . . , Rk} of
V .

Goal: Find a clustered spanning tree forR such that the routing cost is as small
as possible.

We design a 2-approximation algorithm for metric CluMRCT by constructing a two-
level star-like graph. A star is a tree with at most one internal vertex which is called
“center” of the star. For a star with at least three vertices, there must be exactly one
internal vertex. For simplicity, a tree with one or two vertices is also thought of as a
star, and in this case any vertex is a center. For a tree T with n vertices, a vertex v is
a centroid if each subgraph after removing v from T has at most n/2 vertices. A tree
has one or two centroids (Wu and Chao 2004). We shall assume that G = (V, E, w)

is the input metric graph in this section.

Definition 5 Let G = (V, E, w) be a metric graph and R = {R1, R2, . . . , Rk} a
partition of V . An R-star is a spanning tree of G such that the inter-cluster edges
induce a star and each local tree is also a star. By definition, the center of the inter-
cluster star must be also the center of a local star. W.l.o.g. we shall assume that the
center of the inter-cluster star belongs to R1.

Figure 3 depicts an R-star, the uppermost vertex is the center of both the inter-
cluster star and its local star. In other words, all local trees as well as the inter-cluster
tree are stars, which will be called local stars and inter-cluster star, respectively. Note
that anR-star must be a clustered spanning tree. The routing cost of anR-star can be
computed according to the following lemma.

Lemma 2 For an R-star Y , where ri is the center of the local tree of Ri , c(Y ) =
2(n − 1)

∑
1≤i≤k

∑
v∈Ri w(v, ri ) + ∑

2≤i≤k 2|Ri |(n − |Ri |)w(ri , r1).

Proof Recall that, for a spanning tree T of G, the routing cost of T is defined by
c(T ) = ∑

u,v∈V (T ) dT (u, v). The routing load on edge e is defined by l(T, e) =
2|V (X)|×|V (Y )|, where X and Y are the two subgraphs obtained from T by removing
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e. As shown in Wu and Chao (2004), the routing cost of T can be computed by the
following formula:

c(T ) =
∑

e∈E(T )

l(T, e)w(e) (1)

The result directly follows from Eq. (1) and the definition of an R-star Y . �	
Our 2-approximation algorithm is based on the following two properties, which

will be shown in the remaining paragraphs of this section.

– There exists an R-star whose routing cost is at most twice of the optimal cost.
– An R-star with minimum routing cost can be computed in O(n2) time.

Lemma 3 There exists an R-star Y such that c(Y ) ≤ 2c(T ), where T is an optimal
solution of the metric CluMRCT problem.

Proof We show how to construct an R-star Y such that c(Y ) ≤ 2c(T ). Root T at
its centroid. By definition, each branch contains no more than n/2 vertices. W.l.o.g.
assume that the centroid, named r1, is in R1. For each 2 ≤ i ≤ k, there must be a
vertex ri ∈ Ri such that the parent of ri is not in Ri . Since by definition there are
exactly k − 1 inter-cluster edges, the inter-cluster edges must be the edges between
ri and their parents for all 2 ≤ i ≤ k. We construct an R-star Y with the following
edges.

– For 2 ≤ i ≤ k, there is an edge (r1, ri ).
– For 1 ≤ i ≤ k and v ∈ Ri \ {ri }, there is an edge (ri , v).

It is clear Y is anR-star. An example for the construction of Y is presented in Fig. 4.
We shall show that the cost of Y is at most twice of c(T ). First, we give a lower

bound of the optimal routing cost. Let T be rooted at the centroid r1. For any vertex
v in T , there are at least n/2 vertices not in the same branch of r1 as v, i.e., the path
from v to any of these vertices passes through r1. Since the path from u to v and the
path from v to u are both counted, dT (v, r1) will be counted at least n times. Thus,
we have

c(T ) ≥ n
∑

v∈V
dT (v, r1)

For v ∈ Ri , since ri must be on the path between v and r1, we have dT (v, r1) ≥
w(v, ri ) + w(ri , r1) by the triangle inequality. Hence, we obtain

c(T ) ≥ n
∑

v∈V
dT (v, r1)

≥ n
∑

1≤i≤k

∑

v∈Ri

(w(v, ri ) + w(ri , r1))

= n
∑

1≤i≤k

∑

v∈Ri

w(v, ri ) + n|Ri |
∑

2≤i≤k

w(ri , r1) (2)
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Fig. 4 An example illustrates
the construction of anR-star Y
(below) from an optimal solution
T (above)

By Lemma 2, we have

c(Y ) =
∑

1≤i≤k

∑

v∈Ri

2(n − 1)w(v, ri ) +
∑

2≤i≤k

2|Ri |(n − |Ri |)w(ri , r1)

< 2n
∑

1≤i≤k

∑

v∈Ri

w(v, ri ) + 2n|Ri |
∑

1≤i≤k

w(ri , r1) (3)

By Eqs. (2) and (3), we have that c(Y ) ≤ 2c(T ). �	
Lemma 4 In O(n2) time, one can construct an R-star with minimum routing cost.

Proof We consider each vertex as the centroid r1. For a fixed r1, we need to determine
the center of the local star of Ri for each 2 ≤ i ≤ k. By Lemma 2, it is equivalent to
find u ∈ Ri minimizing

2(n − 1)
∑

v∈Ri

w(v, u) + 2|Ri |(n − |Ri |)w(u, r1). (4)

For each u ∈ Ri , if we compute
∑

v∈Ri w(v, u) in a preprocessing stage, then the
center of Ri can be determined in O(|Ri |) time, and therefore for each possible r1 the
time complexity is O(

∑k
i=2 |Ri |) = O(n). Since we try each vertex as r1, the total
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time complexity except for the preprocessing is O(n2). For the preprocessing stage,
it takes O(|Ri |2) time by a brute force method for each cluster Ri , and therefore the
time complexity of the preprocessing is O(

∑k
i=1 |Ri |2) = O(n2). �	

Theorem 3 Metric CluMRCT can be 2-approximated in O(n2) time, where n is the
number of vertices.

Proof By Lemmas 3 and 4. �	

5 InterCluMRCT

In this section we investigate the problem of finding a clustered tree with minimum
inter-cluster cost. For a clustered spanning tree T forR, the inter-cluster cost between
clusters Ri and R j on T is dT (Ri , R j ). The inter-cluster cost of T is defined by
cI (T ) = ∑k

i=1
∑

j �=i dT (Ri , R j ).
Min Inter-cluster Cost Clustered Tree Problem (InterCluMRCT)

Instance: A graph G = (V, E, w) and a partition R = {R1, R2, . . . , Rk} of V ,
where w is a nonnegative edge weight function.

Goal: Find a clustered spanning tree for R such that the inter-cluster cost is as
small as possible.

When the number of clusters is restricted to a fixed integer k, the problem is called k-
InterCluMRCT. We denote by Ei the edges with both endpoints in Ri , and similarly
let Ei, j = {(u, v) ∈ E | u ∈ Ri , v ∈ R j } for i �= j . For a cluster Ri and r ∈ Ri ,
a shortest-path tree of Ri rooted at r is a spanning tree T of Ri such that dT (r, v) =
dG(r, v) for each v ∈ Ri . Let ni = |Ri | and mi = {(u, v) ∈ E | u, v ∈ Ri } for
1 ≤ i ≤ k. By the assumption on the input, G[Ri ] must be connected for each i and
therefore a shortest-path tree always exists.We shall first show that 2-InterCluMRCT
is solvable in polynomial time, and then give a 2-approximation algorithm for 3-
InterCluMRCT.

We call a local tree terminal local tree if it is connected to only one inter-cluster
edge. The port of a terminal local tree is the vertex adjacent to a vertex not in the
cluster. Figure 5 contains an example illustrating these definitions. The next property
can be easily derived from the definition of the cost function.

Lemma 5 If Ti is a terminal local tree of an optimal solution of InterCluMRCT,
then Ti is a shortest-path tree of Ri rooted at the port of Ti .

Proof By definition, cI (T ) = ∑k
i=1

∑
j �=i dT (Ri , R j ). Since Ti is a terminal tree, a

shortest-path tree of Ri rooted at the port of Ti minimizes cI (T ). �	

Fig. 5 An example of
2-InterCluMRCT. Each
triangle represent a terminal
local tree. The inter-cluster edge
(s, t) connects the two ports of
the terminal local trees
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Theorem 4 The 2-InterCluMRCT problem can be solved in O(mn+n2 log n) time.

Proof When k = 2, there is exactly one inter-cluster edge in any feasible clus-
tered spanning tree, and both local trees are terminal local trees. Let f (v) =∑

u∈Ri dG(v, u), where v ∈ Ri . For any (s, t) ∈ E1,2 such that s ∈ R1 and t ∈ R2, by
Lemma 5, the optimal tree with (s, t) as the inter-cluster edge consists of shortest-path
trees of R1 and R2 rooted at s and t , respectively. That is, the optimal inter-cluster cost
is

min
(s,t)∈E1,2

(n2 f (s) + n1 f (t) + n1n2w(s, t)) ,

which can be easily computed in O(|E1,2|) time after f (v) for every v is known. By
using Dijkstra algorithm (Cormen et al. 2001; Dijkstra 1959) computing f (v) for all
v takes O(n21 log n1 + n1m1 + n22 log n2 + n2m2) = O(mn + n2 log n), and the total
time complexity is O(mn + n2 log n + |E1,2|) = O(mn + n2 log n). �	

Next, we show that 3-InterCluMRCT is NP-hard and present a 2-approximation
algorithm. We show that 3-InterCluMRCT is NP-hard by a transformation from the
2-MRCT problem, which is an NP-hard problem and admits a PTAS (Wu 2002). The
2-MRCT problem can be formalized as follows.
2-MRCT Problem

Instance: A graph G = (V, E, w) and s, t ∈ V , where w is a nonnegative edge
weight function.

Goal: Find a spanning tree T such that the 2-source routing cost of T , defined
by c2(T ) = ∑

v∈V (dT (s, v) + dT (t, v)), is minimized.

Theorem 5 The 3-InterCluMRCT problem is NP-hard.

Proof Let G = (V, E, w) and s, t ∈ V be an instance of the 2-MRCT problem.
We construct an instance (G ′,R = {R1, R2, R3}) of 3-InterCluMRCT as follows.
First, for each v ∈ V we add a new vertex v′ and a zero-weight edge (v′, v), i.e., all
v′ are new vertices with degree one. In addition, we add vertices s′′ and t ′′, as well
as zero-weight edges (s′, s′′) and (t ′, t ′′). Next, let R1 = {s′, s′′}, R2 = {t ′, t ′′}, and
R3 = V ′ \ (R1 ∪ R2), where V ′ is the vertex set of G ′. The proof is completed by
showing the next claim. �	
Claim 1 There exists a spanning tree T of G with c2(T ) = C iff there exists a clustered
spanning tree T ′ for R of G ′ with cI (T ′) = 8C.

For a spanning tree T of G, we can construct a clustered tree T ′ by adding edges
(s′′, s′), (t ′′, t ′), and (v, v′) for all v ∈ V to T . Conversely, we can easily obtain
the spanning tree T of G by removing these new vertices on any spanning tree T ′
of G ′. The transformation of an instance of the 2-MRCT problem to an instance of
3-InterCluMRCT is given in Fig. 6. To prove the above claim, it is sufficient to show
the relation of the costs of the two trees.
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Fig. 6 The transformation of an
instance of the 2-MRCT
problem to an instance of
3-InterCluMRCT. Dotted lines
represent the zero-weighted
edges. The triangular pattern
represents an instance of the
2-MRCT problem

Since dT ′(s′, v) = dT ′(s′′, v) = dT ′(s, v) and dT ′(t ′, v) = dT ′(t ′′, v) = dT ′(t, v)

for any v, by definition,

cI (T
′) = 4

∑

v∈R3

dT ′(s, v) + 8dT ′(s, t) + 4
∑

v∈R3

dT ′(t, v)

= 4

(

2
∑

v∈V
dT (s, v) − dT (s, t)

)

+ 8dT (s, t)

+ 4

(

2
∑

v∈V
dT (t, v) − dT (s, t)

)

= 8
∑

v∈V
dT (s, v) + 8

∑

v∈V
dT (t, v)

= 8c2(T ).

Next, we present a 2-approximation algorithm for 3-InterCluMRCT. First, we
consider the weighted version of the 2-MRCT problem. In the weighted 2-MRCT
problem, the goal is to minimize

∑
v∈V (λ1dT (s, v)+λ2dT (t, v)), where λ1 and λ2 are

given positive real numbers. Let h(v, T ) = λ1dT (s, v)+λ2dT (t, v) for each vertex v.
To derive a 2-approximation algorithm of the weighted 2-MRCT, the following result
was shown in Wu (2002), Sect. 5.

Lemma 6 (Wu 2002) With the same time complexity as computing a shortest-path
tree, one can construct a spanning tree T such that (1) dT (s, t) = dG(s, t); and (2)
for each vertex v ∈ V , h(v, T ) ≤ 2h(v,Y ) for any spanning tree Y .

Aclustered treewith three clusters has exactly two terminal local trees and two inter-
cluster edges. The other local tree is called the center local tree. Figure 7 contains an
example of 3-InterCluMRCT. To approximate the 3-InterCluMRCT, we consider
each possible combination of two inter-cluster edges. Suppose that (s1, r1) and (s2, r2)
are the two inter-cluster edges, where s1, s2 ∈ R3, r1 ∈ R1 and r2 ∈ R2, i.e., the local
tree of R3 is the center local tree.

Theorem 6 The 3-InterCluMRCT problem admits a 2-approximation algorithm
with time complexity O(m2n log n + m3).

Proof LetT1 andT2 be shortest-path trees of R1 and R2 rooted at r1 and r2, respectively.
By Lemma 5, an optimal 3-InterCluMRCT consists of T1 and T2 as the local trees.
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Fig. 7 An example of
3-InterCluMRCT. There are
two terminal local trees
connected by inter-cluster edges
(r1, s1) and (r2, s2), respectively

The question is the other local tree of R3. Let T3 be a spanning tree of R3 and T consist
of

⋃
1≤i≤3 Ti , as well as the two inter-cluster edges (s1, r1) and (s2, r2). We have

that

dT (R1, R2) =
∑

u∈R1

∑

v∈R2

(d(u, r1) + d(r2, v))

+
∑

u∈R1

∑

v∈R2

(w(r2, s2) + w(r1, s1) + dT (s1, s2))

= n2d(r1, R1) + n1d(r2, R2)

+ n1n2(w(r1, s1) + w(r2, s2) + dT (s1, s2)) (5)

and for i = 1 and 2,

dT (Ri , R3)

=
∑

u∈Ri

∑

v∈R3

(d(u, ri ) + w(ri , si ) + dT (si , v))

= n3d(ri , Ri ) + nin3w(ri , si ) + nidT (si , R3). (6)

By definition,

cI (T )/2 = dT (R1, R2) + dT (R1, R3) + dT (R2, R3)

= (n2 + n3)d(r1, R1) + (n1 + n3)d(r2, R2)

+ n1(n2 + n3)w(r1, s1) + n2(n1 + n3)w(r2, s2)

+ n1n2dT (s1, s2) + n1dT (s1, R3) + n2dT (s2, R3). (7)

For fixed (r1, s1) and (r2, s2), our goal is to compute a spanning tree T3 of R3 mini-
mizing

n1n2dT3(s1, s2) + n1dT3(s1, R3) + n2dT3(s2, R3)
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since the other terms in (7) are fixed. By Lemma 6, the optimal cost can be 2-
approximated with n1 and n3 as the weights in the weighted 2-MRCT problem. Since
this takes O(m + n log n) time for each possible pair of the inter-cluster edges, the
total time complexity is O(m2n log n + m3). �	

6 Concluding remarks

In Sect. 3, we showed the inapproximability of Shortest st- CluPath. It is not hard
to show that the problem is fixed-parameter tractable with the number of clusters as
the parameter. The reason is that given a sequence of clusters a path passes through,
the shortest path or determining there is no such path can be computed in polynomial
time.

For CluMRCT on metric graphs, we show a 2-approximation algorithm on metric
graphs. Our future work includes improving the approximation ratio. Also, it would
be interesting to extend the approximation algorithm for 3-InterCluMRCT to the
case of more than three clusters.
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