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Abstract For an edge-weighted graph G = (V, E, w), in which the vertices are
partitioned into k clusters R = {Ry, R, ..., R}, aspanning tree T of G is a clustered
spanning tree if 7' can be cut into k subtrees by removing k — 1 edges such that each
subtree is a spanning tree for one cluster. In this paper, we show the inapproximability
of finding a clustered spanning tree with minimum routing cost, where the routing cost
is the total distance summed over all pairs of vertices. We present a 2-approximation
for the case that the input is a complete weighted graph whose edge weights obey
the triangle inequality. We also study a variant in which the objective function is the
total distance summed over all pairs of vertices of different clusters. We show that the
problem is polynomial-time solvable when the number of clusters k is 2 and NP-hard
for k = 3. Finally, we propose a polynomial-time 2-approximation algorithm for the
case of three clusters.

Keywords Approximation algorithm - NP-hard - Spanning tree - Graph algorithm

1 Introduction

Finding a minimum cost spanning tree of an edge-weighted graph is one of the most
well-studied problems in applied mathematics and theoretical computer science, and
it can be applied in many areas such as telecommunications and logistics. Several
problems with different cost functions and requirements have been extensively stud-
ied in the literature, for example, minimum spanning trees, Steiner minimum trees,
shortest-path trees, and minimum routing cost spanning trees (Wu and Chao 2004).
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In some network applications, terminals may be grouped into clusters such that the
communications between terminals of the same cluster should be routed “locally”
for the sake of efficiency and safety. In such cases, we look for a spanning tree in
which vertices of each cluster should be clustered together. More precisely speaking,
the subtree spanning the vertices of a cluster should not contain any vertex from a
different cluster.

Let G = (V, E, w) be a graph with nonnegative edge length function w. For any
spanning tree 7 of G, the routing cost between two vertices is defined as their distance
on T, i.e., the sum of the costs of the edges of the unique tree path between them.
The routing cost of T is the total distance summed over all pairs of vertices in 7', i.e.,
c(T) = zu,uev(r) dr (u, v), where dr (u, v) is the distance between u and von 7. A
minimum routing cost spanning tree (MRCT) is a spanning tree with minimum routing
cost among all possible spanning trees. For a clustered tree problem, in addition to
a graph G = (V, E, w), we are also given a partition R = {Ry, Rz, ..., R¢} of V.
A tree T is a clustered spanning tree if all the vertices in the same cluster (R;) are
clustered together in T. That is, T can be cut into k subtrees by removing k — 1
edges such that each subtree is a spanning tree for one cluster R;. The complexity
and approximability of the following problem will be discussed in the first part of this
paper.

Minimum Routing Cost Clustered Tree problem (CLUMRCT)

Instance: A graph G = (V, E, w) and a partition R = {R1, Ry, ..., R¢}of V.

Goal: Find a clustered spanning tree for R such that the routing cost is as small
as possible.

Since the communication cost between vertices of different clusters may be more
important in some applications, we study the minimum inter-cluster routing cost clus-
tered tree problem (INTERCLUMRCT), in which the goal is to find a clustered spanning
tree such that the sum of the inter-cluster distances is as small as possible. That
is, we want to find a tree T minimizing c;(T) = Z{'Czl Zj#[ dr (R;, Rj), where
dr(R;, Rj) = ZueR,— ZveRJ_ dr (u, v). For an integer k > 1, let k-INTERCLUMRCT
denote the variant of INTERCLUMRCT such that the number of clusters is k.

The minimum routing cost spanning tree problem is NP-hard (Garey and Johnson
1979) and the first approximation algorithm appeared in Wong (1980) with ratio two.
The approximation ratio was improved to (4/3 4 ¢) for any fixed ¢ > 0 in Wu
et al. (2000) and furthermore a polynomial time approximation scheme (PTAS) was
presented in Wu et al. (2000). Applications of MRCT problem arise in the fields
of network design, computational biology and transportation. There are also several
variants and extensions in the literature, such as on special graphs (Dahlhaus et al.
2004; Fischetti et al. 2002) with multiple sources (Wu 2002; Chen et al. 2006) finding
a swapping edge (Bilo et al. 2014; Wu et al. 2008) building a network instead of a tree
(Wu et al. 2002). For more variants and their approximation algorithms, we refer to Wu
and Chao (2004). An experimental study can also be found in the literature (Tan and
Due 2013). There are also distributed algorithms (Hochuli et al. 2014) and algorithms
using the bio-computing approach (Singh and Sundar 2011). Some extensions to more
complicated objective functions were still developed recently (Ravelo and Ferreira
2015a,b).
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In Wu (2006), another similar problem was studied, which looks for a spanning
tree with minimum average inter-cluster distance, and a 2-approximation algorithm
was proposed. Different from INTERCLUMRCT, in Wu (2006) the solution could be
any spanning tree, rather than a clustered spanning tree.

The concept of finding clustered solutions also appeared as variants of the traveling
salesperson problem (TSP) and the Steiner tree problem. For clustered TSP problem,
the goal is to find a minimum cost Hamiltonian path such that the vertices of each
cluster are visited consecutively (Bao and Liu 2012; Chisman 1975; Guttmann-beck
etal. 2000). For the clustered Steiner tree problem, the required vertices are partitioned
into clusters, and the goal is to find a clustered spanning tree of minimum total edge
cost (Wu and Lin 2015). In the literature, there are some other problems in which
the feasibility conditions are also expressed in terms of the clusters but different
from the definition in this paper. In the review paper by Feremans et al. (2003), such
generalized versions of the minimum spanning tree problem, the travelling salesperson
problem and the shortest path problem are surveyed. Three variants of the problems
are discussed in their paper such that a feasible solution must contain exactly one, at
least one, or at most one vertex from each cluster, respectively.

In this paper, we study the complexities and approximabilities of CLUMRCT and
INTERCLUMRCT and show the following results.

— Unless NP=P, CLUMRCT cannot be approximated with any polynomial factor in
polynomial time. As an intermediate problem, we show the inapproximability of
the shortest clustered st-path problem, which asks for a shortest clustered path
between two specified vertices. The problem is also interesting in itself.

— A metric graph is a complete graph with edge lengths satisfying the triangle
inequality. We design a 2-approximation algorithm with time complexity O (n?)
for CLUMRCT on metric graphs, where n is the number of vertices of input graph.

— When there are only two clusters, 2-INTERCLUMRCT can be solved in O (mn +
n*log n) time, where m and n are numbers of edges and vertices, respectively.

— k-INTERCLUMRCT is NP-hard for any fixed k¥ > 2, and we present a 2-
approximation algorithm for 3-INTERCLUMRCT.

The rest of the paper is organized as follows. In Sect. 2, we give some notation
and definitions. In Sect. 3, we study the shortest clustered sz-path problem and show
the inapproximability result of CLUMRCT. In Sect. 4, we show the 2-approximation
algorithm for CLUMRCT on metric graphs. The results for INTERCLUMRCT are in
Sect. 5. Concluding remarks are in the last section.

2 Notation and definitions

In this paper, a graph is a simple, connected and undirected graph. For a graph
G = (V,E,w), V and E are the vertex and the edge sets, respectively, and w is
the nonnegative edge length function. Let n = |V| and m = |E|. An edge between
vertices u and v is denoted by (u, v), and its weight is denoted by w(u, v). For a graph
G, V(G) and E(G) denote the vertex and the edge sets, respectively. For a vertex
subset U, the subgraph of G induced by U is denoted by G[U]. For a vertex set V,
acollection R = {R; | 1 <i < k} of subsets of V is a partition of V if the subsets
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Fig. 1 An example of the
clustered spanning tree. There
are three inter-cluster edges and
each circle is a local tree for one
cluster

are mutually disjoint and their union is exactly V. A path of G is simple if no vertex
appears more than once on the path. In this paper we consider only simple paths.

Definition 1 For a tree T spanning S, i.e., S C V(T), the local tree of S on T is the
subtree of T induced by T'[S].

Definition 2 Let R = {R; | | <i < k} be a partition of V. A spanning tree 7T is a
clustered spanning tree for R if the local trees of all R; € R are mutually disjoint,
i.e., there exists a cut set C € E(T) with |C| = k — 1 such that each component of
T — C is a spanning tree T; for R; for all 1 < i < k. The edges in the cut set C are
called inter-cluster edges.

Figure 1 illustrates a clustered spanning tree. It can be partitioned into four local trees
by removing three inter-cluster edges. For an arbitrary vertex partition of a graph, it is
possible that there does not exist any clustered spanning tree. The following sufficient
and necessary condition can be easily shown. In the remaining paper we shall assume
that the input always satisfies the condition.

Proposition 1 Foraconnected graph G and vertex partition R, there exists a clustered
spanning tree for R iff G[R;] is a connected subgraph for each i.

For a subgraph H of G = (V, E, w) and u, v € V, letdy (u, v) denote the shortest
path length between u and von H. Letdy (v, U) = ZMEU dy (v, u) for a vertex v and
a vertex subset U. For vertex subsets U and U», letdy (U, Uy) = ZueUl dy(u, Uy).

Definition 3 Let G = (V, E, w) be agraphand R = {Ry, Ra, ..., Ry} be a partition
of V. For a clustered spanning tree T for R, the inter-cluster distance between clusters
R; and R; on T is dr(R;, R;). The inter-cluster distance (cost) of T is ¢;(T) =

k
i1 Zj;ti dr (Ri, R;).

An st-path is a path with endpoints s and ¢. Let P = (v, vy, ..., Vp) be a vov,-
path passing through vy,v2,..., v, in this order. For 0 < i < j < p, the subpath
between v; and v; of P is denoted by P[v;, v;]. An edge (x, y) is also thought of as
a path. For an xy-path P; and a yz-path P, let P; o P> denote the concatenation of
the two paths.
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3 Shortest clustered s¢-path problem

In this section, we first give the formal definition of the shortest clustered sz-path
problem (SHORTEST CLUPATH) and show its NP-hardness. Then, we show the inap-
proximability of CLUMRCT in general graphs.

Definition 4 Given a graph G = (V, E, w), where vertices are partitioned into
clusters R = {Ry, Ra, ..., R}, a path P = (v, ..., vp) is a clustered path if the
vertices from the same cluster appear consecutively, that is, if {v;,v;} € Rj then
V(P[vi,vj]) S Ry forany 0 <i < j < p.

In other words, a clustered path P can be partitioned into P = Pyo Po...0 Py,
such that each P; consists of vertices from the same cluster and for i # j, V(P;) and
V(P;) are from different clusters. We define the problem SHORTEST st- CLUPATH as
follows.

Shortest Clustered s¢-path Problem (SHORTEST st- CLUPATH)

Instance: Anundirected graph G = (V, E, w), a partition R of V, and two specific
vertices s and 7.
Goal: Find a shortest clustered s¢-path in G.

SHORTEST s¢- CLUPATH coincides with the shortest path problem when all clusters
are singletons or the number of clusters & is one. Consider the following problem in
which we only need to determine the existence of any clustered sz-path.

Clustered st-path Problem (s7- CLUPATH)

Instance: Anundirected graph G = (V, E, w), a partition R of V, and two specific
vertices s and 7.
Question: Whether there is a clustered sz-path in G.

We shall show that st- CLUPATH is NP-complete by a transformation from the
undirected version of “path with forbidden pairs” (FP) problem. The directed FP
problem is a well known NP-complete problem (Garey and Johnson 1979). The undi-
rected version has also been shown to be NP-complete (Hajiaghayi et al. 2012). Let
G = (V, E) be an undirected graph with two specific vertices s, € V and let
F = {{a1, b1}, ..., {ar, by}} be a set of forbidden pairs of vertices. An st-path in G
is called F-path if it contains at most one vertex from each pair in F. The problem
UNDIRECTED FP is to determine whether there is an F-path. The following result
appeared in Hajiaghayi et al. (2012).

Theorem 1 (Hajiaghayi et al. 2012) Unless P = N P, UNDIRECTED FP admits no
(1 — p) - n approximation ratio, where n is the number of vertices and p > 0 is a
universal constant. The same holds for directed acyclic graphs.

We shall show the NP-completeness of the DISJOINT UNDIRECTED FP problem,
which is a variant of UNDIRECTED FP such that the forbidden problem pairs are
mutually disjoint. Let § (v) be the degree of vertex v, i.e., the number of edges incident
tov.

Lemma 1 DISJOINT UNDIRECTED FP is NP-complete.
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(b)

Fig.2 Anexample of the edge gadgets. The new added vertices are drawn by white circles. a Subdivisions
of the edges incident to u. b Subdivisions of the edges incident to x. ¢ Subdivisions of the edges incident
toy

Proof Let G = (V, E), F and s, t be an instance of UNDIRECTED FP. We want to
construct a new instance G’ = (V’, E’) and F’ in polynomial time such that each
vertex appears in at most one forbidden pair. For each vertex u we subdivide all the
edges incident to u by inserting degree-2 vertices as follows:

Let {u, v1}, ..., {u, v} be the forbidden pairs containing u. Let (u, w;) be the
edges incident to u, where 1 < j < §(v). Letqg = §(v1) +8(v2) + -+ - + 8(vp).
We subdivide each of the edge (u, w;) by g new vertices.

Note that the above gadget is applied to all vertices, and therefore for 1 <i < k, there
is a group of § (u) degree-2 vertices corresponding to u at each of the edge incident to
v;, as well as possibly some other groups if v; is in more than one forbidden pair.

An example is illustrated in Fig. 2, where {u, x} and {u, y} are the two forbidden
pairs containing u. Suppose that § (u) = 3, §(x) = 2, and S(y) =3.We subd1v1de the
first edge of u by inserting five new vertices ”1 1,ul 2,u1 1”41 5> and “1 3. Similarly,
we subdivide the second and third edges of u by new obtained 5 vertices. The resulting
gadget is shown in Fig. 2a. Likewise, the subdivisions of edges incident to x and y
are shown in Fig. 2b, c, respectively. Then, we replace the forbidden pair {u, x} by the
following six pairs: {”)1‘,17 xi"l},{ué’l,x’b}, {“)36,17 xi"3},{u)1"2, xé”l}, {”5,21 xgyz}, and
{”)3(,2’ x5 3}. The similar transformation is applied on {u, y}. At this point each vertex
appears in at most one forbidden pair. Furthermore, after the above transformation,
if {u, v} is an original forbidden pair, then there is a forbidden pair for every edge
incident to u and every edge incident to v. Thus, the solution does not change.

For each forbidden pair, we construct O(nz) forbidden pairs, and then the total
number of new forbidden pairs is bounded by O (n?|F|). As aresult, the transformation
can be done in polynomial time, and this completes the proof. O

Theorem 2 SHORTEST s¢- CLUPATH is NP-hard and cannot be approximated with a
factor of any polynomial time computable function, unless NP = P.

Proof We reduce DISJOINT UNDIRECTED FP to s7- CLUPATH. Let an instance of
D1sJOINT UNDIRECTED FP consist of G = (V, E), two specified vertices s, € V
and a set F = {{a;,b;} | 1 < i < r} of pairs of disjoint vertices. We transform the
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instance into an instance of st- CLUPATH as follows. First, we construct a weighted
graph G’ from G by inserting a “long” edge (a;, b;) for I < i < r. The weight of
each long edge is «(n) and all the other edges have unit length, where «(n) > n is any
polynomial computable function. Next, there is a cluster C; = {a;, b;} for 1 <i <r
and each vertex not appearing in any forbidden pair is itself a singleton cluster. To
complete the proof, we claim that

1. if there is an F-path P in G, then there is a clustered s¢-path P’ of length at most
n—1in G’; and

2. if there is no F-path P in G, then the length of any clustered sz-path in G’ is at
least a(n).

Since the gap between the two cases can be any polynomial time computable
function, the inapproximability result follows.

If there exists an F-path P in G from s to ¢, then it contains at most one vertex
from each pair in F. Since P contains at most one vertex from each cluster, it must be
a clustered path by definition. The length of the path is at most n — 1 since it passes
through at most n — 2 vertices and no any long edge.

Conversely, if P’ is a clustered path in G, then either each pair {a;, b; } successively
appears on P’ or at most one vertex from each pair {a;, b;} is on P’. If the length of P’
is less than o« (n), the clustered path won’t traverse through such a long edge between
a; and b;. Therefore, we can find a path P that contains at most one vertex from each
pair in F. O

Since SHORTEST s¢- CLUPATH is NP-hard, this implies the inapproximability result
for CLUMRCT.

Corollary 1 CLUMRCT cannot be approximated within any polynomial factor in
polynomial time, unless NP = P.

Proof Let q(n) be a polynomial. Let G’ be the instance of SHORTEST st- CLUPATH
in the proof of Theorem 2. We construct a graph G” from G’ by adding g (n) — 1 new
leaves adjacent to both s and ¢ with zero-weight edges. Let S be the set containing
s and the new leaves adjacent to s. Similarly let 7 the set containing ¢ and the new
leaves adjacent to ¢.
If there is an F-path P for the DISJOINT UNDIRECTED FP problem, then we can find
a clustered spanning tree Y containing P. Forany u € Sandv € T, dy(u, v) < n.
We have dy(S,T) = dy(T,S) < |S||T|-n = g*(@) - n. For any other pair of
vertices, the distance is less than n - «(n). Thus, the routing cost of Y is less than
2q2(n) -n+ (2q(n) +n)n -n-ao(n). On the other hand, if there is no F-path P for the
DiSJOINT UNDIRECTED FP problem, then on any clustered spanning tree, the distance
between s and  is at least & (n), and therefore the routing cost of any clustered spanning
tree is larger than 2¢2(n) - a(n). The cost ratio of the two cases is asymptomatically
q(n)/n2 when «(n) > q(n) > n.
Thus, if there is a polynomial-time algorithm approximating CLUMRCT with a
polynomial factor, then we can solve DISJOINT UNDIRECTED FP in polynomial time.
O
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Fig.3 An R-star Y. Each circle
is for one local star. The topmost
vertex is the center of both the
inter-cluster star (bold lines) and
its local star

4 CLUMRCT on metric graphs

In this section we investigate CLUMRCT on metric graphs. A metric graph is a
complete graph with edge lengths satisfying the triangle inequality, i.e., w(x, y) <
w(x,z) +w(z,y) forallx,y,ze V.

Metric CLUMRCT Problem

Instance: A metric graph G = (V, E, w) and a partition R = {Ry, Ra, ..., Ry} of
V.

Goal: Find a clustered spanning tree for R such that the routing cost is as small
as possible.

We design a 2-approximation algorithm for metric CLUMRCT by constructing a two-
level star-like graph. A star is a tree with at most one internal vertex which is called
“center” of the star. For a star with at least three vertices, there must be exactly one
internal vertex. For simplicity, a tree with one or two vertices is also thought of as a
star, and in this case any vertex is a center. For a tree T with n vertices, a vertex v is
a centroid if each subgraph after removing v from 7 has at most n/2 vertices. A tree
has one or two centroids (Wu and Chao 2004). We shall assume that G = (V, E, w)
is the input metric graph in this section.

Definition 5 Let G = (V, E, w) be a metric graph and R = {R|, Ra,..., Ry} a
partition of V. An R-star is a spanning tree of G such that the inter-cluster edges
induce a star and each local tree is also a star. By definition, the center of the inter-
cluster star must be also the center of a local star. W.l.o.g. we shall assume that the
center of the inter-cluster star belongs to R;.

Figure 3 depicts an R-star, the uppermost vertex is the center of both the inter-
cluster star and its local star. In other words, all local trees as well as the inter-cluster
tree are stars, which will be called local stars and inter-cluster star, respectively. Note
that an R-star must be a clustered spanning tree. The routing cost of an R-star can be
computed according to the following lemma.

Lemma 2 For an R-star Y, where r; is the center of the local tree of R;, c(Y) =
2(n —1) 215,‘5]( ZveR,- w(v, r;) + ZZSiSk 2|R;|(n — |R;Dw(r;, r1).

Proof Recall that, for a spanning tree T of G, the routing cost of T is defined by
c(T) = zu’vev(n dr(u, v). The routing load on edge e is defined by [(T,e) =
2|V (X)| x|V (Y)|, where X and Y are the two subgraphs obtained from 7' by removing
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e. As shown in Wu and Chao (2004), the routing cost of T can be computed by the
following formula:

o(T)y= > UT,ew(e) ()
ecE(T)
The result directly follows from Eq. (1) and the definition of an R-star Y. O

Our 2-approximation algorithm is based on the following two properties, which
will be shown in the remaining paragraphs of this section.

— There exists an R-star whose routing cost is at most twice of the optimal cost.
— An R-star with minimum routing cost can be computed in O (n?) time.

Lemma 3 There exists an R-star Y such that c¢(Y) < 2¢(T), where T is an optimal
solution of the metric CLUMRCT problem.

Proof We show how to construct an R-star Y such that ¢(Y) < 2¢(T). Root T at
its centroid. By definition, each branch contains no more than n/2 vertices. W.l.0.g.
assume that the centroid, named ry, is in R;. For each 2 < i < k, there must be a
vertex r; € R; such that the parent of r; is not in R;. Since by definition there are
exactly k£ — 1 inter-cluster edges, the inter-cluster edges must be the edges between
r; and their parents for all 2 < i < k. We construct an R-star ¥ with the following
edges.

— For 2 <i <k, there is an edge (r1, r;).
— For1l <i <kandv € R; \ {r;}, there is an edge (7;, v).

Itis clear Y is an R-star. An example for the construction of Y is presented in Fig. 4.

We shall show that the cost of Y is at most twice of ¢(T'). First, we give a lower
bound of the optimal routing cost. Let 7' be rooted at the centroid ;. For any vertex
v in T, there are at least n/2 vertices not in the same branch of | as v, i.e., the path
from v to any of these vertices passes through r;. Since the path from u to v and the
path from v to u are both counted, dr (v, r1) will be counted at least n times. Thus,
we have

o(T)=n Y dr(v,r)

veV

For v € R;, since r; must be on the path between v and ry, we have dr (v, r;) >
w(v, i) + w(r;, r1) by the triangle inequality. Hence, we obtain

o(T) =n Y dr(v.r)

veV

>n Y > ) +wri, )
1<i<k veR;

=n Z Zw(v,ri)—i-anil Z w(ri, ry) (2)
1<i<k veR; 2<i<k
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Fig. 4 An example illustrates
the construction of an R-star Y
(below) from an optimal solution
T (above)

By Lemma 2, we have

c@¥y= > > 2n—Dw.r)+ D 2Ri|(n — [RiDw(ri,rr)

1<i<k veR; 2<i<k
<21 > > w.r)+2n|Ri| D wlri,r) 3)
1<i<k veR; 1<i<k
By Egs. (2) and (3), we have that c(Y) < 2¢(T). O

Lemma 4 In O (n?) time, one can construct an R-star with minimum routing cost.

Proof We consider each vertex as the centroid ry. For a fixed r1, we need to determine
the center of the local star of R; for each 2 < i < k. By Lemma 2, it is equivalent to
find # € R; minimizing

21— 1) D w,u) +2|Ri|(n — [RiDw(u, r1). “)

VER;
For each u € R;, if we compute Zve R; w(v, u) in a preprocessing stage, then the

center of R; can be determined in O (|R;|) time, and therefore for each possible r; the
time complexity is O(Zfzz |R;]) = O(n). Since we try each vertex as ri, the total
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time complexity except for the preprocessing is O (n?). For the preprocessing stage,
it takes O (|R; |2) time by a brute force method for each cluster R;, and therefore the
time complexity of the preprocessing is O(Zf: 1 IR 12) = 0(n?). O

Theorem 3 Metric CLUMRCT can be 2-approximated in O (n?) time, where n is the
number of vertices.

Proof By Lemmas 3 and 4. O

5 INTERCLUMRCT

In this section we investigate the problem of finding a clustered tree with minimum
inter-cluster cost. For a clustered spanning tree 7" for R, the inter-cluster cost between
clusters R; and R; on T is dr(R;, R;). The inter-cluster cost of T is defined by
c/(T) = X5y 32 dr (Ri, R)).

Min Inter-cluster Cost Clustered Tree Problem (INTERCLUMRCT)

Instance: A graph G = (V, E, w) and a partition R = {Ry, Ry,..., R} of V,
where w is a nonnegative edge weight function.

Goal: Find a clustered spanning tree for R such that the inter-cluster cost is as
small as possible.

When the number of clusters is restricted to a fixed integer k, the problem is called -
INTERCLUMRCT. We denote by E; the edges with both endpoints in R;, and similarly
let E;; = {(u,v) € E |u € R;,v € Rj} fori # j. Foracluster R; and r € R;,
a shortest-path tree of R; rooted at r is a spanning tree T of R; such that d7 (r, v) =
dg(r,v) foreach v € R;. Let n; = |R;| and m; = {(u,v) € E | u,v € R;} for
1 <i < k. By the assumption on the input, G[R;] must be connected for each i and
therefore a shortest-path tree always exists. We shall first show that 2-INTERCLUMRCT
is solvable in polynomial time, and then give a 2-approximation algorithm for 3-
INTERCLUMRCT.

We call a local tree terminal local tree if it is connected to only one inter-cluster
edge. The port of a terminal local tree is the vertex adjacent to a vertex not in the
cluster. Figure 5 contains an example illustrating these definitions. The next property
can be easily derived from the definition of the cost function.

Lemma 5 [f T; is a terminal local tree of an optimal solution of INTERCLUMRCT,
then T; is a shortest-path tree of R; rooted at the port of T;.

Proof By definition, c;(T) = Zle Zj# dr(R;, R;j). Since T; is a terminal tree, a
shortest-path tree of R; rooted at the port of 7; minimizes c; (7). m]

Fig.5 An example of emees .

2-INTERCLUMRCT. Each 8 t
triangle represent a terminal : “= { 4
local tree. The inter-cluster edge 4 / ".‘ ‘."

(s, t) connects the two ports of . | . .
the terminal local trees RN Seeeen
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Theorem 4 The 2-INTERCLUMRCT problem can be solved in O (mn+n®logn) time.

Proof When k = 2, there is exactly one inter-cluster edge in any feasible clus-
tered spanning tree, and both local trees are terminal local trees. Let f(v) =
ZMERi dg (v, u), wherev € R;. Forany (s, 1) € Ej 2 suchthats € Ry andt € Ry, by
Lemma 5, the optimal tree with (s, #) as the inter-cluster edge consists of shortest-path
trees of Ry and R rooted at s and 7, respectively. That is, the optimal inter-cluster cost
is

min  (n2 f(s) +n1 (@) +ninaw(s, 1)),
(s,EE 2

which can be easily computed in O(|E|2]) time after f(v) for every v is known. By
using Dijkstra algorithm (Cormen et al. 2001; Dijkstra 1959) computing f (v) for all
v takes O(n% logny +nymp + n% logny + nomy) = O(mn + n? logn), and the total
time complexity is O (mn + n*logn + |E12|) = O(mn + n?logn). O

Next, we show that 3-INTERCLUMRCT is NP-hard and present a 2-approximation
algorithm. We show that 3-INTERCLUMRCT is NP-hard by a transformation from the
2-MRCT problem, which is an NP-hard problem and admits a PTAS (Wu 2002). The
2-MRCT problem can be formalized as follows.
2-MRCT Problem

Instance: A graph G = (V, E, w) and s,¢ € V, where w is a nonnegative edge
weight function.

Goal: Find a spanning tree T such that the 2-source routing cost of 7', defined
by c2(T) = ZUGV(dT(S’ v) + dr (¢, v)), is minimized.

Theorem 5 The 3-INTERCLUMRCT problem is NP-hard.

Proof Let G = (V,E, w) and s,t € V be an instance of the 2-MRCT problem.
We construct an instance (G, R = {R1, Rz, R3}) of 3-INTERCLUMRCT as follows.
First, for each v € V we add a new vertex v’ and a zero-weight edge (v', v), i.e., all
v/ are new vertices with degree one. In addition, we add vertices s” and ¢”, as well
as zero-weight edges (s, s”) and (¢, 1”). Next, let Ry = {s',s”}, R, = {t’,t"}, and
R3 = V' \ (R U Ry), where V' is the vertex set of G’. The proof is completed by
showing the next claim. O

Claim 1 There exists a spanning tree T of G with cy(T) = C iffthere exists a clustered
spanning tree T’ for R of G’ with ¢;(T") = 8C.

For a spanning tree T of G, we can construct a clustered tree T’ by adding edges
(s”,s", (", 1), and (v, v’) for all v € V to T. Conversely, we can easily obtain
the spanning tree T of G by removing these new vertices on any spanning tree 7’
of G’. The transformation of an instance of the 2-MRCT problem to an instance of
3-INTERCLUMRCT is given in Fig. 6. To prove the above claim, it is sufficient to show
the relation of the costs of the two trees.
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Fig. 6 The transformation of an
instance of the 2-MRCT
problem to an instance of
3-INTERCLUMRCT. Dotted lines
represent the zero-weighted
edges. The triangular pattern
represents an instance of the
2-MRCT problem

Since dy/(s', v) = dr/(s”,v) = d7/(s,v) and dp/(t', v) = dp/(t”, v) = d7/ (¢, v)
for any v, by definition,

(T =4 dp(s.v) +8dp(s.1) +4 D dyi(t.v)

VER3 VER3

= 4(2ZdT(S, v) - dT(S, t)) + 8dT(S, t)
veV
+4(2 ZdT(t, v) —dr (s, f))
veV

=8 ZdT(s, v) +8 ZdT(t, v)

veV veV
= 8c2(T).

Next, we present a 2-approximation algorithm for 3-INTERCLUMRCT. First, we
consider the weighted version of the 2-MRCT problem. In the weighted 2-MRCT
problem, the goal is to minimize >,y (A 1d7 (s, v) +X2d7 (¢, v)), where A1 and 1, are
given positive real numbers. Let h(v, T) = A1dr (s, v) + Axdr (¢, v) for each vertex v.
To derive a 2-approximation algorithm of the weighted 2-MRCT, the following result
was shown in Wu (2002), Sect. 5.

Lemma 6 (Wu 2002) With the same time complexity as computing a shortest-path
tree, one can construct a spanning tree T such that (1) dr(s,t) = dg(s,t); and (2)
for each vertexv € V, h(v, T) < 2h(v, Y) for any spanning tree Y.

A clustered tree with three clusters has exactly two terminal local trees and two inter-
cluster edges. The other local tree is called the center local tree. Figure 7 contains an
example of 3-INTERCLUMRCT. To approximate the 3-INTERCLUMRCT, we consider
each possible combination of two inter-cluster edges. Suppose that (s, r1) and (s2, 12)
are the two inter-cluster edges, where s1, s2 € R3,r; € Ry and r; € Ry, i.e., the local
tree of Rj3 is the center local tree.

Theorem 6 The 3-INTERCLUMRCT problem admits a 2-approximation algorithm
with time complexity O(m*nlogn + m?>).

Proof Let T1 and T, be shortest-path trees of Ry and R, rooted atr; and r, respectively.
By Lemma 5, an optimal 3-INTERCLUMRCT consists of 7} and 7> as the local trees.
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Fig.7 An example of T
3-INTERCLUMRCT. There are
two terminal local trees
connected by inter-cluster edges
(r1, s1) and (7, 52), respectively

The question is the other local tree of R3. Let 73 be a spanning tree of R3 and 7' consist
of U;<;j«3 Ti, as well as the two inter-cluster edges (s1,71) and (s2, 72). We have
that

dr(Ri, Ry) = D D" (d(u, r1) +d(r2,v))

UER] VER,

+ D0 D (W s2) + wirr, 1) + dr(s1.52)
UER] VER,

= nad(r1, R1) +n1d(r2, Ro)
+nina(w(ry, s1) + w(rz, s2) +dr(s1, 52)) (5)

and fori = 1 and 2,

dr (R;, R3)
= > > . r) +wri, si) +dr(si. v)
UER; VER3
= n3d(ri, R;) +ninaw(r;, s;) +n;dr (s;, R3). (6)
By definition,

c1(T)/2 = dr(Ry, R2) +dr(Ry, R3) +dr(Ra, R3)
= (n2 +n3)d(ri, R1) + (n1 + n3)d(r2, R2)
+n1(n2 +n3)w(ry, 1) + n2(ny + n3)w(rz, 52)
+nnadr (s, $2) + nidr (s1, R3) + nadr (s2, R3). (7

For fixed (r1, s1) and (r2, s2), our goal is to compute a spanning tree 73 of R3 mini-
mizing

ninadry (51, $2) + nidry (s1, R3) + nadry (s2, R3)
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since the other terms in (7) are fixed. By Lemma 6, the optimal cost can be 2-
approximated with n1 and n3 as the weights in the weighted 2-MRCT problem. Since
this takes O (m + nlogn) time for each possible pair of the inter-cluster edges, the
total time complexity is O (m?nlogn + m?>). O

6 Concluding remarks

In Sect. 3, we showed the inapproximability of SHORTEST s¢- CLUPATH. It is not hard
to show that the problem is fixed-parameter tractable with the number of clusters as
the parameter. The reason is that given a sequence of clusters a path passes through,
the shortest path or determining there is no such path can be computed in polynomial
time.

For CLUMRCT on metric graphs, we show a 2-approximation algorithm on metric
graphs. Our future work includes improving the approximation ratio. Also, it would
be interesting to extend the approximation algorithm for 3-INTERCLUMRCT to the
case of more than three clusters.
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