

Packing spanning trees and spanning 2-connected k **-edge-connected essentially** $(2k - 1)$ **-edge-connected subgraphs**

Xiaofeng Gu1

Published online: 8 April 2016 © Springer Science+Business Media New York 2016

Abstract Let $k \geq 2$, $p \geq 1$, $q \geq 0$ be integers. We prove that every $(4kp-2p+2q)$ connected graph contains *p* spanning subgraphs G_i for $1 \le i \le p$ and *q* spanning trees such that all $p + q$ subgraphs are pairwise edge-disjoint and such that each G_i is *k*-edge-connected, essentially $(2k - 1)$ -edge-connected, and $G_i - v$ is $(k - 1)$ -edgeconnected for all $v \in V(G)$. This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every 6*p*-connected graph contains *p* pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every $(6p+2q)$ -connected graph contains *p* spanning 2-connected subgraphs and *q* spanning trees, which are all pairwise edge-disjoint. As an application, we improve a result on *k*-arc-connected orientations.

Keywords Spanning tree · Essentially connected · Orientation · *k*-Rigid

1 Introduction

We consider undirected graphs without loops. Definitions and notations will be introduced in Sect. [2.](#page-2-0) In this paper, *k, p, q* denote nonnegative integers. A **packing** in a graph *G* means a set of pairwise edge-disjoint subgraphs of *G*.

The well-known theorem of Nash-Williams [\(1961](#page-9-0)) and Tutte [\(1961\)](#page-9-1) on packing spanning trees implies Theorem [1.1.](#page-1-0)

B Xiaofeng Gu xgu@westga.edu

¹ Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

Theorem 1.1 *Every* 2*q-edge-connected graph contains a packing of q spanning trees.*

Jordán [\(2005\)](#page-9-2) extended Theorem [1.1](#page-1-0) to edge-disjoint spanning 2-connected subgraphs, and Cheriyan et al. [\(2014\)](#page-9-3) further generalized the result to a packing of spanning 2-connected subgraphs and spanning trees. For the definition of *(k,l)* connectedness, please see Sect. [2.](#page-2-0)

Theorem 1.2 (Jordán [2005](#page-9-2)).*Every* 6*p-connected graph contains a packing of p spanning* 2*-connected subgraphs.*

Theorem 1.3 (Cheriyan et al. [2014](#page-9-3)). Let $p \ge 1$ *and* $q \ge 0$. Every $(6p + 2q, 2p)$ *connected simple graph contains a packing of p spanning* 2*-connected subgraphs and q spanning trees.*

Actually Theorems [1.2](#page-1-1) and [1.3](#page-1-2) are corollaries of stronger results in Jordán [\(2005\)](#page-9-2) and Cheriyan et al. [\(2014\)](#page-9-3), see Corollaries [4.3](#page-6-0) and [4.4.](#page-6-1)

In this paper, we prove the following result.

Theorem 1.4 *Let* $k \ge 2$ *,* $p \ge 1$ *,* $q \ge 0$ *. For every* $(4kp - 2p + 2q, kp)$ *-connected simple graph G and Y* ⊂ $E(G)$ *with* $|Y|$ ≤ $(2k-1)p+q$, *G* − *Y contains a packing of p spanning subgraphs* G_i *for* $1 \leq i \leq p$ *and* q *spanning trees such that*

- (i) *Each* G_i *is* 2*-connected, k-edge-connected and essentially* $(2k 1)$ *-edgeconnected.*
- (ii) *For each* G_i *and each vertex* $v \in V(G)$ *,* $G_i v$ *is* $(k 1)$ *-edge-connected.*

As an application, we investigate *k*-arc-connected orientations of graphs. Király and Szigeti proved the following characterization for Eulerian graphs (Theorem [1.5\)](#page-1-3). By using Theorems [1.3](#page-1-2) and [1.5,](#page-1-3) Cheriyan et al. [\(2014\)](#page-9-3) provided a sufficient connectivity condition for the existence of *k*-arc-connected orientations, see Theorem [1.6.](#page-1-4)

Theorem 1.5 (Király and Szigeti [2006\)](#page-9-4). *An Eulerian graph G has an orientation D* such that $D - v$ is k-arc-connected for all $v \in V(G)$ if and only if $G - v$ is 2*k*-edge-connected for all $v \in V(G)$ *.*

Theorem 1.6 (Cheriyan et al. [2014\)](#page-9-3). *Every (*12*k* + 2*,* 4*k)-connected simple graph G has an orientation D such that* $D - v$ *<i>is k-arc-connected for all* $v \in V(G)$ *.*

By similar argument to that of Cheriyan et al. [\(2014\)](#page-9-3), we improve Theorem [1.6](#page-1-4) as below.

Theorem 1.7 *Every* $(8k + 4, 2k + 1)$ *-connected simple graph G has an orientation D* such that $D - v$ is k-arc-connected for all $v \in V(G)$.

Proof By Theorem [1.5,](#page-1-3) it suffices to show that *G* contains an Eulerian spanning subgraph *H* such that $H - v$ is 2*k*-edge-connected for all $v \in V(G)$. Since *G* is $(8k + 4, 2k + 1)$ -connected, by Theorem [1.4,](#page-1-5) *G* contains a spanning subgraph *R* and a spanning tree *S* such that $R - v$ is 2*k*-edge-connected for all $v \in V(G)$ and R, S are edge-disjoint. Let *T* be the set of all vertices of odd degree in *R* and so |*T*| is even. Since *S* is spanning, it contains a *T* -join, denoted by *F*. Let *H* be the graph with vertex set $V(G)$ and edge set $E(R) \cup F$. Then *H* is an Eulerian spanning subgraph of *G* such that *H* − *v* is 2*k*-edge-connected for all $v \in V(G)$, completing the proof. \Box

Theorem [1.7](#page-1-6) is also related to a conjecture of Thomassen [\(1989\)](#page-9-5). Thomassen [\(1989\)](#page-9-5) conjectures that, for every positive integer k , there exists a (smallest) $g(k)$ such that every $g(k)$ -connected graph has a *k*-connected orientation. Jordán [\(2005\)](#page-9-2) shows that $g(2) \le 18$, while Theorem [1.6](#page-1-4) implies that $g(2) \le 14$. It is not hard to see $g(2) < 12$ from Theorem [1.7.](#page-1-6) Recently, Thomassen [\(2015](#page-9-6)) shows that $g(2) = 4$.

In Sect. [4,](#page-6-2) we will prove a stronger theorem, Theorem [4.1,](#page-6-3) which is the main result. Theorem [1.4](#page-1-5) is a corollary of Theorem [4.1.](#page-6-3) The proof of Theorem [4.1](#page-6-3) uses a matroidal method. We must point out that the proof technique is similar to that in Cheriyan et al. [\(2014](#page-9-3)). In Sect. [3,](#page-2-1) we will introduce *k*-rigid graphs and *k*-rigidity matroids.

2 Definitions

Let $G = (V, E)$ be a graph. For any edge subset $F \subseteq E(G), G[F]$ is the subgraph of *G* induced by *F*, while $G(F)$ denotes the spanning subgraph of *G* with vertex set *V*(*G*) and edge set *F*. For any vertex subset $X \subseteq V(G)$, $G[X]$ denotes the subgraph of *G* induced by *X*.

For any $X \subseteq V(G)$ and $F \subseteq E(G)$, $E_F(X)$ and $i_F(X)$ denote the set and the number of edges of *F* in $G[X]$, respectively. If $F = E(G)$, then usually we use $E_G(X)$ and $i_G(X)$ for $E_F(X)$ and $i_F(X)$, respectively.

For any nonempty proper subset $X \subset V(G)$, let $d_G(X)$ denote the number of edges between *X* and $V(G) - X$. A graph *G* is *k***-edge-connected** if $d_G(X) \geq k$ for every nonempty proper subset $X \subset V(G)$. A graph G is **essentially** k **-edge-connected** if $d_G(X) \geq k$ for every $X \subset V(G)$ with $2 \leq |X| \leq |V(G)| - 2$.

For positive integers *k* and *l*, *G* is (k, l) **-connected** if $|V(G)| > k/l$ and $G - X$ is $(k - l|X|)$ -edge-connected for every $X \subset V(G)$. For instance, a graph G is $(3k, k)$ connected if *G* is 3*k*-edge-connected, $G - v$ is 2*k*-edge-connected for any vertex $v \in V(G)$ and $G - \{u, v\}$ is *k*-edge-connected for any two vertices $u, v \in V(G)$. By definition, *k*-edge-connectedness is equivalent to *(k, k)*-connectedness.

Remark 1 (See also Cheriyan et al. [2014](#page-9-3)). Every *k*-connected graph contains a $(k, 1)$ -connected simple spanning subgraph, and $(k, 1)$ -connectedness implies (k, l) connectedness for $l \geq 1$.

Let $T \subseteq V(G)$. A subset $F \subseteq E(G)$ is a T-join if the set of all odd vertices of $G[F]$ is equal to *T*. A connected graph has a *T*-join if and only if |*T*| is even.

A digraph $D = (V, A)$ is **strongly connected** if for any two vertices $u, v \in V(D)$, there is a directed path from *u* to *v* in *D*. A digraph *D* is *k***-arc-connected** if $D - F$ is strongly connected for all $F \subseteq A(D)$ with $|F| \leq k - 1$. A digraph *D* is *k***-connected** if $|V|$ ≥ *k* and *D* − *X* is strongly connected for all *X* ⊂ *V*(*D*) with $|X|$ ≤ *k* − 1.

3 *k***-rigid graphs and** *k***-rigidity matroids**

Let $k \geq 1$ and $G = (V, E)$ be a graph. A subset $S \subseteq E$ is *k***-sparse** if $i_S(X) \leq$ $k|X| - 2k + 1$ for all $X \subseteq V$ with $|X| \ge 2$. This was originally defined in Jackson and Jordán [\(2005](#page-9-7)). By definition, the empty set and any set that consists of a single edge

are *k*-sparse. A graph *G* is *k***-sparse** if $E(G)$ is a *k*-sparse set. If in addition $|E(G)| =$ $k|V(G)| - 2k + 1$, then *G* is **minimally** *k***-rigid**. A graph *G* is *k***-rigid** if *G* contains a spanning minimally *k*-rigid subgraph. By definition, 1-sparse graphs, minimally 1 rigid graphs and 1-rigid graphs are equivalent to forests, trees and connected graphs, respectively. A 2-rigid graph is usually called a **rigid** graph.

Proposition 3.1 *Each of the following statements holds.*

- (i) *Any k-sparse graph is simple.*
- (ii) *For any nontrivial k-rigid graph G,* $|V(G)| \geq 2k 1$ *or* $|V(G)| = 2$.
- (iii) *Any k-rigid graph G with* $|V(G)| \geq 2k 1$ *is k-edge-connected and essentially (*2*k* − 1*)-edge-connected.*
- (iv) Let $k \geq 2$ and G be a k-rigid graph with $|V(G)| \geq 2k 1$. For any vertex $v \in V(G)$, $G - v$ *is* $(k - 1)$ *-edge-connected, and thus G is* 2*-connected.*
- *Proof* (i) By definition, for every subset $X \subseteq V(G)$ with $|X| = 2$ of a *k*-sparse graph *G*, $| i_G(X) | ≤ 2k - 2k + 1 = 1$. Thus *G* is simple.
- (ii) Let $|V(G)| = n$. Since *G* is *k*-rigid, *G* contains a minimally *k*-rigid spanning subgraph *G'*. By (i), *G'* is simple, and thus $\frac{n(n-1)}{2} \ge |E(G')| = kn - 2k + 1$. Then $n^2 - (2k + 1)n + 4k - 2 > 0$, which implies that $n > 2k - 1$ or $n < 2$.
- (iii) Without loss of generality, we may assume that *G* is minimally *k*-rigid. We show that *G* is essentially $(2k - 1)$ -edge-connected by way of contradiction. Assume that there exists an edge subset $Y \subset E(G)$ with $|Y| \leq 2k - 2$ such that *G* − *Y* has 2 components *G*₁ and *G*₂ with $|V(G_i)| \ge 2$ for $i = 1, 2$. As *G* is minimally *k*-rigid, $|E(G_i)| \le k|V(G_i)| - 2k + 1$. Thus $|E(G)| =$ $|E(G_1)|+|E(G_2)|+|Y| \le (k|V(G_1)|-2k+1)+(k|V(G_2)|-2k+1)+(2k-2) =$ $k|V(G)| - 2k$, contradicting that *G* is minimally *k*-rigid. This proves that *G* is essentially $(2k - 1)$ -edge-connected. If *G* is not *k*-edge-connected, then there exists an edge subset $Y \subset E(G)$ with $|Y| \leq k - 1$ such that $G - Y$ has 2 components G_1 and G_2 , one of which, say G_2 , consists of a single vertex. Thus $|E(G)| = |E(G_1)| + |Y| \le (k|V(G_1)| - 2k + 1) + (k - 1) = k|V(G)| - 2k$ contradicting that *G* is minimally *k*-rigid. Thus *G* is *k*-edge-connected.
- (iv) Without loss of generality, we may assume that *G* is minimally *k*-rigid. Towards a proof by contradiction, we assume that for a vertex $v \in V(G)$, there exists an edge subset *Y* ⊂ *E*(*G* − *v*) with $|Y|$ ≤ *k* − 2 such that $(G - v) - Y$ has 2 components *H*₁ and *H*₂. Let *G_i* = *G*[*V*(*H_i*) ∪ {*v*}] for *i* = 1, 2. Then $|V(G_i)| \ge 2$, and so $|E(G_i)| \leq k|V(G_i)| - 2k + 1$. Thus $|E(G)| = |E(G_1)| + |E(G_2)| + |Y| \leq$ $(k|V(G_1)|-2k+1)+(k|V(G_2)|-2k+1)+(k-2)=k(|V(G_1)|+|V(G_2)|) 3k = k|V(G)| - 2k$, contradicting that *G* is minimally *k*-rigid. Thus $G - v$ is $(k − 1)$ -edge-connected. In particular, since $k ≥ 2$, $G − v$ is connected for every $v \in V(G)$, and thus *G* is 2-connected.

Let \mathscr{S}_k be the collections of all *k*-sparse sets. One can verify that the collection \mathscr{S}_k forms the set of independent sets of a matroid. Actually, this matroid (E, \mathscr{S}_k) is a special case of the **count matroid** (See page 453 of Frank [2011](#page-9-8)). In this paper, the matroid (E, \mathscr{S}_k) is called the *k***-rigidity matroid** of *G*, denoted by $\mathcal{R}_k(G)$. By

 \Box

definition, $\mathcal{R}_1(G)$ is the **circuit matroid** $\mathcal{C}(G)$ of G and $\mathcal{R}_2(G)$ is the **rigid matroid** $R(G)$ of *G* (see Lovász and Yemini [1982](#page-9-9) for more about $R(G)$).

The rank function of $\mathcal{R}_2(G)$ is given by Lovász and Yemini [\(1982\)](#page-9-9). While the rank of $\mathcal{R}_k(G)$ can be seen in Jackson and Jordán [\(2005](#page-9-7)), the complete rank function of $\mathcal{R}_k(G)$ is not given. We present the rank function of $\mathcal{R}_k(G)$ in the following proposition.

Proposition 3.2 *Let* $k \geq 2$ *. Given* $F \subseteq E$ *, the rank function of* $\mathcal{R}_k(G)$ *is*

$$
r_k(F) = \min\left\{\sum_{X \in \mathcal{X}} (k|X| - 2k + 1)\right\},\tag{1}
$$

where the minimum is taken over all collections X *of subsets* $V(G)$ *such that* $|X| > 2$ *for all* $X \in \mathcal{X}$ *and such that* $\{E_F(X) | X \in \mathcal{X}\}$ *partitions F*.

Proof Let $F' \subseteq F$ be a maximal *k*-sparse set. It suffices to show $|F'| =$ $\min\{\sum_{X \in \mathcal{X}} (k|X| - 2k + 1)\}\)$. As *F*['] is *k*-sparse, $|F' \cap E_{F'}(X)| \le k|X| - 2k + 1$ for every $X \in \mathcal{X}$. Thus $|F'| \le \sum_{X \in \mathcal{X}} (k|X| - 2k + 1)$ for any collection \mathcal{X} . Now we show that there exists a collection \mathcal{X}_0 such that $|F'| = \sum_{X \in \mathcal{X}_0} (k|X| - 2k + 1)$.

Since each single edge of F' is induced by a vertex subset *X* with $i_{F'}(X)$ = $k|X| - 2k + 1$ (actually $|X| = 2$), there are some maximal vertex subsets *X* with $i_{F'}(X) = k|X| - 2k + 1$. Let $X_1, X_2, \dots, X_t \subseteq V(G[F'])$ be maximal vertex subsets such that $i_{F'}(X_i) = k|X_i| - 2k + 1$ for $1 \le i \le t$. Let $X_0 = \{X_1, X_2, \dots, X_t\}$.

Claim 1 $|X_i \cap X_j| \leq 1$ for $1 \leq i \neq j \leq t$. If not, then $|X_i \cap X_j|$ ≥ 2 for some $i \neq j$. We will show it then follows that $i_{F'}(X_i \cup X_j) = k|X_i \cup X_j| - 2k + 1$. Actually $i_{F'}(X_i \cup X_j) + i_{F'}(X_i \cap X_j) \ge$ $i_{F'}(X_i) + i_{F'}(X_j)$, which implies that

$$
i_{F'}(X_i \cup X_j) \ge i_{F'}(X_i) + i_{F'}(X_j) - i_{F'}(X_i \cap X_j)
$$

\n
$$
\ge (k|X_i| - 2k + 1) + (k|X_j| - 2k + 1) - (k|X_i \cap X_j| - 2k + 1)
$$

\n
$$
= k(|X_i| + |X_j| - |X_i \cap X_j|) - 2k + 1
$$

\n
$$
= k|X_i \cup X_j| - 2k + 1.
$$

As *F'* is *k*-sparse, $i_{F'}(X_i \cup X_j) \le k|X_i \cup X_j| - 2k + 1$, and thus $i_{F'}(X_i \cup X_j) =$ $k|X_i \cup X_j| - 2k + 1$, which is contrary to the maximality of X_i and X_j . This completes the proof of the claim.

Notice that each single edge of F' is induced by a vertex subset *X* with $i_F(X)$ = $k|X| - 2k + 1$ (actually $|X| = 2$), then each edge of *F*^{\prime} is covered by a maximal vertex subset *X*_{*j*} for some $j = 1, 2, \dots, t$ $j = 1, 2, \dots, t$ $j = 1, 2, \dots, t$. By Claim 1, $\{E_{F'}(X_1), E_{F'}(X_2), \dots, E_{F'}(X_t)\}$ is a partition of *F'*. Thus $|F'| = \sum_{1 \leq j \leq t} i_{F'}(X_j) = \sum_{1 \leq j \leq t} (k|X_j| - 2k + 1)$.

It remains to prove $\{E_F(X)|X \in \mathcal{X}_0\}$ partitions *F*. Let $e \in F$. If $e \in F'$, then we are done. Thus we may assume that $e \in F - F'$. As F' is a maximal *k*-sparse set, $F' \cup \{e\}$ is not *k*-sparse. Then there exists $X \subseteq V(G)$ such that $i_{F' \cup \{e\}}(X) \ge k|X| - 2k + 2$. Furthermore, $e \in E_{F' \cup \{e\}}(X)$, which implies that $i_{F'}(X) = k|X| - 2k + 1$. Then *X* is included in some maximal set *X*_{*j*} for 1 ≤ *j* ≤ *t*. Hence *e* ∈ *E*_{*F*}(*X*_{*j*}), completing the proof. \Box \Box

Remark 2 By the definition of *k*-rigid graphs, the proof of Proposition [3.2](#page-4-1) shows that, there is a collection $\mathcal X$ to realize the minimum of the right side of [\(1\)](#page-4-2) such that each *X* ∈ *X* induces a *k*-rigid subgraph of *G*[*F*].

Remark 3 The rank of $\mathcal{R}_k(G)$, $r_k(E) \leq k|V(G)| - 2k + 1$. A graph *G* is *k*-rigid if and only if the rank of $\mathcal{R}_k(G)$ is $k|V(G)| - 2k + 1$.

Proof of Remark [3](#page-5-0) By definition, a spanning *k*-sparse subgraph of *G* has at most $k|V(G)| - 2k + 1$ edges. This is the maximum cardinality of an independent set of $\mathcal{R}_k(G)$, and thus $r_k(E) \leq k|V(G)| - 2k + 1$. If *G* is *k*-rigid, then *G* has a spanning *k*sparse subgraph with exact $k|V(G)|-2k+1$ edges. This is the maximum cardinality of an independent set of $\mathcal{R}_k(G)$. Thus the cardinality of any base of $\mathcal{R}_k(G)$ is $k|V(G)|$ – $2k + 1$, which implies the rank of $\mathcal{R}_k(G)$ is $k|V(G)| - 2k + 1$. Inversely, if the rank of $\mathcal{R}_k(G)$ is $k|V(G)| - 2k + 1$, then *G* has a spanning *k*-sparse subgraph *H* with exact $k|V(G)| - 2k + 1$ edges. By definition, *H* is a spanning minimally *k*-rigid subgraph of *G* and thus *G* is *k*-rigid of *G*, and thus *G* is *k*-rigid.

Corollary 3.3 Let *X* be a collection that realizes the minimum of the right side of [\(1\)](#page-4-2) $\mathcal{L}(X|X) = \sum_{X \in \mathcal{Y}} (X|X) - \sum_{X \in \mathcal{Y$ $2k + 1$ *)*.

Proof Since X is a collection that realizes the minimum of the right side of [\(1\)](#page-4-2), $r_k(F) = \sum_{X \in \mathcal{X}} (k|X| - 2k + 1)$. Also $F = \bigcup_{X \in \mathcal{X}} E_F(X) = (\bigcup_{X \in \mathcal{Y}} E_F(X)) \cup$ $(\cup_{X \in \mathcal{X}} \cup_{Y \in \mathcal{X}} E_F(X))$. By [\(1\)](#page-4-2), $r_k(\cup_{X \in \mathcal{Y}} E_F(X)) \leq \sum_{X \in \mathcal{Y}} (k|X| - 2k + 1)$ and *rk* (∪*X*∈*X*−*y* $E_F(X)$) ≤ $\sum_{X \in \mathcal{X}$ −*y*($k|X|$ −2 k +1). By submodularity of rank function,

$$
\sum_{X \in \mathcal{X}} (k|X| - 2k + 1) = r_k(F)
$$
\n
$$
\leq r_k(\cup_{X \in \mathcal{Y}} E_F(X)) + r_k(\cup_{X \in \mathcal{X} - \mathcal{Y}} E_F(X))
$$
\n
$$
\leq \sum_{X \in \mathcal{Y}} (k|X| - 2k + 1) + \sum_{X \in \mathcal{X} - \mathcal{Y}} (k|X| - 2k + 1)
$$
\n
$$
= \sum_{X \in \mathcal{X}} (k|X| - 2k + 1).
$$

Thus every equality holds above. In particular, $r_k(\cup_{X \in \mathcal{Y}} E_F(X)) = \sum_{X \in \mathcal{Y}} (k|X| - 1)$ $2k + 1$).

Suppose that $G = (V, E)$ is a graph with $|V(G)| = n$. Let $\mathcal F$ be the collection of all edge subsets each of which induces a forest. Then $\mathcal F$ forms all independent sets of a matroid (E, \mathcal{F}) on ground set E, which is the **circuit matroid** $\mathcal{M}(G)$ of G. The rank function of $\mathcal{M}(G)$ is given by $r_{\mathcal{M}}(F) = n - c(F)$, where $c(F)$ denotes the number of components of $G(F)$.

Let $\mathcal{N}_{k,p,q}(G)$ be the matroid on ground set E obtained by taking matroid union of *p* copies of the *k*-rigidity matroid $\mathcal{R}_k(G)$ and *q* copies of the circuit matroid $\mathcal{M}(G)$. By a theorem of Edmonds on the rank of matroid union Edmonds [\(1968\)](#page-9-10), the rank of $\mathcal{N}_{k,p,q}(G)$ is

$$
r_{k,p,q}(E) = \min_{F \subseteq E} \{ pr_k(F) + qr_{\mathcal{M}}(F) + |E - F| \}.
$$
 (2)

Thus $r_{k, p, q}(E) \leq pr_k(E) + qr_{\mathcal{M}}(E) = p(kn - 2k + 1) + q(n - 1)$.

4 Packing *k***-rigid spanning subgraphs**

In this section, we prove Theorem [1.4](#page-1-5) by providing a stronger result (Theorem [4.1\)](#page-6-3). In Theorem [4.1,](#page-6-3) we present a connectivity condition for packing spanning *k*-rigid subgraphs and spanning trees. Theorem [1.4](#page-1-5) then follows from Proposition [3.1](#page-3-0) and Theorem [4.1.](#page-6-3)

Theorem 4.1 *Let* $k \geq 2$ *,* $p \geq 1$ *,* $q \geq 0$ *. For a* (4 $kp-2p+2q$ *, kp*)*-connected simple graph G and Y* $\subset E(G)$ *with* $|Y| \leq (2k-1)p + q$, $G - Y$ contains a packing of p *spanning k-rigid subgraphs and q spanning trees.*

The theorem also implies the following known results.

Corollary 4.2 (Lovász and Yemini [1982\)](#page-9-9). *Every* 6*-connected graph is* 2*-rigid.*

Corollary 4.3 (Jordán [2005\)](#page-9-2). *Every* 6*p-connected graph contains a packing of p spanning* 2*-rigid subgraphs.*

Corollary 4.4 (Cheriyan et al. [2014\)](#page-9-3). *Every (*6*p* + 2*q,* 2*p)-connected simple graph contains a packing of p spanning* 2*-rigid subgraphs and q spanning trees.*

In the rest of this section, we prove Theorem [4.1.](#page-6-3)

Proof of Theorem [4.1](#page-6-3) Let $G' = G - Y$ and $E = E(G') = E(G) - Y$. It suffices to show that the rank of $\mathcal{N}_{k,p,q}(G')$ is

$$
r_{k,p,q}(E) = p(kn - 2k + 1) + q(n - 1).
$$

Choose $F \subseteq E$ to be a set with smallest size that minimizes the right side of [\(2\)](#page-6-4), then

$$
r_{k,p,q}(E) = pr_k(F) + qr_{\mathcal{M}}(F) + |E - F|.
$$
 (3)

By [\(1\)](#page-4-2) and Remark [2,](#page-4-3) there exists a collection $\mathcal X$ of subsets V such that $\{E_F(X)|X \in$ *X* } partitions *F* and

$$
r_k(F) = \sum_{X \in \mathcal{X}} (k|X| - 2k + 1),
$$
 (4)

and such that each $X \in \mathcal{X}$ induces a *k*-rigid subgraph.

Claim 2 For each $X \in \mathcal{X}$, $|X| \geq 2k - 1$.

Proof of Claim [2](#page-6-5) Since each $X \in \mathcal{X}$ induces a *k*-rigid subgraph, by Proposition [3.1,](#page-3-0) $|X| > 2k - 1$ or $|X| = 2$. Thus it suffices to show that $|X| \neq 2$ for any $X \in \mathcal{X}$. If not, then let \mathcal{X}' denote the collection of $X \in \mathcal{X}$ with $|X| = 2$. Then $r_k(F) =$

 $\sum_{X \in \mathcal{X} - \mathcal{X}'} (k|X| - 2k + 1) + \sum_{X \in \mathcal{X}'} (k|X| - 2k + 1) = \sum_{X \in \mathcal{X} - \mathcal{X}'} (k|X| - 2k + 1) + |\mathcal{X}'|.$ Let $H \subset F$ be the set of edges obtained by deleting all edges induced by each X with $|X| = 2$. Then $X - X'$ is a collection of subsets of *V* that partition *H*. By [\(1\)](#page-4-2), $r_k(H) \leq \sum_{X \in \mathcal{X} - \mathcal{X}'} (k|X| - 2k + 1)$. As *G*' is simple, $|F - H| \leq |\mathcal{X}'|$. Since $H \subset F$, we have $r_{\mathcal{M}}(H) \leq r_{\mathcal{M}}(F)$. Thus

$$
pr_{k}(H) + qr_{\mathcal{M}}(H) + |E - H|
$$

\n
$$
\leq p \sum_{X \in \mathcal{X} - \mathcal{X}'} (k|X| - 2k + 1) + qr_{\mathcal{M}}(F) + |E - F| + |F - H|
$$

\n
$$
\leq p \sum_{X \in \mathcal{X} - \mathcal{X}'} (k|X| - 2k + 1) + qr_{\mathcal{M}}(F) + |E - F| + |\mathcal{X}'|
$$

\n
$$
\leq pr_{k}(F) + qr_{\mathcal{M}}(F) + |E - F|,
$$

contrary to the minimality of *F*. This completes the proof of the claim.

Claim 3 For every $\mathcal{Y} \subseteq \mathcal{X}$, there is a vertex that is contained in a single element of \mathcal{Y} .

Proof of Claim [3](#page-7-0) If not, then every vertex is contained in at least two elements of *Y*. Let n_y be the number of vertices in all elements of *Y*. Then $\sum_{X \in \mathcal{Y}} |X| \ge 2n_y$. By Remark [3,](#page-5-0) Corollary [3.3](#page-5-1) and Claim [2,](#page-6-5) we have

$$
kny - 2k + 1 \ge r_k \left(\bigcup_{X \in \mathcal{Y}} E_F(X) \right) = \sum_{X \in \mathcal{Y}} (k|X| - 2k + 1)
$$

=
$$
\sum_{X \in \mathcal{Y}} ((k - 1)|X|) + \sum_{X \in \mathcal{Y}} (|X| - 2k + 1)
$$

$$
\ge 2(k - 1)ny + 0
$$

$$
\ge kny,
$$

a contradiction. This proves the claim.

Let $|V(G'[F])| = n_1$ and $n_2 = n - n_1$. Then there are n_2 isolated vertices in $G'(F)$. For each $X \in \mathcal{X}$, define $X_B = X \cap (\cup_{X \neq Y \in \mathcal{X}} Y)$ and $X_I = X - X_B$. Let $\mathcal{I}_X = \{X \in \mathcal{X} : X_I \neq \emptyset\}$. We will show that

$$
c(F) \le |\mathcal{I}_{\mathcal{X}}| + n_2. \tag{5}
$$

Proof of [\(5\)](#page-7-1). Let H' be any connected component of $G'(F)$ that is not an isolated vertex. This *H*^{\prime} is called a nontrivial component. By Remark [2,](#page-4-3) each *X* $\in \mathcal{X}$ induces a connected subgraph of $G'(F)$ and thus H' actually is a sugraph of $G'(F)$ induced by some elements *X*'s of *X*. Let *Y* be the collection of these *X*'s, and thus $\mathcal{Y} \subseteq \mathcal{X}$. By Claim [3,](#page-7-0) there is a vertex v in $V(H')$ that is contained in a single element of Y . By definition, $v \in X_I$ and thus $X_I \neq \emptyset$. This shows that every nontrivial component of $G'(F)$ contains an *X* such that $X_I \neq \emptyset$. Hence $G'(F)$ contains at most $|\mathcal{I}_{\mathcal{X}}|$ components that are not isolated vertices, which implies that $c(F) \leq |I_{\mathcal{X}}| + n_2$.

Since *X* covers *F* and thus contains all vertices of $G'[F]$, each vertex of X_B lies in at least two different $X \in \mathcal{X}$ and each X_I is contained in a single X , we have $\sum_{X \in \mathcal{X}} |X_B| + 2 \sum_{X \in \mathcal{I}_{\mathcal{X}}} |X_I| \ge 2n_1$, which implies

$$
\sum_{X \in \mathcal{X}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{X}}} |X_I| \ge 2n_1.
$$
 (6)

Now we will use the connectivity condition of *G* to show a lower bound on $|E - F|$. Let v_1, v_2, \dots, v_n be isolated vertices of $G(F)$. Since G is $(4kp - 2p + 2q, kp)$ connected, $d_{G−X_B}(X_I) \ge 4kp - 2p + 2q - kp|X_B|$ for each $X \in \mathcal{X}$ and $d_G(v_i) \ge$ $4kp - 2p + 2q$ for $1 ≤ i ≤ n₂$. For every $X ∈ X$, no edge of *F* contributes to *d*_{*G*−*X_B*}(*X_I*). For $1 \le i \le n_2$, no edge of *F* contributes to *d_G*(*v_i*). Thus

$$
|E - F| \ge |E(G) - Y - F| = |E(G) - F| - |Y|
$$

\n
$$
\ge \frac{1}{2} \left(\sum_{X \in \mathcal{I}_X} d_{G - X_B}(X_I) + \sum_{i=1}^{n_2} d_G(v_i) \right) - ((2k - 1)p + q)
$$

\n
$$
\ge \frac{1}{2} \left(\sum_{X \in \mathcal{I}_X} (4kp - 2p + 2q - kp|X_B|) + n_2(4kp - 2p + 2q) \right)
$$

\n
$$
- (2k - 1)p - q
$$

\n
$$
= p \sum_{X \in \mathcal{I}_X} (2k - 1 - \frac{k}{2}|X_B|) + p(2k - 1)(n_2 - 1)
$$

\n
$$
+ q(|\mathcal{I}_X| + n_2 - 1)
$$
 (7)

By Claim [2,](#page-6-5) $\frac{k}{2}|X| - 2k + 1 \ge 0$. As $\mathcal{I}_{\mathcal{X}} \subseteq \mathcal{X}$, we have

$$
\sum_{X \in \mathcal{X}} \left(\frac{k}{2} |X| - 2k + 1 \right) \ge \sum_{X \in \mathcal{I}_{\mathcal{X}}} \left(\frac{k}{2} |X| - 2k + 1 \right). \tag{8}
$$

By (3) , (4) , (5) , (6) , (7) and (8) ,

$$
r_{k,p,q}(E) = p \sum_{X \in \mathcal{X}} (k|X| - 2k + 1) + qr_{\mathcal{M}}(F) + |E - F|
$$

= $p \left(\sum_{X \in \mathcal{X}} \frac{k}{2} |X| + \sum_{X \in \mathcal{X}} (\frac{k}{2} |X| - 2k + 1) \right) + q(n - c(F)) + |E - F|$
 $\ge p \left(\sum_{X \in \mathcal{X}} \frac{k}{2} |X| + \sum_{X \in \mathcal{I}_{\mathcal{X}}} (\frac{k}{2} |X| - 2k + 1) \right) + q(n - c(F))$
+ $p \sum_{X \in \mathcal{I}_{\mathcal{X}}} (2k - 1 - \frac{k}{2} |X_B|) + p(2k - 1)(n_2 - 1) + q(|\mathcal{I}_{\mathcal{X}}| + n_2 - 1)$

² Springer

$$
= p\left(\sum_{X \in \mathcal{X}} \frac{k}{2}|X| + \sum_{X \in \mathcal{I}_{\mathcal{X}}} \frac{k}{2}|X_I| + (2k - 1)n_2\right) -p(2k - 1) + q(n - c(F) + |\mathcal{I}_{\mathcal{X}}| + n_2 - 1) \ge \frac{pk}{2}(2n_1 + 2n_2) - p(2k - 1) + q(n - 1) + q(|\mathcal{I}_{\mathcal{X}}| + n_2 - c(F)) \ge p(kn - 2k + 1) + q(n - 1).
$$

As $r_{k,p,q}(E) \le p(kn-2k+1) + q(n-1)$, it turns out that $r_{k,p,q}(E) = p(kn-1) + q(n-1)$ $2k + 1$ $+ q(n - 1)$.

Acknowledgements The author would like to thank anonymous reviewers for the valuable comments and suggestions to improve the quality of the paper.

References

- Cheriyan J, Durand de Gevigney O, Szigeti Z (2014) Packing of rigid spanning subgraphs and spanning trees. J Combin Theory Ser B 105:17–25
- Edmond J (1968) Matroid partition. Mathematics of the Decision Sciences Part 1, Lectures in Applied Mathematics, vol 11. AMS, Providence, pp 335–345
- Frank A (2011) Connections in combinatorial optimization. Oxford University Press, Oxford
- Jackson B, Jordán T (2005) The *d*-dimensional rigidity matroid of sparse graphs. J Combin Theory Ser B 95:118–133
- Jordán T (2005) On the existence of *k* edge-disjoint 2-connected spanning subgraphs. J Combin Theory Ser B 95:257–262
- Király Z, Szigeti Z (2006) Simultaneous well-balanced orientations of graphs. J Combin Theory Ser B 96:684–692
- Lovász L, Yemini Y (1982) On generic rigidity in the plane. SIAM J Algebr Discret Methods 3:91–98
- Nash-Williams CStJA (1961) Edge-disjoint spanning trees of finite graphs. J Lond Math Soc 36:445–450 Thomassen C (1989) Configurations in graphs of large minimum degree, connectivity, or chromatic number.

Ann N Y Acad Sci 555:402–412

Thomassen C (2015) Strongly 2-connected orientations of graphs. J Combin Theory Ser B 110:67–78 Tutte WT (1961) On the problem of decomposing a graph into *n* connected factors. J Lond Math Soc

36:221–230