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Abstract Let k ≥ 2, p ≥ 1, q ≥ 0 be integers. We prove that every (4kp−2p+2q)-
connected graph contains p spanning subgraphs Gi for 1 ≤ i ≤ p and q spanning
trees such that all p+q subgraphs are pairwise edge-disjoint and such that each Gi is
k-edge-connected, essentially (2k − 1)-edge-connected, and Gi − v is (k − 1)-edge-
connected for all v ∈ V (G). This extends the well-known result of Nash-Williams and
Tutte on packing spanning trees, a theorem that every 6p-connected graph contains
p pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every
(6p+2q)-connectedgraph contains p spanning2-connected subgraphs andq spanning
trees, which are all pairwise edge-disjoint. As an application, we improve a result on
k-arc-connected orientations.

Keywords Spanning tree · Essentially connected · Orientation · k-Rigid

1 Introduction

We consider undirected graphs without loops. Definitions and notations will be intro-
duced in Sect. 2. In this paper, k, p, q denote nonnegative integers. A packing in a
graph G means a set of pairwise edge-disjoint subgraphs of G.

The well-known theorem of Nash-Williams (1961) and Tutte (1961) on packing
spanning trees implies Theorem 1.1.
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Theorem 1.1 Every 2q-edge-connected graph contains a packing of q spanning trees.

Jordán (2005) extended Theorem 1.1 to edge-disjoint spanning 2-connected sub-
graphs, and Cheriyan et al. (2014) further generalized the result to a packing of
spanning 2-connected subgraphs and spanning trees. For the definition of (k, l)-
connectedness, please see Sect. 2.

Theorem 1.2 (Jordán 2005).Every6p-connected graph contains a packing of p span-
ning 2-connected subgraphs.

Theorem 1.3 (Cheriyan et al. 2014). Let p ≥ 1 and q ≥ 0. Every (6p + 2q, 2p)-
connected simple graph contains a packing of p spanning 2-connected subgraphs and
q spanning trees.

Actually Theorems 1.2 and 1.3 are corollaries of stronger results in Jordán (2005)
and Cheriyan et al. (2014), see Corollaries 4.3 and 4.4.

In this paper, we prove the following result.

Theorem 1.4 Let k ≥ 2, p ≥ 1, q ≥ 0. For every (4kp − 2p + 2q, kp)-connected
simple graph G and Y ⊂ E(G) with |Y | ≤ (2k − 1)p+ q, G − Y contains a packing
of p spanning subgraphs Gi for 1 ≤ i ≤ p and q spanning trees such that

(i) Each Gi is 2-connected, k-edge-connected and essentially (2k − 1)-edge-
connected.

(ii) For each Gi and each vertex v ∈ V (G), Gi − v is (k − 1)-edge-connected.

As an application, we investigate k-arc-connected orientations of graphs. Király and
Szigeti proved the following characterization for Eulerian graphs (Theorem 1.5). By
using Theorems 1.3 and 1.5, Cheriyan et al. (2014) provided a sufficient connectivity
condition for the existence of k-arc-connected orientations, see Theorem 1.6.

Theorem 1.5 (Király and Szigeti 2006). An Eulerian graph G has an orientation
D such that D − v is k-arc-connected for all v ∈ V (G) if and only if G − v is
2k-edge-connected for all v ∈ V (G).

Theorem 1.6 (Cheriyan et al. 2014). Every (12k + 2, 4k)-connected simple graph G
has an orientation D such that D − v is k-arc-connected for all v ∈ V (G).

By similar argument to that of Cheriyan et al. (2014), we improve Theorem 1.6 as
below.

Theorem 1.7 Every (8k + 4, 2k + 1)-connected simple graph G has an orientation
D such that D − v is k-arc-connected for all v ∈ V (G).

Proof By Theorem 1.5, it suffices to show that G contains an Eulerian spanning
subgraph H such that H − v is 2k-edge-connected for all v ∈ V (G). Since G is
(8k + 4, 2k + 1)-connected, by Theorem 1.4, G contains a spanning subgraph R and
a spanning tree S such that R − v is 2k-edge-connected for all v ∈ V (G) and R, S
are edge-disjoint. Let T be the set of all vertices of odd degree in R and so |T | is
even. Since S is spanning, it contains a T -join, denoted by F . Let H be the graph with
vertex set V (G) and edge set E(R)∪ F . Then H is an Eulerian spanning subgraph of
G such that H − v is 2k-edge-connected for all v ∈ V (G), completing the proof. ��
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Theorem1.7 is also related to a conjecture of Thomassen (1989). Thomassen (1989)
conjectures that, for every positive integer k, there exists a (smallest) g(k) such that
every g(k)-connected graph has a k-connected orientation. Jordán (2005) shows that
g(2) ≤ 18, while Theorem 1.6 implies that g(2) ≤ 14. It is not hard to see g(2) ≤ 12
from Theorem 1.7. Recently, Thomassen (2015) shows that g(2) = 4.

In Sect. 4, we will prove a stronger theorem, Theorem 4.1, which is the main result.
Theorem 1.4 is a corollary of Theorem 4.1. The proof of Theorem 4.1 uses a matroidal
method. We must point out that the proof technique is similar to that in Cheriyan et
al. (2014). In Sect. 3, we will introduce k-rigid graphs and k-rigidity matroids.

2 Definitions

Let G = (V, E) be a graph. For any edge subset F ⊆ E(G), G[F] is the subgraph
of G induced by F , while G(F) denotes the spanning subgraph of G with vertex set
V (G) and edge set F . For any vertex subset X ⊆ V (G), G[X ] denotes the subgraph
of G induced by X .

For any X ⊆ V (G) and F ⊆ E(G), EF (X) and iF (X) denote the set and the
number of edges of F in G[X ], respectively. If F = E(G), then usually we use
EG(X) and iG(X) for EF (X) and iF (X), respectively.

For any nonempty proper subset X ⊂ V (G), let dG(X) denote the number of edges
between X and V (G) − X . A graph G is k-edge-connected if dG(X) ≥ k for every
nonempty proper subset X ⊂ V (G). A graph G is essentially k-edge-connected if
dG(X) ≥ k for every X ⊂ V (G) with 2 ≤ |X | ≤ |V (G)| − 2.

For positive integers k and l, G is (k, l)-connected if |V (G)| > k/ l and G − X is
(k − l|X |)-edge-connected for every X ⊂ V (G). For instance, a graph G is (3k, k)-
connected if G is 3k-edge-connected, G − v is 2k-edge-connected for any vertex
v ∈ V (G) and G − {u, v} is k-edge-connected for any two vertices u, v ∈ V (G). By
definition, k-edge-connectedness is equivalent to (k, k)-connectedness.

Remark 1 (See also Cheriyan et al. 2014). Every k-connected graph contains a
(k, 1)-connected simple spanning subgraph, and (k, 1)-connectedness implies (k, l)-
connectedness for l ≥ 1.

Let T ⊆ V (G). A subset F ⊆ E(G) is a T -join if the set of all odd vertices of
G[F] is equal to T . A connected graph has a T -join if and only if |T | is even.

A digraph D = (V, A) is strongly connected if for any two vertices u, v ∈ V (D),
there is a directed path from u to v in D. A digraph D is k-arc-connected if D − F is
strongly connected for all F ⊆ A(D) with |F | ≤ k − 1. A digraph D is k-connected
if |V | ≥ k and D − X is strongly connected for all X ⊂ V (D) with |X | ≤ k − 1.

3 k-rigid graphs and k-rigidity matroids

Let k ≥ 1 and G = (V, E) be a graph. A subset S ⊆ E is k-sparse if iS(X) ≤
k|X |−2k+1 for all X ⊆ V with |X | ≥ 2. This was originally defined in Jackson and
Jordán (2005). By definition, the empty set and any set that consists of a single edge
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are k-sparse. A graph G is k-sparse if E(G) is a k-sparse set. If in addition |E(G)| =
k|V (G)| − 2k + 1, then G is minimally k-rigid. A graph G is k-rigid if G contains
a spanning minimally k-rigid subgraph. By definition, 1-sparse graphs, minimally 1-
rigid graphs and 1-rigid graphs are equivalent to forests, trees and connected graphs,
respectively. A 2-rigid graph is usually called a rigid graph.

Proposition 3.1 Each of the following statements holds.

(i) Any k-sparse graph is simple.
(ii) For any nontrivial k-rigid graph G, |V (G)| ≥ 2k − 1 or |V (G)| = 2.
(iii) Any k-rigid graph G with |V (G)| ≥ 2k − 1 is k-edge-connected and essentially

(2k − 1)-edge-connected.
(iv) Let k ≥ 2 and G be a k-rigid graph with |V (G)| ≥ 2k − 1. For any vertex

v ∈ V (G), G − v is (k − 1)-edge-connected, and thus G is 2-connected.

Proof (i) By definition, for every subset X ⊆ V (G)with |X | = 2 of a k-sparse graph
G, |iG(X)| ≤ 2k − 2k + 1 = 1. Thus G is simple.

(ii) Let |V (G)| = n. Since G is k-rigid, G contains a minimally k-rigid spanning
subgraph G ′. By (i), G ′ is simple, and thus n(n−1)

2 ≥ |E(G ′)| = kn − 2k + 1.
Then n2 − (2k + 1)n + 4k − 2 ≥ 0, which implies that n ≥ 2k − 1 or n ≤ 2.

(iii) Without loss of generality, we may assume that G is minimally k-rigid. We
show that G is essentially (2k − 1)-edge-connected by way of contradiction.
Assume that there exists an edge subset Y ⊂ E(G) with |Y | ≤ 2k − 2 such
that G − Y has 2 components G1 and G2 with |V (Gi )| ≥ 2 for i = 1, 2.
As G is minimally k-rigid, |E(Gi )| ≤ k|V (Gi )| − 2k + 1. Thus |E(G)| =
|E(G1)|+|E(G2)|+|Y | ≤ (k|V (G1)|−2k+1)+(k|V (G2)|−2k+1)+(2k−2) =
k|V (G)| − 2k, contradicting that G is minimally k-rigid. This proves that G is
essentially (2k − 1)-edge-connected. If G is not k-edge-connected, then there
exists an edge subset Y ⊂ E(G) with |Y | ≤ k − 1 such that G − Y has 2
components G1 and G2, one of which, say G2, consists of a single vertex. Thus
|E(G)| = |E(G1)| + |Y | ≤ (k|V (G1)| − 2k + 1) + (k − 1) = k|V (G)| − 2k,
contradicting that G is minimally k-rigid. Thus G is k-edge-connected.

(iv) Without loss of generality, wemay assume thatG is minimally k-rigid. Towards a
proof by contradiction,we assume that for a vertex v ∈ V (G), there exists an edge
subset Y ⊂ E(G − v) with |Y | ≤ k − 2 such that (G − v)−Y has 2 components
H1 and H2. Let Gi = G[V (Hi ) ∪ {v}] for i = 1, 2. Then |V (Gi )| ≥ 2, and so
|E(Gi )| ≤ k|V (Gi )| − 2k + 1. Thus |E(G)| = |E(G1)| + |E(G2)| + |Y | ≤
(k|V (G1)|−2k+1)+(k|V (G2)|−2k+1)+(k−2) = k(|V (G1)|+|V (G2)|)−
3k = k|V (G)| − 2k, contradicting that G is minimally k-rigid. Thus G − v is
(k − 1)-edge-connected. In particular, since k ≥ 2, G − v is connected for every
v ∈ V (G), and thus G is 2-connected.

��
Let Sk be the collections of all k-sparse sets. One can verify that the collection

Sk forms the set of independent sets of a matroid. Actually, this matroid (E,Sk)

is a special case of the count matroid (See page 453 of Frank 2011). In this paper,
the matroid (E,Sk) is called the k-rigidity matroid of G, denoted by Rk(G). By

123



928 J Comb Optim (2017) 33:924–933

definition,R1(G) is the circuit matroid C(G) of G andR2(G) is the rigid matroid
R(G) of G (see Lovász and Yemini 1982 for more about R(G)).

The rank functionofR2(G) is givenbyLovász andYemini (1982).While the rankof
Rk(G) can be seen in Jackson and Jordán (2005), the complete rank function ofRk(G)

is not given. We present the rank function of Rk(G) in the following proposition.

Proposition 3.2 Let k ≥ 2. Given F ⊆ E, the rank function of Rk(G) is

rk(F) = min

{ ∑
X∈X

(k|X | − 2k + 1)

}
, (1)

where the minimum is taken over all collections X of subsets V (G) such that |X | ≥ 2
for all X ∈ X and such that {EF (X)|X ∈ X } partitions F.
Proof Let F ′ ⊆ F be a maximal k-sparse set. It suffices to show |F ′| =
min{∑X∈X (k|X | − 2k + 1)}. As F ′ is k-sparse, |F ′ ∩ EF ′(X)| ≤ k|X | − 2k + 1
for every X ∈ X . Thus |F ′| ≤ ∑

X∈X (k|X | − 2k + 1) for any collection X . Now we
show that there exists a collection X0 such that |F ′| = ∑

X∈X0
(k|X | − 2k + 1).

Since each single edge of F ′ is induced by a vertex subset X with iF ′(X) =
k|X | − 2k + 1 (actually |X | = 2), there are some maximal vertex subsets X with
iF ′(X) = k|X |−2k+1. Let X1, X2, · · · , Xt ⊆ V (G[F ′]) be maximal vertex subsets
such that iF ′(Xi ) = k|Xi | − 2k + 1 for 1 ≤ i ≤ t . Let X0 = {X1, X2, · · · , Xt }.
Claim 1 |Xi ∩ X j | ≤ 1 for 1 ≤ i �= j ≤ t .
If not, then |Xi ∩ X j | ≥ 2 for some i �= j . We will show it then follows that
iF ′(Xi ∪ X j ) = k|Xi ∪ X j | − 2k + 1. Actually iF ′(Xi ∪ X j ) + iF ′(Xi ∩ X j ) ≥
iF ′(Xi ) + iF ′(X j ), which implies that

iF ′(Xi ∪ X j ) ≥ iF ′(Xi ) + iF ′(X j ) − iF ′(Xi ∩ X j )

≥ (k|Xi | − 2k + 1) + (k|X j | − 2k + 1) − (k|Xi ∩ X j | − 2k + 1)

= k(|Xi | + |X j | − |Xi ∩ X j |) − 2k + 1

= k|Xi ∪ X j | − 2k + 1.

As F ′ is k-sparse, iF ′(Xi ∪ X j ) ≤ k|Xi ∪ X j | − 2k + 1, and thus iF ′(Xi ∪ X j ) =
k|Xi ∪X j |−2k+1, which is contrary to the maximality of Xi and X j . This completes
the proof of the claim.

Notice that each single edge of F ′ is induced by a vertex subset X with iF ′(X) =
k|X |−2k+1 (actually |X | = 2), then each edge of F ′ is covered by a maximal vertex
subset X j for some j = 1, 2, · · · , t . By Claim 1, {EF ′(X1), EF ′(X2), · · · , EF ′(Xt )}
is a partition of F ′. Thus |F ′| = ∑

1≤ j≤t iF ′(X j ) = ∑
1≤ j≤t (k|X j | − 2k + 1).

It remains to prove {EF (X)|X ∈ X0} partitions F . Let e ∈ F . If e ∈ F ′, then we are
done. Thus we may assume that e ∈ F − F ′. As F ′ is a maximal k-sparse set, F ′ ∪ {e}
is not k-sparse. Then there exists X ⊆ V (G) such that iF ′∪{e}(X) ≥ k|X | − 2k + 2.
Furthermore, e ∈ EF ′∪{e}(X), which implies that iF ′(X) = k|X | − 2k + 1. Then X is
included in some maximal set X j for 1 ≤ j ≤ t . Hence e ∈ EF (X j ), completing the
proof. ��
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Remark 2 By the definition of k-rigid graphs, the proof of Proposition 3.2 shows that,
there is a collection X to realize the minimum of the right side of (1) such that each
X ∈ X induces a k-rigid subgraph of G[F].
Remark 3 The rank of Rk(G), rk(E) ≤ k|V (G)| − 2k + 1. A graph G is k-rigid if
and only if the rank of Rk(G) is k|V (G)| − 2k + 1.

Proof of Remark 3 By definition, a spanning k-sparse subgraph of G has at most
k|V (G)| − 2k + 1 edges. This is the maximum cardinality of an independent set of
Rk(G), and thus rk(E) ≤ k|V (G)|− 2k + 1. If G is k-rigid, then G has a spanning k-
sparse subgraphwith exact k|V (G)|−2k+1 edges. This is themaximumcardinality of
an independent set ofRk(G). Thus the cardinality of any base ofRk(G) is k|V (G)|−
2k+1, which implies the rank ofRk(G) is k|V (G)|−2k+1. Inversely, if the rank of
Rk(G) is k|V (G)| − 2k + 1, then G has a spanning k-sparse subgraph H with exact
k|V (G)| − 2k + 1 edges. By definition, H is a spanning minimally k-rigid subgraph
of G, and thus G is k-rigid. ��
Corollary 3.3 Let X be a collection that realizes the minimum of the right side of (1)
defined in Proposition 3.2, and Y ⊆ X . Then rk

(∪X∈Y EF (X)
) = ∑

X∈Y (k|X | −
2k + 1).

Proof Since X is a collection that realizes the minimum of the right side of (1),
rk(F) = ∑

X∈X (k|X | − 2k + 1). Also F = ∪X∈X EF (X) = (∪X∈Y EF (X)
) ∪(∪X∈X−Y EF (X)

)
. By (1), rk(∪X∈Y EF (X)) ≤ ∑

X∈Y (k|X | − 2k + 1) and
rk(∪X∈X−Y EF (X)) ≤ ∑

X∈X−Y (k|X |−2k+1). By submodularity of rank function,

∑
X∈X

(k|X | − 2k + 1) = rk(F)

≤ rk(∪X∈Y EF (X)) + rk(∪X∈X−Y EF (X))

≤
∑
X∈Y

(k|X | − 2k + 1) +
∑

X∈X−Y
(k|X | − 2k + 1)

=
∑
X∈X

(k|X | − 2k + 1).

Thus every equality holds above. In particular, rk
(∪X∈Y EF (X)

) = ∑
X∈Y (k|X | −

2k + 1). ��
Suppose that G = (V, E) is a graph with |V (G)| = n. Let F be the collection of

all edge subsets each of which induces a forest. ThenF forms all independent sets of a
matroid (E,F) on ground set E , which is the circuit matroidM(G) of G. The rank
function of M(G) is given by rM(F) = n − c(F), where c(F) denotes the number
of components of G(F).

LetNk,p,q(G) be the matroid on ground set E obtained by taking matroid union of
p copies of the k-rigidity matroid Rk(G) and q copies of the circuit matroid M(G).
By a theorem of Edmonds on the rank of matroid union Edmonds (1968), the rank of
Nk,p,q(G) is
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rk,p,q(E) = min
F⊆E

{prk(F) + qrM(F) + |E − F |} . (2)

Thus rk,p,q(E) ≤ prk(E) + qrM(E) = p(kn − 2k + 1) + q(n − 1).

4 Packing k-rigid spanning subgraphs

In this section, we prove Theorem 1.4 by providing a stronger result (Theorem 4.1).
In Theorem 4.1, we present a connectivity condition for packing spanning k-rigid
subgraphs and spanning trees. Theorem 1.4 then follows from Proposition 3.1 and
Theorem 4.1.

Theorem 4.1 Let k ≥ 2, p ≥ 1, q ≥ 0. For a (4kp− 2p+ 2q, kp)-connected simple
graph G and Y ⊂ E(G) with |Y | ≤ (2k − 1)p + q, G − Y contains a packing of p
spanning k-rigid subgraphs and q spanning trees.

The theorem also implies the following known results.

Corollary 4.2 (Lovász and Yemini 1982). Every 6-connected graph is 2-rigid.

Corollary 4.3 (Jordán 2005). Every 6p-connected graph contains a packing of p
spanning 2-rigid subgraphs.

Corollary 4.4 (Cheriyan et al. 2014). Every (6p + 2q, 2p)-connected simple graph
contains a packing of p spanning 2-rigid subgraphs and q spanning trees.

In the rest of this section, we prove Theorem 4.1.

Proof of Theorem 4.1 Let G ′ = G − Y and E = E(G ′) = E(G) − Y . It suffices to
show that the rank of Nk,p,q(G ′) is

rk,p,q(E) = p(kn − 2k + 1) + q(n − 1).

Choose F ⊆ E to be a set with smallest size that minimizes the right side of (2), then

rk,p,q(E) = prk(F) + qrM(F) + |E − F |. (3)

By (1) and Remark 2, there exists a collection X of subsets V such that {EF (X)|X ∈
X } partitions F and

rk(F) =
∑
X∈X

(k|X | − 2k + 1), (4)

and such that each X ∈ X induces a k-rigid subgraph.

Claim 2 For each X ∈ X , |X | ≥ 2k − 1.

Proof of Claim 2 Since each X ∈ X induces a k-rigid subgraph, by Proposition 3.1,
|X | ≥ 2k − 1 or |X | = 2. Thus it suffices to show that |X | �= 2 for any X ∈ X .
If not, then let X ′ denote the collection of X ∈ X with |X | = 2. Then rk(F) =
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∑
X∈X−X ′(k|X |−2k+1)+∑

X∈X ′(k|X |−2k+1) = ∑
X∈X−X ′(k|X |−2k+1)+|X ′|.

Let H ⊂ F be the set of edges obtained by deleting all edges induced by each X with
|X | = 2. Then X − X ′ is a collection of subsets of V that partition H . By (1),
rk(H) ≤ ∑

X∈X−X ′(k|X |−2k+1). As G ′ is simple, |F −H | ≤ |X ′|. Since H ⊂ F ,
we have rM(H) ≤ rM(F). Thus

prk(H) + qrM(H) + |E − H |
≤ p

∑
X∈X−X ′

(k|X | − 2k + 1) + qrM(F) + |E − F | + |F − H |

≤ p
∑

X∈X−X ′
(k|X | − 2k + 1) + qrM(F) + |E − F | + |X ′|

≤ prk(F) + qrM(F) + |E − F |,

contrary to the minimality of F . This completes the proof of the claim. ��
Claim 3 For every Y ⊆ X , there is a vertex that is contained in a single element of Y .

Proof of Claim 3 If not, then every vertex is contained in at least two elements of Y .
Let nY be the number of vertices in all elements of Y . Then

∑
X∈Y |X | ≥ 2nY . By

Remark 3, Corollary 3.3 and Claim 2, we have

knY − 2k + 1 ≥ rk
(∪X∈Y EF (X)

) =
∑
X∈Y

(k|X | − 2k + 1)

=
∑
X∈Y

((k − 1)|X |) +
∑
X∈Y

(|X | − 2k + 1)

≥ 2(k − 1)nY + 0

≥ knY ,

a contradiction. This proves the claim. ��
Let |V (G ′[F])| = n1 and n2 = n − n1. Then there are n2 isolated vertices in

G ′(F). For each X ∈ X , define XB = X ∩ (∪X �=Y∈X Y ) and XI = X − XB . Let
IX = {X ∈ X : XI �= ∅}. We will show that

c(F) ≤ |IX | + n2. (5)

Proof of (5). Let H ′ be any connected component of G ′(F) that is not an isolated
vertex. This H ′ is called a nontrivial component. By Remark 2, each X ∈ X induces
a connected subgraph of G ′(F) and thus H ′ actually is a sugraph of G ′(F) induced
by some elements X ’s of X . Let Y be the collection of these X ’s, and thus Y ⊆ X .
By Claim 3, there is a vertex v in V (H ′) that is contained in a single element of Y .
By definition, v ∈ XI and thus XI �= ∅. This shows that every nontrivial component
of G ′(F) contains an X such that XI �= ∅. Hence G ′(F) contains at most |IX |
components that are not isolated vertices, which implies that c(F) ≤ |IX | + n2.
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Since X covers F and thus contains all vertices of G ′[F], each vertex of XB lies
in at least two different X ∈ X and each XI is contained in a single X , we have∑

X∈X |XB | + 2
∑

X∈IX |XI | ≥ 2n1, which implies

∑
X∈X

|X | +
∑
X∈IX

|XI | ≥ 2n1. (6)

Nowwewill use the connectivity condition ofG to show a lower bound on |E−F |.
Let v1, v2, · · · , vn2 be isolated vertices of G(F). Since G is (4kp − 2p + 2q, kp)-
connected, dG−XB (XI ) ≥ 4kp − 2p + 2q − kp|XB | for each X ∈ X and dG(vi ) ≥
4kp − 2p + 2q for 1 ≤ i ≤ n2. For every X ∈ X , no edge of F contributes to
dG−XB (XI ). For 1 ≤ i ≤ n2, no edge of F contributes to dG(vi ). Thus

|E − F | ≥ |E(G) − Y − F | = |E(G) − F | − |Y |

≥ 1

2

⎛
⎝ ∑

X∈IX
dG−XB (XI ) +

n2∑
i=1

dG(vi )

⎞
⎠ − ((2k − 1)p + q)

≥ 1

2

⎛
⎝ ∑

X∈IX
(4kp − 2p + 2q − kp|XB |) + n2(4kp − 2p + 2q)

⎞
⎠

−(2k − 1)p − q

= p
∑
X∈IX

(2k − 1 − k

2
|XB |) + p(2k − 1)(n2 − 1)

+q(|IX | + n2 − 1) (7)

By Claim 2, k
2 |X | − 2k + 1 ≥ 0. As IX ⊆ X , we have

∑
X∈X

(
k

2
|X | − 2k + 1

)
≥

∑
X∈IX

(
k

2
|X | − 2k + 1

)
. (8)

By (3), (4), (5), (6), (7) and (8),

rk,p,q(E) = p
∑
X∈X

(k|X | − 2k + 1) + qrM(F) + |E − F |

= p

( ∑
X∈X

k

2
|X | +

∑
X∈X

(
k

2
|X | − 2k + 1)

)
+ q(n − c(F)) + |E − F |

≥ p

⎛
⎝ ∑

X∈X

k

2
|X | +

∑
X∈IX

(
k

2
|X | − 2k + 1)

⎞
⎠ + q(n − c(F))

+p
∑
X∈IX

(2k − 1 − k

2
|XB |) + p(2k − 1)(n2 − 1) + q(|IX | + n2 − 1)
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= p

⎛
⎝ ∑

X∈X

k

2
|X | +

∑
X∈IX

k

2
|XI | + (2k − 1)n2

⎞
⎠

−p(2k − 1) + q(n − c(F) + |IX | + n2 − 1)

≥ pk

2
(2n1 + 2n2) − p(2k − 1) + q(n − 1) + q(|IX | + n2 − c(F))

≥ p(kn − 2k + 1) + q(n − 1).

As rk,p,q(E) ≤ p(kn − 2k + 1) + q(n − 1), it turns out that rk,p,q(E) = p(kn −
2k + 1) + q(n − 1). ��
Acknowledgements The author would like to thank anonymous reviewers for the valuable comments and
suggestions to improve the quality of the paper.

References

Cheriyan J, Durand de Gevigney O, Szigeti Z (2014) Packing of rigid spanning subgraphs and spanning
trees. J Combin Theory Ser B 105:17–25

Edmond J (1968) Matroid partition. Mathematics of the Decision Sciences Part 1, Lectures in Applied
Mathematics, vol 11. AMS, Providence, pp 335–345

Frank A (2011) Connections in combinatorial optimization. Oxford University Press, Oxford
Jackson B, Jordán T (2005) The d-dimensional rigidity matroid of sparse graphs. J Combin Theory Ser B

95:118–133
Jordán T (2005) On the existence of k edge-disjoint 2-connected spanning subgraphs. J Combin Theory

Ser B 95:257–262
Király Z, Szigeti Z (2006) Simultaneous well-balanced orientations of graphs. J Combin Theory Ser B

96:684–692
Lovász L, Yemini Y (1982) On generic rigidity in the plane. SIAM J Algebr Discret Methods 3:91–98
Nash-Williams CStJA (1961) Edge-disjoint spanning trees of finite graphs. J Lond Math Soc 36:445–450
Thomassen C (1989) Configurations in graphs of largeminimum degree, connectivity, or chromatic number.

Ann N Y Acad Sci 555:402–412
Thomassen C (2015) Strongly 2-connected orientations of graphs. J Combin Theory Ser B 110:67–78
Tutte WT (1961) On the problem of decomposing a graph into n connected factors. J Lond Math Soc

36:221–230

123


	Packing spanning trees and spanning 2-connected k-edge-connected essentially (2k-1)-edge-connected subgraphs
	Abstract
	1 Introduction
	2 Definitions
	3 k-rigid graphs and k-rigidity matroids
	4 Packing k-rigid spanning subgraphs
	Acknowledgements
	References




