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Abstract In this paper, we introduce a new relaxation of strong edge-coloring. Let
G be a graph. For two nonnegative integers s and t , an (s, t)-relaxed strong k-edge-
coloring is an assignment of k colors to the edges of G, such that for any edge e,
there are at most s edges adjacent to e and t edges which are distance two apart from
e assigned the same color as e. The (s, t)-relaxed strong chromatic index, denoted
by χ ′

(s,t)(G), is the minimum number k of an (s, t)-relaxed strong k-edge-coloring
admitted by G. This paper studies the (s, t)-relaxed strong edge-coloring of graphs,
especially trees. For a tree T , the tight upper bounds for χ ′

(s,0)(T ) and χ ′
(0,t)(T )

are given. And the (1, 1)-relaxed strong chromatic index of an infinite regular tree is
determined. Further results on χ ′

(1,0)(T ) are also presented.

Keywords Strong edge-coloring · Strong chromatic index · (s, t)-relaxed strong
edge-coloring · (s, t)-relaxed strong chromatic index · Tree · Infinite �-regular tree
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1 Introduction

In this paper, we consider undirected and simple graphs only, and we use standard
notations in graph theory (cf. Bondy and Murty (2008)). Let G be a graph. Two edges
e1 and e2 of G are adjacent (at distance one) if they meet at a common vertex; and
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two edges e1 and e2 are distance two apart if they are nonadjacent but adjacent to
a common edge in G. The degree of an edge e (resp. a vertex u), denoted by d(e)
(resp. d(u)), is the number of edges (resp. vertices) adjacent to e (resp. u) in G. The
maximum edge degree (resp. vertex degree) of a graph G is denoted by �e(G) (resp.
�(G)), or simply �e (resp. �) if there is no risk of confusion. For an edge e (resp. a
vertex u), let N (e) (resp. NE(u)) be the set of edges adjacent to e (resp. incident with
u). Let a and b be two nonnegative integers with a ≤ b. By [a, b] we denote the set
of integers a, a + 1, . . . , b.

A strong k-edge-coloring of G is an assignment of k colors to the edges of G in
such a way that any two edges within distance two apart are assigned different colors.
The strong chromatic index, denoted by sχ ′(G), is the minimum number k of a strong
k-edge-coloring admitted by G.

Strong edge-coloringwasfirst studied byFouquet and Jolivet (1983, 1984) for cubic
planar graphs. The following conjecture was posed by Erdős and Nešetřil (1989):

Conjecture 1.1 If G is a graph with maximum degree �, then

sχ ′(G) ≤

⎧
⎪⎨

⎪⎩

5�2

4
− �

2
+ 1

4
, if � is odd;

5�2

4
, if � is even.

Since then the bounds for strong chromatic index have been studied extensively.
For graphs with � = 3, Conjecture 1.1 was confirmed by Andersen (1992) and by
Horák et al. (1993) independently. For � = 4, Conjecture 1.1 says that sχ ′(G) ≤ 20.
At present, sχ ′(G) ≤ 22 was the best result proved by Cranston (2006). We refer the
readers for surveys (Horák 1990; Mahdian 2000; Molloy and Reed 1997; Wu and Lin
2008) about the strong chromatic index.

An application of strong edge-coloring is a channel assignment problem in wireless
radio networks (Barrett et al. 2006). The graph (refer as interference graph) describes
the network of transmitters. Colors of edges correspond to channels assigned to trans-
mitters. To avoid interference, “close” transmitters (corresponding to the edges within
distance two apart) are required to receive distinct channels. The main aim is to min-
imize the span of channels assigned to transmitters.

However, problemsmay be arisen if the channel resource is limited (or equivalently
the channel span is restricted). That is to say, it is possible that with given channel span,
one cannot construct a good strong edge-coloring. In this case, some kind of relaxation
is necessary in assigning channels to transmitters. Gyárfás and Hubenko (2006) gave
a kind of relaxation which was called semistrong edge coloring. In this paper, we
introduce another kind of relaxation called (s, t)-relaxed strong edge-coloring, where
s and t are two nonnegative integers.

In a strong edge coloring of a graph G, two edges that are distance 1 apart must
receive different colors, and two edges that are distance 2 apart must also receive
different colors.We call the former constraint ‘distance one condition’ and the later one
‘distance two condition’. In an (s, t)-relaxed strong edge-coloring, both distance one
and distance two conditions are relaxed to some extension, respectively. We formally
define this concept below.
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Fig. 1 The composition of C5
and Kc

2

For any edge e of G, the edges adjacent to e are called neighbors of e, and the
edges which are distance two apart from e are called 2-neighbors of e. Suppose f is
an assignment of k colors to the edges of G. If, for any edge e of G, the number of
neighbors of e with color f (e) is at most s, and the number of 2-neighbors of e with
color f (e) is at most t , then f is called an (s, t)-relaxed strong k-edge-coloring of G.
The (s, t)-relaxed strong chromatic index ofG, denoted by χ ′

(s,t)(G), is the minimum
number k of an (s, t)-relaxed strong k-edge-coloring admitted by G.

Clearly, a (0, 0)-relaxed strong k-edge-coloring of G is a strong k-edge-coloring
of G and so χ ′

(0,0)(G) = sχ ′(G) for any graph G. In an (s, t)-relaxed strong edge-
coloring of a graph G with maximum degree �, if s = 0 then, for any edge e, there
are at most 2(� − 1) edges that are distance two apart from e can receive the same
color as e. Thus, if s = 0 and t ≥ 2(� − 1) then χ ′

(s,t)(G) = χ ′(G). An extremal
case is that if s ≥ 2(� − 1) and t ≥ 2(� − 1)2, then χ ′

(s,t)(G) = 1.
It is very interesting to investigate how the relaxation on distance conditions causes

the reduction of the strong chromatic index of a graph.
Given two graphs G and H , the composition of G and H , denoted by G[H ], has

vertex set V (G)×V (H) in which two vertices (x, y) and (x ′, y′) are adjacent if x = x ′
and yy′ ∈ E(H) or xx ′ ∈ E(G). For a positive integer, let Kc

m denote the empty graph
on m vertices. The composition of C5 and Kc

2 is illustrated as in Fig. 1.
In next section, by considering (1, 0)-relaxed and (0, 1)-relaxed strong chromatic

indices of the graph C5[Kc
m], we illustrate the fact that even a little bit relaxation on

distance conditions will cause a great reduction of strong chromatic index. In Sect. 3,

for 1 ≤ s ≤ � − 1, it is proved that χ ′
(s,0)(T ) ≤

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
+ 1; furthermore,

if (� − 1) ≡ 0 (mod s + 1) then χ ′
(s,0)(T ) ≤

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
. This upper bound

is proved to be tight. Section 4 investigates (0, t)-relaxed strong chromatic index of
trees. It is proved that χ ′

(0,t)(T ) ≤ 2�− t for 1 ≤ t ≤ �− 1, χ ′
(0,t)(T ) ≤ �+ 1 for

� ≤ t ≤ 2�− 3, and χ ′
(0,t)(T ) ≤ � for t ≥ 2�− 2. From these results, we see that,

for trees, the relaxation on distance one condition causes much reduction of the strong
chromatic index than the relaxation on distance two condition does. In the following
section, we show that the (1, 1)-relaxed strong chromatic index of the infinite regular
tree is equal to its (1, 0)-relaxed strong chromatic index. The final section proves that⌈

σ(T )
2

⌉
≤ χ ′

(1,0)(T ) ≤
⌈

σ(T )
2

⌉
+ 1, where σ(T ) is defined in Sect. 3.
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2 (1, 0)-relaxed and (0, 1)-relaxed strong chromatic index of the graph
C5[Kc

m]
Since any two edges of C5[Kc

m] are at most distance two apart, its strong chromatic

index is equal to 5�2

4 = 5m2, the number of its edges, attaining the upper bound in
Conjecture 1.1.

Let x0, x1, . . . , x4 be the 5-cycleC5. And let the vertices of Kc
m be y0, y1, . . . , ym−1.

For i = 0, 1, . . . , 4, let Vi = {(xi , y j ) | j = 0, 1, . . . ,m − 1}. Denote by Hi the
subgraph of C5[Kc

m] induced by the vertex set Vi ∪ Vi+1, where ‘+’ is taken modulo
5. Then each Hi is a balanced complete bipartite graph on 2m vertices. It is clear that
the edge set of C5[Kc

m] is ⋃4
i=0 E(Hi ).

Theorem 2.1 Let m be any positive integer. Then χ ′
(1,0)(C5[Kc

m]) = χ ′
(0,1)

(C5[Kc
m]) = � 5

2m
2	.

Proof Since any two edges of C5[Kc
m] are at distance at most 2, in a (1, 0)-relaxed

(resp. (0, 1)-relaxed) strong edge coloring of C5[Kc
m], each color can be assigned

to at most two different edges. It follows that χ ′
(1,0)(C5[Kc

m]) ≥ � 5
2m

2	 (resp.
χ ′

(0,1)(C5[Kc
m]) ≥ � 5

2m
2	). We next show that � 5

2m
2	 colors are enough for a (1, 0)-

relaxed (resp. (0, 1)-relaxed) strong edge coloring of C5[Kc
m].

First we suppose m is even. Then each Hi is m-regular and thus has a Euler tour.
Let the edges along the Euler tour being e1, e2, . . . , em2 . For h = 1, 2, . . . , m2

2 , assign
each pair of edges e2h−1 and e2h a same color. In this way, one can get a (1, 0)-relaxed
strong edge coloring of C5[Kc

m] using 5
2m

2 colors. See Fig. 2 for an illustration. For

h = 0, 1, . . . , m2

4 −1, assign the edge e4h+1 (resp. e4h+2) with the same color as e4h+3
(resp. e4h+4). In this way, one can get a (0, 1)-relaxed strong edge coloring of C5[Kc

m]
using 5

2m
2 colors. See Fig. 3 for an illustration. Thus the theorem holds if m is even.

Now suppose m is odd. For i = 0, 1, . . . ,m − 1, let Pi = (x0, yi )(x1, yi+1)

. . . (x4, yi+4) andC = ⋃m−1
i=0 Pi

⋃ {(x4, yi+4)(x0, yi+1)|i = 0, 1, . . . ,m−1}, where
the subscripts of the second coordinates are taken modulo m. It is straightforward to
check that C is a Hamilton cycle of C5[Kc

m]. And it is clear that, for i = 0, 1, . . . , 4,
Hi \ E(C) has a Euler tour with m(m − 1) edges. Now, as in the previous paragraph,
note thatC is of odd length and Hi \E(C) has even number of edges, we can construct
a (1, 0)-relaxed strong edge coloring of C5[Kc

m] using � 5
2m

2	 colors.
We next construct a (0, 1)-relaxed strong edge coloring of C5[Kc

m] using � 5
2m

2	
colors. For i = 0, 1, . . . , 4, let Mi = {(xi , y j )(xi+1, y j ) | j = 0, 1, . . . ,m − 1}.

Fig. 2 A (1, 0)-relaxed strong
10-edge coloring of C5[Kc
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Fig. 3 A (0, 1)-relaxed strong
10-edge coloring of C5[Kc
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Then M0 ∪ M2, M1 ∪ M3 and M4 are three disjoint matchings of C5[Kc
m]. And � 5

2m	
colors are enough for the 5m edges in these matchings. For each i ∈ {0, 1, . . . , 4},
j, k ∈ {0, 1, . . . ,m − 1} with j 
= k, assign the edge (xi , y j )(xi+1yk) the same color
as the edge (xi , yk)(xi+1y j ). In this way, we get a (0, 1)-relaxed strong edge coloring
of C5[Kc

m] using � 5
2m

2	 colors. Thus the theorem also holds if m is odd. ��
From the above theorem, for the graph C5[Kc

m], a unit relaxation on distance con-
dition reduces the strong chromatic index by a half. In the corresponding channel
assignment problem, this relaxation scheme will greatly save the channel span. Thus
we think that this idea of relaxation will play an important role in the studies of strong
edge colorings of graphs.

We next turn to relaxed strong edge colorings of trees, giving further examples how
the relaxation on distance conditions causes the reduction of strong chromatic indices
of graphs.

3 Some notations about trees

In a tree T , a vertex of degree 1 is called a leaf and a vertex of maximum degree is
called amajor vertex. For two vertices x and y in a tree T , the distance between x and
y, denoted by d(x, y), is the length of the unique (x, y)-path in T .

For a tree T , one can choose a vertex r as the root of T . A tree T with root r is
called a r -tree, and is denoted by T (r). Let T (r) be a r -tree. For an edge uv of T (r),
if d(u, r) = d(v, r) − 1, then u is the father of v and v is a son of u. For any edge
xy in T (r), define d(xy, r) = min{d(x, r), d(y, r)}. If d(xy, r) = k, then we call
xy a kth-generation edge descended from r . For two edges e1 and e2 with distance
one (resp. two) of T (r), if e1 is a kth-generation edge and e2 is a (k + 1)th (resp.
(k + 2)th)-generation edge, then we say that e1 is the father (resp. grandfather) of e2
and e2 is a child (resp. grandchild) of e1. Let F(e) and GF(e) denote the father and
the grandfather of e, respectively. And let Ch(e) denote the set of children of e and
GCh(e) the set of grandchildren of e. Two edges incident with the root r , or with the
same father are called brothers. If e1 and e2 have the same grandfather but different
father, then we say e1 and e2 are cousins, and F(e1) is called an uncle of e2, e2 is
called a nephew of F(e1).

Let T (r) be a tree with root r . The height of T (r) is defined as R =
max

u∈V (T (r))
{i |d(u, r) = i}. Let Vi = {u|d(u, r) = i} and the vertices in Vi are said
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to be in the i th-level of T (r). For 0 ≤ i ≤ R − 1, let Er
i denote the set of i th-

generation edges descended from r . Thus Er
0 is the set of edges incident with the root

r . And Er
1 is the set of edges that are at distance 1 from r .

Let � (≥ 2) be a positive integer. A �-regular tree is a tree with maximum degree
� and all vertices of degree less than � are leaves. Let T be a �-regular tree. If there
is a vertex u of T such that the distance from all leaves to u are the same, then T is
called a complete �-regular tree. The vertex u is called the root of T . A complete
�-regular tree with height 1 is called a star and is denoted by K1,�. Let T∞(�) be
an infinite tree with each vertex having the same degree �, which is called infinite
�-regular tree.

Let uv be an edge of G, define σ(uv) = d(u) + d(v) − 1 and σ(G) =
max

uv∈E(G)
{σ(uv)}. An edge uv inG is said to beσ -tight ifσ(uv) = σ(G). It is easy to see

that σ(G) is a lower bound for strong chromatic index sχ ′(G), that is, sχ ′(G) ≥ σ(G)

for any graph G. In Fandree et al. (1990) determined the strong chromatic index of
trees.

Theorem 3.1 Fandree et al. (1990) For any tree T , sχ ′(T ) = σ(T ).

In the following sections, we consider (s, t)-relaxed strong chromatic indices of
trees. If the maximum degree of a tree is 2 then it is a path. Let Pn be a path with n
vertices. Suppose n ≥ 6. Then it is not difficult to prove thatχ ′

(0,0)(Pn) = χ ′
(0,1)(Pn) =

3, χ ′
(1,0)(Pn) = χ ′

(1,1)(Pn) = χ ′
(1,2)(Pn) = χ ′

(0,2)(Pn) = 2, and χ ′
(2,2)(Pn) = 1. Thus

we shall always assume � ≥ 3 in the following sections.

4 (s, 0)-relaxed strong chromatic index of trees

In this section, we study the (s, 0)-relaxed strong chromatic index of tree with maxi-
mum degree at least 3 for all integers s ≥ 1. In an (s, 0)-relaxed strong edge-coloring,
edges at distance two must receive different colors. And so, for any edge uv, if the
color of uv appears more than once on edges in NE(u) (resp. NE(v)), then it will not
appear on edges in NE(v) \ {uv} (resp. NE(u) \ {uv}). It follows that in an (s, 0)-
relaxed strong edge-coloring of a tree, each edge has at most min{s,�−1} neighbors
assigned the same color as itself. This implies that, for any tree T with maximum
degree �, χ ′

(s,0)(T ) = χ ′
(�−1,0)(T ) for s ≥ � − 1. Thus we assume 1 ≤ s ≤ � − 1

in this section.
Let �(≥ 3) and s be two positive integers with 1 ≤ s ≤ � − 1. Let k1 =

⌈
�
s+1

⌉

and k2 =
⌈

�−1
s+1

⌉
. Choose any vertex r as the root of T∞(�). The following algorithm

will produce an (s, 0)-relaxed strong edge coloring of T∞(�) using at most k1+k2+1
colors.

Lemma 4.1 Let �(≥ 3) and s be two positive integers with 1 ≤ s ≤ � − 1. If � − 1
is divisible by s + 1, then Algorithm 1 gives an (s, 0)-relaxed strong edge-coloring of
T∞(�) using k1 + k2 colors; otherwise, Algorithm 1 gives an (s, 0)-relaxed strong
edge-coloring of T∞(�) using k1 + k2 + 1 colors.
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Algorithm 1 Construct an (s, 0)-relaxed strong edge-coloring f for T∞(�) with
1 ≤ s ≤ � − 1

1: Assign integers 1, 2, . . . , k1 (=
⌈

�
s+1

⌉
) to the edges in NE(r) such that each integer is used at most

s + 1 times;
2: for each i := 1 to ∞ do
3: for each vertex v ∈ Vi do

4: Color all � − 1 children of the edge F(v)v with the least k2 (=
⌈

�−1
s+1

⌉
) positive integers different

from those in f (NE(F(v))), such that each integer is used at most s + 1 times;
5: end for
6: end for

Proof It is clear that the coloring f produced by Algorithm 1 is an (s, 0)-relaxed
strong edge-coloring of T∞(�). We next count the number of colors used by f .

Suppose uv is an edge of T∞(�) with u = F(v). According to the algorithm,
the � edges incident with the vertex u are assigned k1 distinct colors if u is the root
and k2 + 1 colors otherwise, and the � − 1 children of uv receive k2 distinct colors.

Since k1 ≤ k2 + 1, f uses at most 2k2 + 1 distinct colors. Recall that k1 =
⌈

�
s+1

⌉
and

k2 =
⌈

�−1
s+1

⌉
, we have k1 = k2+1 if�−1 is divisible by s+1 and k1 = k2 otherwise.

Therefore, if�−1 is divisible by s+1, then f uses at most 2k2 +1 = k1 + k2 colors;
otherwise, f uses at most 2k2 + 1 = k1 + k2 + 1 colors. The lemma holds. ��
Lemma 4.2 Let �(≥ 3) and s be two positive integers with 1 ≤ s ≤ � − 1. Suppose
f is an (s, 0)-relaxed strong edge-coloring of a complete �-regular tree with height
at least 3. Then f uses at least k1 + k2 colors. Furthermore, if � − 1 is not divisible
by s + 1, then f uses at least k1 + k2 + 1 colors.

Proof Let u be the root of T and v a child of u. If the color f (uv) appears more than
once on the � edges incident with u, then it can not be assigned to any children of uv.
Since any two edges at distance two can not receive the same color, it is obvious that

f uses at least
⌈ |NE(u)|

s+1

⌉
+

⌈ |Ch(uv)|
s+1

⌉
= k1 + k2 colors. Otherwise f uses at least

⌈ |NE(u)|−1
s+1

⌉
+

⌈ |NE(v)|
s+1

⌉
= k2 + k1 colors.

Now suppose �− 1 is not divisible by s + 1. If f uses less than k1 + k2 + 1 colors,
then it uses exactly k1+k2 colors. If all edges incident with the root u receive different
colors, then f uses at least � − 1 + � �

s+1	 = � − 1 + k1 > k1 + k2 colors. Thus
we assume that there are two edges, say uv and uw, receive the same color. Then
| f (NE(u))| = k1 and the � − 1 children of uv receive exactly k2 colors that are
different from f (uv). This implies that | f (NE(v))| = k2 + 1. Since � ≥ 3, we have
k2 = ��−1

s+1 	 < � − 1. It follows that there are two children of uv, say vx and vy,
having f (vx) = f (vy). Now the number of colors left for the �− 1 children of vx is

k1 − 1. Since �− 1 is not divisible by s + 1, we have k1 − 1 =
⌈

�
s+1

⌉
− 1 <

⌈
�−1
s+1

⌉
.

Thus the children of vx cannot be colored properly. This is a contradiction and so f
uses at least k1 + k2 + 1 colors. ��

Combining Lemmas 4.1 and 4.2, we get the following results.
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Theorem 4.3 Let �(≥ 3) and s be two positive integers with 1 ≤ s ≤ � − 1. Then
for any tree T with maximum degree �,

χ ′
(s,0)(T ) ≤

⎧
⎨

⎩

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
, if (� − 1) ≡ 0 (mod s + 1);

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
+ 1, otherwise.

The upper bound in this theorem is sharp. It is attained by complete�-regular trees
with height at least 3.

Corollary 4.4 Let T be a complete�-regular tree with�(≥ 3) and let s be an integer
with 1 ≤ s ≤ � − 1. If the height of T is at least 3, then

χ ′
(s,0)(T ) =

⎧
⎨

⎩

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
, if (� − 1) ≡ 0 (mod s + 1);

⌈
�
s+1

⌉
+

⌈
�−1
s+1

⌉
+ 1, otherwise.

5 (0, t)-relaxed strong chromatic index of trees

In this section, we consider the (0, t)-relaxed strong chromatic index of trees. In a
(0, t)-relaxed strong edge-coloring, adjacent edges must receive distinct colors and
for each edge e there are at most t edges distance two apart from e that receive the same
color as e.We distinguish the problem into three cases: 1 ≤ t ≤ �−1,� ≤ t ≤ 2�−3
and t ≥ 2� − 2.

The following algorithm (Algorithm 2) applies for the case 1 ≤ t ≤ �−1. Choose
any vertex r as the root of T∞(�). Starting from coloring edges incident with r ,
Algorithm 2 will produce a (0, t)-relaxed strong (2� − t)-edge-coloring, denoted by
f , for T∞(�). For an illustration, a partial (0, 3)-relaxed strong 7-edge-coloring for
T∞(5) is presented in Fig. 4.

Lemma 5.1 For 1 ≤ t ≤ � − 1, Algorithm 2 gives a (0, t)-relaxed strong (2� − t)-
edge-coloring for T∞(�).

Proof It is easy to see that the color assignment f in Algorithm 2 uses 2� − t colors.
So, we only need to prove that f is a (0, t)-relaxed strong edge-coloring. From the
coloring procedure, it is clear that adjacent edges always receive different colors. And
the following three observations are easy to see.

Observation A For any edge e, none of its children and grandchildren receives the
same color as e.

Observation B For any edge e not incident with the root r , at most one of its uncles
receives the same colors as e.

Observation C For any edge e, there are exactly t − 1 nephews of e having the same
color as e.
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Algorithm 2 Construct a (0, t)-relaxed strong edge-coloring f for T∞(�) with 1 ≤
t ≤ � − 1
1: Let the � edges incident with the root r be ru0, ru1, . . . , ru�−1;
2: for each i := 0 to � − 1 do
3: Color rui with i + 1 (i.e., f (rui ) = i + 1);
4: Color the � − 1 children of rui with the � − 1 colors in { f (rui+1), f (rui+2), . . . , f (rui+t−1)} ∪

[� + 1, 2� − t] (the indices in subscripts are taken module �), such that all children of rui receive
distinct colors;

5: end for
6: for each j := 0 to ∞ do
7: for each e ∈ Er

j do
8: Let the � − 1 children of e be e0, e1, . . . , e�−2;
9: for each i := 0 to � − 2 do
10: Color the � − 1 children of ei with the � − 1 colors in ([1, 2� − t] \

{ f (e), f (e0), f (e1) . . . , f (e�−2)}) ∪ { f (ei+1), f (ei+2), . . . , f (ei+t−1)} (the indices in sub-
script are taken module � − 1), such that all children of ei receive distinct colors;

11: end for
12: end for
13: end for

Fig. 4 A partial (0, 3)-relaxed
strong 7-edge-coloring of T∞(5)
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Combining observations A, B and C, for any edge e, there are at most t of its
2-neighbors having the same colors as e. Therefore, the coloring f produced by Algo-
rithm 2 is a (0, t)-relaxed strong edge-coloring of T∞(�) using 2�− t colors and the
lemma holds. ��
Lemma 5.2 Let �(≥ 3) and t be two integers with 1 ≤ t ≤ �− 1. If T is a complete
�-regular tree with height at least 3, then χ ′

(0,t)(T ) = 2� − t .

Proof By Lemma 5.1, we have χ ′
(0,t)(T ) ≤ 2�− t . To prove the lemma, it suffices to

prove that χ ′
(0,t)(T ) ≥ 2�− t . Suppose to the contrary that χ ′

(0,t)(T ) ≤ 2�− t − 1.
Let f be a (0, t)-relaxed strong edge-coloring of T using 2� − t − 1 colors. Let r be
the root of T . Then |Er

0| = � and |Er
1| = �(�−1). Since f is a (0, t)-relaxed strong

edge-coloring, edges in Er
0 must receive different colors. Assume f (Er

0) = [1,�].
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For each i ∈ [1, 2� − t − 1], let Li = {e|e ∈ Er
1 and f (e) = i} and li be the

cardinality of Li . Since adjacent edges must receive different colors and each edge
e can have at most t 2-neighbors colored with the same color as e, it is easy to see
that li ≤ � for i ∈ [� + 1, 2� − t − 1] and li ≤ t for i ∈ [1,�]. It follows that
2�−t−1∑

i=1
li ≤ �(� − t − 1) + �t = �2 − � = |Er

1|. This implies that li = � for

each i ∈ [� + 1, 2� − t − 1] and li = t for each i ∈ [1,�]. Let u be a neighbor of
r such that f (ru) = 1. Then since li = � for i ∈ [� + 1, 2� − t − 1], each color
in [� + 1, 2� − t − 1] appears exactly once in Ch(ru). The other t edges in Ch(ru)

receive colors from [2,�]. Let these t colors be c1, c2, . . . , ct .
Let GCh(ru) be the set of grandchildren of ru. Then |GCh(ru)| = (� − 1)2.

For i ∈ [1, 2� − t − 1], let L ′
i = {e|e ∈ GCh(ru) and f (e) = i} and l ′i be the

cardinality of L ′
i . Since f is a (0, t)-relaxed strong edge-coloring, it is not hard to

prove the following four properties of f : (1) l ′1 = 0 (since l1 = t); (2) l ′i ≤ t − 1 for
each i ∈ {c1, c2, . . . , ct }; (3) l ′i ≤ � − 1 for each i ∈ [2,�] \ {c1, c2, . . . , ct }; (4)
l ′i ≤ t for each i ∈ [� + 1, 2� − t − 1]. Therefore,

2�−t−1∑

i=1

l ′i ≤ t (t − 1) + (� − t − 1)(� − 1) + (� − t − 1) · t

= (� − 1)2 − t < (� − 1)2 = |GCh(ru)|.

This is a contradiction. So χ ′
(0,t)(T ) ≥ 2� − t and the lemma follows. ��

Lemma 5.3 Let �(≥ 3) and t be two integers. Suppose T is a complete �-regular
tree with height at least 3. Then χ ′

(0,t)(T ) = � if and only if t ≥ 2� − 2.

Proof It is obvious that χ ′
(0,t)(T ) ≥ � for each integer t ≥ 0. Suppose t ≥ 2� − 2.

Since T is a subgraph of T∞(�), to prove χ ′
(0,t)(T ) ≤ �, it suffices to construct a

(0, t)-relaxed strong �-edge-coloring f of T∞(�). Choose a root r for T∞(�) and
color the � edges incident with r by the � colors 1, 2, . . . , �. Let R be the height of
T . Then, for j = 0, 1, . . . , R − 1, for each edge e in Er

j , color the � − 1 children of
e with the � − 1 colors in [1,�] \ { f (e)}. It is straightforward to check that for each
edge e, the color f (e) appears 2� − 2 times on the edges that are distance two apart
from e. Thus f is a (0, t)-relaxed strong �-edge-coloring of T∞(�) for t ≥ 2� − 2.
It follows that χ ′

(0,t)(T ) = χ ′
(0,t)(T∞(�)) = � for t ≥ 2� − 2.

On the other hand, let f be any (0, t)-relaxed strong �-edge-coloring of T . Let r
be the root of T and u a child of r . It is not difficult to prove that at least 2� − 2 of
2-neighbors of ru are assigned the color f (ru). It follows that if t < 2� − 2, then
χ ′

(0,t)(T ) > �. The lemma holds. ��

Suppose T is a tree with maximum degree �. By Lemma 5.1, χ ′
(0,�−1)(T ) ≤

χ ′
(0,�−1)(T∞(�))= 2�−(�−1) = �+1. Thusχ ′

(0,t)(T ) ≤ χ ′
(0,�−1)(T ) ≤ �+1

for � ≤ t ≤ 2� − 3. We have the following theorem.
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Theorem 5.4 Let �(≥ 3) and t (≥ 1) be two integers. If T is a tree with maximum
degree �, then

χ ′
(0,t)(T ) ≤

⎧
⎨

⎩

2� − t, if 1 ≤ t ≤ � − 1;
� + 1, if � ≤ t ≤ 2� − 3;
�, if t ≥ 2� − 2.

The upper bound in this theorem is sharp. It is attained by complete�-regular trees
with height at least 3.

Corollary 5.5 Let �(≥ 3) and t (≥ 1) be two integers. If T is a complete �-regular
tree with height at least 3, then

χ ′
(0,t)(T ) =

⎧
⎨

⎩

2� − t, if 1 ≤ t ≤ � − 1;
� + 1, if � ≤ t ≤ 2� − 3;
�, if t ≥ 2� − 2.

Suppose T is a complete �-regular tree with height at least 3. By Corollary 5.5,
χ ′

(0,1)(T ) = χ ′
(0,0)(T ) = sχ ′(T ) = 2�−1.While, byCorollary 4.4,χ ′

(1,0)(T ) = �

if � is odd and χ ′
(1,0)(T ) = � + 1 if � is even, which is much less than χ ′

(0,1)(T ).
In general, for 1 ≤ s ≤ � − 1, χ ′

(s,0)(T ) is close to � 2�
s+1	, while χ ′

(0,t)(T ) is equal
to 2� − s. Thus, for such trees, the relaxation on distance one condition causes much
reduction of the strong chromatic index than that on distance two condition. Thus,
maybe, the upper bound for χ ′

(s,t)(T ) in the following theorem is not bad.

Theorem 5.6 Let T be a tree with maximum degree �. Suppose s and t are two
integers with 1 ≤ s ≤ � − 1 and 1 ≤ t ≤ 2(� − 1)2. Then

⌈
�

s + 1

⌉

≤ χ ′
(s,t)(T ) ≤ χ ′

(s,0)(T ) ≤
⌈

�

s + 1

⌉

+
⌈

� − 1

s + 1

⌉

+ 1.

In the next section, we show that, sometimes, the upper bound in this theorem is
sharp by proving that χ ′

(1,1)(T∞(�)) = χ ′
(1,0)(T∞(�)).

6 (1, 1)-relaxed strong chromatic index of T∞(�)

We determine the (1, 1)-relaxed strong chromatic index of T∞(�) in this section.

Lemma 6.1 Let �(≥ 3) be an odd integer. Then χ ′
(1,1)(T∞(�)) ≥ �.

Proof Suppose χ ′
(1,1)(T∞(�)) ≤ �−1. Let f be (1, 1)-relaxed strong (�−1)-edge-

coloring of T∞(�). Choose any vertex r as the root of T∞(�). Let k = | f (NE(r))|.
Since � is odd and each color can appear at most twice in NE(r), it is obvious that
�+1
2 ≤ k ≤ �−1. By the distance condition, for the edges in NE(r)∪ Er

1, the colors
in f (NE(r)) can appear at most three times, and the other colors can appear at most
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2� times. Then the number of edges in NE(r) ∪ Er
1 which can get colors is at most

N = 3k + (� − 1 − k) · 2�. Since �+1
2 ≤ k ≤ � − 1 and � ≥ 3, we have

N = 3k + 2�2 − 2� − 2�k = �2 + (�2 − 2� − (2� − 3)k)

≤ �2 +
(

�2 − 2� − (2� − 3) · � + 1

2

)

= �2 +
(
3

2
− 3

2
�

)

< �2

Note that |NE(r) ∪ Er
1| = � + �(� − 1) = �2. It is a contradiction and the lemma

holds. ��
Lemma 6.2 Let �(≥ 4) be an even integer. Then χ ′

(1,1)(T∞(�)) ≥ � + 1.

Proof Suppose χ ′
(1,1)(T∞(�)) ≤ �. Let f be (1, 1)-relaxed strong �-edge-coloring

of T∞(�). Then for any vertex of T∞(�), we have the following result:

Claim Suppose u is an vertex in T∞(�). If � ≥ 8, then | f (NE(u))| = �
2 ; if

4 ≤ � ≤ 6, then �
2 ≤ | f (NE(u))| ≤ �

2 + 1.

Proof Choose vertex u as the root of T∞(�). Assume | f (NE(u))| = k. Since � is
even and each color can appear at most twice in NE(u), it is obvious that �

2 ≤ k ≤ �.
With the similar argument as Lemma 6.1, the number of edges in NE(u) ∪ Eu

1 which
can get colors is at most N = 3k + (� − k) · 2�. Suppose that � ≥ 8. If k ≥ �

2 + 1,
then

N = 3k + (� − k) · 2� = 2�2 + (3 − 2�)k

≤ 2�2 + (3 − 2�) ·
(

�

2
+ 1

)

= �2 +
(

3 − �

2

)

≤ �2 − 1 < �2

It contradicts the fact |NE(u) ∪ Eu
1 | = �2. Thus, k < �

2 + 1, which implies that
| f (NE(u))| = �

2 .
With the same argument, for 4 ≤ � ≤ 6, we can prove | f (NE(u))| < �

2 + 2. It
implies that �

2 ≤ | f (NE(u))| ≤ �
2 + 1. Thus, the claim holds. ��

Next, we distinguish the proof into three cases:

Case 1 � ≥ 8.
In this case, by the above claim, we know that | f (NE(u))| = �

2 for any vertex
u in T∞(�). This implies that any color in f (NE(u)) is used exactly twice on the
edges in NE(u). Suppose uv is any edge in T∞(�) and f (uv) = a. Then there
exists an edge, say uu1 (resp. vv1), in NE(u) \ {uv} (resp. NE(v) \ {uv}) satisfying
f (uu1) = a (resp. f (vv1) = a). So, we have uu1 and vv1 are both neighbors of uv

and f (uv) = f (uu1) = f (vv1). It is a contradiction since f is a (1, 1)-relaxed strong
edge-coloring.

Case 2 � = 6.
In this case, by the above claim, we know that | f (NE(u))| = 3 or 4 for any vertex

u in T∞(6). Suppose for some vertex u, | f (NE(u))| = 4. Choose u as the root of
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T∞(6). Without loss of generality, let the colors appearing on edges in NE(u) be 1,
2, 3 and 4, where colors 1 and 2 appear twice and colors 3 and 4 appear once. Let
Li = {e ∈ Eu

1 | f (e) = i} and li be the cardinality of Li . Since f is a (1, 1)-relaxed
strong 6-edge-coloring, we have li = 0 for i = 1, 2, li ≤ 2 for i = 3, 4, and li ≤ 12

for i = 5, 6. Thus,
6∑

i=1
li ≤ 28 < 30 = |Eu

1 |. This is a contradiction. Therefore, for
any vertex u ∈ V (T∞(6)), it satisfies | f (NE(u))| = 3. With the same argument as in
Case 1, we can get a contradiction.

Case 3 � = 4.
In this case, by the above claim, we know that | f (NE(u))| = 2 or 3 for any

vertex u in T∞(4). Suppose for some vertex u, | f (NE(u))| = 3. Choose u as the
root of T∞(4). Without loss of generality, let the colors appearing on edges in NE(u)

be 1, 2 and 3, where color 1 appears twice and colors 2 and 3 appear once. Let
Li = {e ∈ Eu

1 | f (e) = i} and li be the cardinality of Li . Since f is a (1, 1)-relaxed
strong 4-edge-coloring and |Eu

1 | = 12, we have l1 = 0, l2 = l3 = 2 and l4 = 8.
Then, we can assume f (uv) = 1, f (vv1) = 2, f (vv2) = f (vv3) = 4. Next, we
consider the edges in GCh(uv). Let L ′

i = {e ∈ GCh(uv)| f (e) = i} and l ′i be the
cardinality of L ′

i . By the distance conditions, we have l ′1 ≤ 1, l ′2 ≤ 1, l ′3 ≤ 6 and

l ′4 = 0. Thus,
4∑

i=1
l ′i ≤ 8 < 9 = |GCh(uv)|. This is a contradiction. Therefore, for

any vertex u ∈ V (T∞(4)), it satisfies | f (NE(u))| = 2. With the similar argument as
in Case 1, we can get a contradiction.

By the above cases, for any even integer �(≥ 4), χ ′
(1,1)(T∞(�)) ≥ � + 1, and

the lemma holds. ��
Since a (1, 0)-relaxed strong edge-coloring is also a (1, 1)-relaxed strong edge-

coloring, we have χ ′
(1,1)(T∞(�)) ≤ χ ′

(1,0)(T∞(�)). Combining Theorem 4.3,
Lemmas 6.1 and 6.2, we have the following result:

Theorem 6.3 Let �(≥ 3) be an integer. Then

χ ′
(1,1)(T∞(�)) = χ ′

(1,0)(T∞(�)) =
{

�, if � is odd;
� + 1, if � is even.

Question Are there any pairs of (s, t) such that χ ′
(s,t)(T∞(�)) < χ ′

(s,0)(T∞(�))?
Could we characterize all pairs of (s, t) such that χ ′

(s,t)(T∞(�)) = χ ′
(s,0)(T∞(�))?

7 (1, 0)-relaxed strong edge-coloring for a tree

In this section, we consider the (1, 0)-relaxed strong edge-coloring for a tree T . For
any edge uv ∈ E(T ), since s = 1 and t = 0, a color can be assigned to at most two

edges in NE(u) ∪ NE(v). This implies that χ ′
(1,0)(T ) ≥

⌈
σ(T )
2

⌉
. Next, we give a

coloring algorithm and obtain the upper bound for χ ′
(1,0)(T ) in terms of σ(T ). For

a function f of color assignment and an edge set E ′, let f (E ′) be the set of colors
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Algorithm 3 Construct a (1,0)-relaxed strong edge-coloring f for a r-tree

1: Assign integers 1, 2, . . . ,
⌈
d(r)
2

⌉
to the edges in NE(r), such that each integer is used at most twice;

2: for each i := 1 to R − 1 do
3: for each vertex v ∈ Vi do
4: if v is not a leaf and all children of the edge F(v)v are uncolored;

5: then color all children of the edge F(v)v with the least
⌈
d(v)−1

2

⌉
positive integers different from

those in f (NE(F(v))), such that each integer is used at most twice;
6: end for
7: end for

appearing on edges in E ′. Let T be a tree with root r . The following algorithm will

construct an edge coloring of T with at most (
⌈

σ(T )
2

⌉
+ 1) colors.

Lemma 7.1 For any tree T , Algorithm 3 gives a (1, 0)-relaxed strong (
⌈

σ(T )
2

⌉
+ 1)-

edge-coloring.

Proof It is not hard to check that Algorithm 3 produces a (1, 0)-relaxed strong edge-
coloring of T . To prove the theorem, it suffices to show that Algorithm 3 uses at most⌈

σ(T )
2

⌉
+ 1 colors.

Suppose uv is an edge of T with u = F(v). At the stage when the children of

uv (i.e., Ch(uv)) are colored, the number of colors needed for Ch(uv) is
⌈
d(v)−1

2

⌉
.

According to Algorithm 3, the edges in NE(u) have used at most
⌈
d(u)−1

2

⌉
+1 colors.

Since
⌈
d(u) − 1

2

⌉

+ 1 +
⌈
d(v) − 1

2

⌉

≤
⌈
d(u) + d(v) − 1

2

⌉

+ 1 ≤
⌈

σ(T )

2

⌉

+ 1 (1)

we conclude that f uses at most
⌈

σ(T )
2

⌉
+ 1 colors. The lemma holds. ��

Since
⌈

σ(T )
2

⌉
is a lower bound for χ ′

(1,0)(T ), together with Lemma 7.1, we have

the following theorem.

Theorem 7.2 For any tree T ,

⌈
σ(T )

2

⌉

≤ χ ′
(1,0)(T ) ≤

⌈
σ(T )

2

⌉

+ 1

The lower and upper bounds in this theorem are attainable. We next present some
trees T with χ ′

(1,0)(T ) equal to the lower bound (resp. upper bound).
Let T be a tree and let uv be an edge of T . In the proof of Lemma 7.1, if σ(T ) is

odd and uv is not σ -tight, then the inequality (1) is specified as

⌈
d(u) − 1

2

⌉

+ 1 +
⌈
d(v) − 1

2

⌉

≤
⌈
d(u) + d(v) − 1

2

⌉

+ 1 <

⌈
σ(T )

2

⌉

+ 1 (2)
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If uv is a σ -tight but d(u) and d(v) are both odd (this implies that σ(T ) is odd), then
the inequality (1) is specified as

⌈
d(u) − 1

2

⌉

+ 1 +
⌈
d(v) − 1

2

⌉

= d(u) + d(v)

2
= σ(T ) + 1

2
=

⌈
σ(T )

2

⌉

(3)

Thus, if every σ -tight edge uv of T has the property that both d(u) and d(v) are odd,
then, by (2) and (3), the coloring function f produced by Algorithm 3 uses at most⌈

σ(T )
2

⌉
colors. Thus we have the following theorem.

Theorem 7.3 Let T be a tree. If σ(T ) is odd and for any σ -tight edge, the degrees of

its two endpoints are both odd, then χ ′
(1,0)(T ) =

⌈
σ(T )
2

⌉
= σ(T )+1

2 .

Theorem 7.4 Let T be a tree with σ(T ) being odd. Suppose uv is a σ -tight edge such
that both d(u) and d(v) are even. If there are two σ -tight edges except uv incident
with u and two σ -tight edges except uv incident with v, then χ ′

(1,0)(T ) = σ(T )+1
2 +1.

Proof Let u1 and u2 (resp. v1 and v2) be two vertices other than v (resp. u) that are
adjacent to u (resp. v) such that uu1, uu2 (resp. vv1, vv2) are σ -tight. Then d(u) =
d(v1). As σ(T ) is odd, the four vertices u1, u2, v1, v2 are all of even degree. Suppose
the theorem is not true. Then χ ′

(1,0)(T ) = σ(T )+1
2 . Let f be a (1, 0)-relaxed strong

σ(T )+1
2 -edge-coloring. Since both d(u) and d(v) are even, it is clear that f (uv) appears

twice on edges in NE(u) or twice on edges in NE(v). Without loss of generality,
assume f (uv) appears twice on edges in NE(u). It follows that | f (NE(v))| = d(v)

2 +
1. This implies that at least one of f (vv1) and f (vv2) appears twice on edges in NE(v).
Without loss of generality, assume that f (vv1) appears twice on edges in NE(v). But
then there are d(u)+d(v)

2 − (
d(v)
2 + 1) = d(u)−2

2 = d(v1)−2
2 colors left for d(v1) − 1

edges in NE(v1) \ {vv1}. The number of colors for these edges are not enough. This
is a contradiction. Thus the theorem holds. ��

In the following, we consider the case that σ(T ) is even. By Theorem 7.2, if σ(T )

is even, then σ(T )
2 ≤ χ ′

(1,0)(T ) ≤ σ(T )
2 + 1.

Lemma 7.5 Let T be a treewithσ(T ) being even. Suppose f is a (1, 0)-relaxed strong
σ(T )
2 -edge-coloring and xy is aσ -tight edge of T . If d(x) is even, then f (xy) = f (xy′)

for some neighbor y′( 
= y) of x.

Proof Since σ(T ) is even, xy is σ -tight and d(x) is even, d(y) is odd. On the contrary,
suppose that there doesn’t exist any neighbor y′ of x satisfying f (xy) = f (xy′). Then
the edges in NE(x) receive at least

⌈
d(x)−1

2

⌉
+ 1 = d(x)

2 + 1 distinct colors. Since

the color f (xy) can be used to another edge incident with y, the edges in NE(y)

receive at least
⌈
d(y)−2

2

⌉
= d(y)−1

2 colors that are different from the colors used

on the edges in NE(x). It follows that the number of colors used by f is at least
d(x)
2 + 1 + d(y)−1

2 = σ(T )
2 + 1. This is a contradiction and the lemma follows. ��
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Theorem 7.6 Let T be a tree with σ(T ) being even. If there exists one of the following
structures in T , thenχ ′

(1,0)(T ) = σ(T )
2 +1: (1) There are twoadjacentσ -tight edges uv

and vw satisfied that d(v) is odd. (2) For some edge uv such that σ(uv) = σ(T ) − 1
and d(u) is even. There are four neighbors uu1, uu2, vv1 and vv2 of uv such that
σ(uui ) = σ(vvi ) = σ(T ) − 1 for i = 1, 2.

Proof (1) On the contrary, suppose thatχ ′
(1,0)(T ) = σ(T )

2 and let f be a (1, 0)-relaxed

strong edge-coloring of T with σ(T )
2 colors. Since uv and vw are σ -tight and theymeet

at a common vertex, we have d(u) = d(w). Moreover, both d(u) and d(w) are even
as σ(T ) is even and d(v) is odd. By Lemma 7.5, f (uv) = f (uv′) for some neighbor
v′ ( 
= v) of u, and f (vw) = f (v′′w) for some neighbor v′′ ( 
= v) of w. It follows that
the number of colors used by f is at least

d(u)

2
+

⌈
d(v) − 2

2

⌉

+ 1 = d(u)

2
+ d(v) − 1

2
+ 1 = σ(T )

2
+ 1.

It is a contradiction and so (1) holds.
(2) Let T ′ be the subgraph of T induced by the edges incident with the vertices

u, v, u1, u2, v1, v2. It follows that σ(T ′) = σ(T ) − 1 and σ(T ′) is odd. Since d(u) is
even and uui , vvi are all σ -tight edges of T ′, by Theorem 7.4, we have χ ′

(1,0)(T
′) =

σ(T ′)+1
2 + 1. Then

χ ′
(1,0)(T ) ≥ χ ′

(1,0)(T
′) = σ(T ′) + 1

2
+ 1 = σ(T )

2
+ 1.

Thus χ ′
(1,0)(T ) = σ(T )

2 + 1. ��

According to Theorem7.2, for any tree T ,χ ′
(1,0)(T ) is either

⌈
σ(T )
2

⌉
or

⌈
σ(T )
2

⌉
+1.

It is natural to ask whether the following problem is in class P.

Problem 7.7 (1, 0)-relaxed strong edge-coloring
Instance A tree T with σ(T ) = k.
Question Is χ ′

(1,0)(T ) = ⌈ k
2

⌉
?
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