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Abstract MapReduce system is a popular big data processing framework, and the
performance of it is closely related to the efficiency of the centralized scheduler. In
practice, the centralized scheduler often has little information in advance, whichmeans
each job may be known only after being released. In this paper, hence, we consider the
online MapReduce scheduling problem of minimizing the makespan, where jobs are
released over time. Both preemptive and non-preemptive version of the problem are
considered. In addition, we assume that reduce tasks cannot be parallelized because
they are often complex and hard to be decomposed. For the non-preemptive version,
we prove the lower bound is m+m(�(m)−�(k))

k+m(�(m)−�(k)) , higher than the basic online machine

scheduling problem, where k is the root of the equation k = ⌊ m−k
1+�(m)−�(k) + 1

⌋

and m is the quantity of machines. Then we devise an (2 − 1
m )-competitive online

algorithm called MF-LPT (Map First-Longest Processing Time) based on the LPT.
For the preemptive version, we present a 1-competitive algorithm for two machines.
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1 Introduction

MapReduce (Dean and Ghemawat 2008) has been an important model in many big
data processing applications such as search indexing, distribution sorts, log analysis,
machine learning, etc. While popularized by Google, MapReduce is used by several
companies including Microsoft, Yahoo, Facebook in their clusters for many of their
applications today (Chang et al. 2011).

At a high-level, MapReduce processing essentially consists of two phases: the map
phase and the reduce phase (Fig. 1). When a job is submitted to the MapReduce
systems, it has to be processed sequentially in these two phases. During the map phase
the entire data is divided into several smaller splits and assigned to different machines
(workers) for parallel computation of results by centralized scheduler called master
node. Themap phase will output key-value pairs which are used as inputs of the reduce
phase. During the reduce phase the machines process the pairs and output the final
results. In short, a single job can be taken as a combination of map task and reduce
task: map task executed in the map phase and reduce task in reduce phase, and the
reduce phase cannot begin until the map phase ends.

Although MapReduce is a framework for distributed computation, it is integrated
in decision making by the centralized scheduler. The scheduler makes the overall
scheduling decisions, such as which machine to assign a particular task to and when
to execute it. Hence, the effectiveness of MapReduce system is closely related to the
efficiency of the centralized scheduler. In recent years, the scheduling problem has
been one of the active research topics in MapReduce because of the need to guarantee
the performance of system like response times, system utilization, etc. Besides several
papers based on practical insights like Zaharia et al. (2008, 2010), Isard et al. (2009),
Sandholm and Lai (2009), a great deal of theoretical works have also emerged (Chang
et al. 2011; Moseley et al. 2011; Chen et al. 2012; Tan et al. 2012; Wang et al. 2013;
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Zheng et al. 2013; Yuan et al. 2014; Zhu et al. 2014; Luo et al. 2015). Most of these
works concentrate on the offline scheduling problem, where job arrivals are known
beforehand. In practice, however, the scheduler can hardly know all the information
in advance. As a result, the theoretical research of the online scheduling is in need of
urgent attention. To the best of our knowledge, there are little work with respect to it
(Moseley et al. 2011; Zheng et al. 2013; Chang et al. 2011; Luo et al. 2015).

For the online MapReduce scheduling problem, Moseley et al. (2011) model the
MapReduce scheduling problem as a generalization of the two-stage flexible flow-
shop problem (FFS) forminimize the total flow-time. However, the competitive ratio of
their online algorithmwill be unbounded without resource augmentation. To solve this
problem, Zheng et al. (2013) construct a slightly weaker metric of the online algorithm
performance called the efficiency ratio. Then they design an online algorithmand claim
that it guarantees a small efficiency ratio. Furthermore, Chang et al. (2011) focus on
minimizing the total completion time, and devise an online algorithm that achieved
30% improvements compared to FIFO in the view of simulations. However, there is
no constant bound to guarantee the online algorithm. For minimizing the makespan,
Luo et al. (2015) consider the problem with complex reduce tasks, which means
the reduce tasks are non-parallelizable. When the jobs are released over list (i.e. list
model), they give two optimal algorithms for both preemptive and non-preemptive
versions.

In this paper, we focus on the theoretical study of online MapReduce scheduling
problemwhere jobs are released over time, which is more close to the reality compared
to the list model. Moreover, most of the existing studies assume that reduce tasks can
be arbitrarily split between multiple servers. However, this may not be true in reality.
In practice, the number of reduce processors is much less than that of map processors,
and in some cases there is only one reduce processor (like the grep program and so on)
(Dean and Ghemawat 2008). These are mainly because reduce tasks are much more
complex compared tomap tasks, and there are many operations that must be processed
in sequence. So far, only Zhu et al. (2014) and Luo et al. (2015) have considered this
issue, which is important and needs more attention. Thus, in this paper we assume
the reduce task is the minimum level of parallel processing, which means each reduce
task cannot be handled by more than one machine at the same time. Detailed problem
formulation will be presented in Sect. 2.

The mainly contributions of this paper are as follows:

1) When preemption is not allowed, we prove that the lower bound of this problem
is m+m(�(m)−�(k))

k+m(�(m)−�(k)) , where k is the root of the equation k = ⌊ m−k
1+�(m)−�(k) + 1

⌋
.

For the basic online machine scheduling problem (only contains the reduce tasks
compared to our problem), Chen and Vestjens (1997) give a lower bound 1.3473
for m ≥ 3 and 1.3820 for m = 2 where m represents the quantity of machines.
Our new lower bound is proved to be higher than the lower bound of them for
m ≥ 3, which means adding map tasks leads to increasing the basic lower bound.
(Sect. 3)

2) We present an (2 − 1
m )-competitive algorithm called MF-LPT for our problem

based on the online LPT algorithm, where m represents the quantity of machines.
(Sect. 4)
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3) For the preemptive version, we devises a 1-competitive algorithm for two
machines, which is optimal. (Sect. 5)

2 System model and problem statement

As mentioned above, MapReduce system essentially consists of the map phase and
the reduce phase. Each job submitted to the MapReduce system will first go into the
map phase and then the reduce phase. Denote a set of jobs by J = {J1, J2, . . . , Jn},
which can be processed on m identical machines {σ1, σ2, . . . , σm}. Let Mi and Ri

denote the total processing time during the map phase and the reduce phase of job
Ji , respectively. So we can denote each job by Ji (Mi , Ri , ri ) where ri represents the
release time of Ji . We also use Mi and Ri to represent the map task and reduce task
itself for simplicity if there is no confusion.

For each job inMapReduce system: (1) The reduce task cannot be processed unless
the map task has been finished (R1 follows M1 in Fig. 2), due to the input data of the
reduce task relies on the output of the map task. (2) Map task can be arbitrarily split
between differentmachines for distributed computing, however the reduce task is often
complex, which means a single reduce task can not be executed on multiple machines
at the same time (see M1 and R1 in Fig. 2). (3) When preemption is not allowed, the
assignment and scheduling of either map task or reduce task being executed cannot
change then, i.e. once M2 is being processed by machine σ2 at the time r2, the assign-
ment and scheduling of M2 won’t change even though part of M2 has not yet begun
in machine σ1 in Fig. 2. On the contrary, when preemption is allowed, any task may
be interrupted and resumed at a later time during processing.

From the above formulation, we can notice that if all map tasks equal to zero
(Mi = 0 for i = 1, 2, . . . , n), this problem becomes the same as the basic online
machine scheduling problem (Chen and Vestjens 1997).

The objective of our online algorithm is to minimize the makespan, i.e. the com-
pletion time of the last job that finishes. The metric of an online algorithm is usually
competitive ratio, which is also known as the worst-case performance. An algorithm A
is called ρ-competitive if, for any instance, the objective function value of the schedule
generated from this algorithm A is no worse than ρ times the objective value of the
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Fig. 2 Schematic of MapReduce scheduling
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optimal offline schedule (Fiat andWoeginger 1998), i.e.CA(J ) ≤ ρ ·Copt (J ) for any
J , where CA(J ) denotes the objective function value produced by A and Copt (J )

denotes the optimal objective value.

3 Lower bound for the non-preemptive version

In this section, we consider the non-preemptive version of the Online MapReduce
Scheduling problem of minimizing the Makespan (OMRSM). We first give the lower
bound of the problem, i.e. no online algorithm can perform better than it from a
worst-case point of view.

Theorem 1 When preemption is not allowed, any ρ-competitive online algorithm has

ρ ≥ m + m(�(m) − �(k))

k + m(�(m) − �(k))

where Digamma function �(n + 1) = ∑n
i=1

1
i − γ , and k is the root of the equation

k =
⌊

m − k

1 + �(m) − �(k)
+ 1

⌋

Proof First of all, suppose A is a ρ-competitive online algorithm for the problem.
Then the offline adversary will present several kinds of sets of jobs to set constraints
on ρ.

At time 0, the first job J1(M1, R1, r1) = J1(1, 0, 0) is released. The algorithm A can
arbitrarily split the M1 into several pieces and assign them to m machines in parallel.
We use xi to denote the completion time of M1 on each machine σi (i = 1, 2, . . . ,m).
Without loss of generality, we assume that the completion times of different machines
are arranged in descending order, i.e. x1 ≥ x2 ≥ · · · ≥ xm (shown in Fig. 3). Then

Machine

Time
x2 x1x3xm-2xm-1xms1 …

σ2

σ1

σm-2

σm-1

σm

σ3

M1

…

Fig. 3 The schedule of J1 obtained by online algorithm A
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denote by s j the starting time of the j-th started piece of M1 on a particular machine,
i.e. s1 ≤ s2 ≤ · · · ≤ sm . It’s obvious that s1 ≤ xm and

m∑

i=1

xi =
m∑

i=1

si + 1 (3.1)

For J1, the online cost of the algorithm A will be CA(J1) = x1. The optimal offline
server (offline scheduler), however, will be able to finish the job by timeCopt (J1) = 1

m .
The online server (online scheduler) is not sure about whether there will be the second
job in the future. Thus, to guarantee A is ρ-competitive, the online cost must satisfy

CA(J1)

Copt (J1)
= m · x1 ≤ ρ (3.2)

Note that, after time s1 when the process of J1 has started, the online server can not
change the schedule of J1 according to the assumption before.

At time s1, the offline adversary will present different kinds of sets of jobs form−1
cases. For any case, the online cost CA(J ) must be no worse than ρ times the optimal
offline cost Copt (J ).

Case i (i = 1, 2, . . . ,m − 1): At time s1, a set of jobs J 2 = {J2, J3, . . . , Ji+1}
are released where J2 = J3 = · · · = Ji+1(0,

1−m·s1
m−i , s1), and no more jobs will be

released after then.
According to the differences of the jobs assignment, we consider two subcases of

the online server:
(i-a): If the online server assigns different jobs of J 2 to different machines, we

have that:
For the online server, σm−i+1 is the i-thmachinewhich has finished the J1. Noticing

that the J 2 contains i jobs which are assigned to different machines, the online cost
is at least xm−i+1 + 1−m·s1

m−i . However, the offline server can make all machines finish

at the same time with a optimal cost Copt = (1 + i · 1−m·s1
m−i )/m = 1−i ·s1

m−i . Thus, to
guarantee A is ρ-competitive, the online cost must satisfy

ρ ≥ CA(J )

Copt (J )
≥ xm−i+1 + 1−m·s1

m−i
1−i ·s1
m−i

= (m − i)(xm−i+1 − s1)

1 − i · s1 + 1 (3.3)

(i-b): If the online server assigns no less than two jobs of J 2 to a single machine,
we have that:

For the online server, when two jobs of J 2 are assigned to a single machine, the
online cost is at least xm + 2( 1−m·s1

m−i ). For the offline server, the optimal cost is the

same as before Copt = 1−i ·s1
m−i . Thus, to guarantee A is ρ-competitive, the online cost

must satisfy

ρ ≥ CA(J )

Copt (J )
≥

xm + 2
(
1−m·s1
m−i

)

1−i ·s1
m−i

= 2 − (m − i)(2s1 − xm)

1 − i · s1 (3.4)
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Up to now, we have listed all the constraints of ρ. Then, we will analyze how good ρ

can be with these constraints.

1. When the online server assigns different jobs of J 2 to different machines in all
cases:
Due to the offline adversary can arbitrarily decide the J 2, to guarantee A is ρ-
competitive, the online cost must satisfy (3.1), (3.2), (3.3). So the problem can be
taken as the minimization of ρ with these constraints:

min ρ = b

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m∑

i=1
xi =

m∑

i=1
si + 1

m · x1 ≤ b
(m−i)(xm−i+1−s1)

1−i ·s1 + 1 ≤ b, i = 1, 2, . . . ,m − 1

0 ≤ s1 ≤ s2 ≤ · · · ≤ sm
x1 ≥ x2 ≥ · · · ≥ xm ≥ s1

(3.5)

By solving (3.5), we find the minimum value of ρ (for details see Appendix A):

ρ∗ = m + m(�(m) − �(k))

k + m(�(m) − �(k))

whereDigamma function�(n+1) = ∑n
i=1

1
i −γ , and k is the root of the equation

k =
⌊

m − k

1 + �(m) − �(k)
+ 1

⌋

2. On the contrary, when the online server assigns no less than two jobs of J 2 to
a single machine in certain case:

The online cost must satisfy (3.1),(3.2),(3.4). Considering (3.1) and (3.2), we have
ρ ≥ m · x1 ≥ ∑m

i=1 xi = ∑m
i=1 si + 1 ≥ m · s1 + 1, i.e. m · s1 ≤ ρ − 1. Thus, we can

get the bound of ρ from (3.4):

ρ ≥ 2 − (m − i)(2s1 − xm)

1 − i · s1 ≥ 2 − (m − i)s1
1 − i · s1 ≥ 2 − ρ − 1 − i · s1

1 − i · s1
= 1 + 2 − ρ

1 − i · s1 ≥ 3 − ρ

Therefore, ρ ≥ 3
2 .

Above all, we conclude that the lower bound of this problem is min{ρ∗, 3
2 }. After

further analysis in Appendix B, we have ρ∗ < 3
2 and the theorem is proved. ��

Because we can hardly know the analytical solution of k, we list several numerical
results (Table 1) of the lower bound for comparison.

123



J Comb Optim (2017) 33:590–608 597

Table 1 Numerical results

∗ z = exp
(
Wm (−1/e2) + 2

)
≈

0.317844433, where Wm (x) is
the Lambert W -Function (Olver
2010)

m k ρ∗

2 1 1.333333333

3 1 1.363636364

4 2 1.375000000

5 2 1.404494382

6 2 1.412371134

7 3 1.414507772

8 3 1.425790754

9 3 1.429777437

10 4 1.429911857

15 5 1.443982015

25 8 1.452398065

30 10 1.454746305

m → +∞ k → z · m 1
1−z ≈ 1.465941272∗

Letting Mi = 0 (for any i), the problem becomes the same as the basic online
machine scheduling problem. Chen and Vestjens (1997) gives a lower bound 1.3473
for m ≥ 3 and 1.3820 for m = 2 where m represents the quantity of machines.
Compared with the basic lower bound, the Table 1 shows that we get a higher lower
bound for m ≥ 3 by adding map tasks.

4 The online MF-LPT algorithm

In this section, for the non-preemptive version of the problem, we present a new
algorithm called MF-LPT (Map First-Longest Processing Time) based on the online
LPT algorithm (Chen and Vestjens 1997). It guarantees a competitive ratio of (2 −
1
m ) for the OMRSM where jobs are released over time. The MF-LPT is described
completely by its behavior at the moment when any machine becomes available.
Letting M denote all the unscheduled map tasks and R denote all the unscheduled
reduce tasks, the MF-LPT can be formally described as follows.

Algorithm 1: MF-LPT
1 When any machine becomes available:

2 if M 
= ∅ then
3 Schedule all map tasks inM between machines to finish them as early as possible;
4 else if R 
= ∅ then
5 Assign the longest reduce task in R to the available machine (LPT-rule);
6 else
7 Wait until the next job arrives;
8 end
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Let Js be any set of jobs with no common idle throughout the online schedule,
i.e. at any time before CMF-LPT(Js) in the online schedule, at least one machine is
busy.

Lemma 1 If CMF-LPT(Js) ≤ ρ · Copt (Js) for any Js , the MF-LPT algorithm is
ρ-competitive.

The proof of Lemma 1 can be easily obtained from the proof of Observation 1 in Chen
and Vestjens (1997).

Theorem 2 Whenpreemption is not allowed, the onlineMF-LPTalgorithm is (2− 1
m )-

competitive, and the ratio is tight.

Proof According to Lemma 1, we just need to prove the MF-LPT is (2 − 1
m )-

competitive for any Js . Let Jl(Ml , Rl , rl) be the last finished job in online schedule
of Js , and Sl be the starting time of Rl . As we know, during the period [0, rl ], there
may be sometime when some machine is idle. Let I denote the summation of the time
duringwhich at least onemachine is idle (we put the idle time together for convenience
in Fig. 4). Note that: (1) There is at least one machine is busy during the interval I ,
because there is no common idle in online schedule we has assumed in previous. (2)
Besides the idle time I , there will be a (rl − I ) long period of timewith no idle machine
before rl . (3) No machine can be idle during the interval [rl , Sl ], otherwise the Rl will
start before Sl according to the LPT-rule.

Thus, we can obtain a lower bound of the offline cost:

Copt (Js) ≥ (rl − I ) + (Sl − rl) + I + Rl

m

= Sl − m − 1

m
I + 1

m
Rl

(4.1)

Moreover, noting that the Jl is released at rl , and I is at most rl , we can obtain
another lower bound of the offline cost:

Copt (Js) ≥ rl + Rl ≥ I + Rl (4.2)

Machine

Time

σ2

σ1

σm-1

σm

…

Rlidle

SlrlI
Fig. 4 Online schedule for Js
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To sum up, from the two lower bounds (4.1) and (4.2) displayed above, we can
have

Copt (Js) ≥ max{Sl − m − 1

m
I + 1

m
Rl , I + Rl} (4.3)

For the online cost, obviously

CMF-LPT(Js) = Sl + Rl (4.4)

1. When Sl − m−1
m I + 1

m Rl ≥ I + Rl , according to (4.3) and (4.4) we have:

CMF-LPT(Js)

Copt (Js)
≤ Sl + Rl

Sl − m−1
m I + 1

m Rl

= 1 + m − 1

m
· I + Rl

Sl − m−1
m I + 1

m Rl

≤ 2 − 1

m

(4.5)

2. When Sl − m−1
m I + 1

m Rl < I + Rl , according to (4.3) and (4.4) we have:

CMF-LPT(Js)

Copt (Js)
≤ Sl + Rl

I + Rl

= Sl − m−1
m I + 1

m Rl

I + Rl
+ m − 1

m

< 2 − 1

m

(4.6)

Therefore, (4.5) and (4.6) proves that the algorithm is (2 − 1
m )-competitive.

The following example shows that the ratio of 2 − 1
m is asymptotically tight. At

time 0, J1(M1, 0, 0) is released, and at time ε, J2(0,
M1
m−1 − ( m

m−1 )ε, ε) is released,
where ε is some small positive number. Due to the online server will schedule the M1
parallelly between machines and assign J2 after that, the online cost isCMF-LPT(J ) =
M1
m + M1

m−1 − ( m
m−1 )ε. However, the optimal cost is Copt (J ) = M1−ε

m−1 . The ratio tends

to 2 − 1
m as ε tends to 0. ��

5 A 1-competitive preemptive algorithm for two machines

In this section, we consider the preemptive version, where the processing of any oper-
ation may be interrupted and resumed at a later time. For the preemptive scheduling
problem, Algorithm 5.2.3 in Pinedo (2012) shows a common way to deal with the
preemptive jobs. Guo and Kang (2013) devised an algorithm which well solved the
online parallel jobs scheduling problem with preemption, but the parallel jobs are
different from the map tasks in our paper. The parallel job must be processed on mul-
tiple machines simultaneously, while the map task can be processed on either multiple
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machines or an arbitrary single machine. Based on these two algorithms, we present
a 1-competitive algorithm called Algorithm M for two machines in the following.

Recall that each job Ji in the job set J = {J1, J2, . . . , Jn} has a release time ri .
We separate the job set J into different groups by release time, putting the jobs with
same release time into a same group, and denote the release time of jobs in the i th
group by ti (t1 < t2 < · · · < tp). The Algorithm Mmakes decisions at every ti . If a job
is processing at time ti , we stop it and take the remaining part of it as a new job with
release time ti , since the preemption is allowed. We denote by J i the set of all jobs
available at time ti .J i may contain “new” jobs that arrive at time ti , remaining parts of
jobs that are being processed at time ti and “old” jobs that have not been processed in
J i−1. We denote by J ij the job J j or the remaining part of job J j appearing in set J i ,

Mi
j and Ri

j the length of map task and reduce task of job J ij respectively. Let M
i be the

total length of all map tasks in J i , and Ri be the total length of all reduce tasks in J i .
Denote by J il (M

i
l , R

i
l ) the job who has the longest reduce task than other reduce tasks

of any job inJ i , i.e. l = arg max j R
i
j . The algorithmwill produce three different types

of schedule for different Ri
j . The Algorithm M can be formally described as follows.

Algorithm 2: M

1

Input: The job set J = {J1, J2, . . . , Jn};
Output: The schedule;

2 for i ← 1 to p do
3 For the job J j released at ti , set job J ij ← J j , M

i
j ← Mj , R

i
j ← R j and r

i
j ← ti ;

4 For every job J i−1
j that has not been finished at time ti , set job J ij as the remaining part of job

J i−1
j and r ij ← ti ;

5 J i ← {J ij |r ij = ti };
6 l ← arg max j R

i
j ;

7 if Ril ≤ 1
2 R

i then /* 1-type schedule */

8 Schedule all map tasks in J i parallelly between machines one by one;

9 List all reduce tasks inJ i one by one and cut the list at half of the total length, and schedule
one half part of the list on the firstly machine σ1 and the rest on the other machine σ2
without destroy the sequence of the list;

10 else if Ril ≤ 1
2 (Ri + Mi − Mi

l ) then /* 2-type schedule */

11 Schedule Mi
l (the map task of J il ) parallelly between machines;

12 Schedule part of the rest map tasks with length Ri + Mi − Mi
l − 2Ril parallelly between

machines;

13 Schedule Ril on machine σ1 and all rest of map tasks and reduce tasks on machine σ2 (make
sure that all map tasks are in front of reduce tasks on σ2);

14 else /* 3-type schedule */
15 Schedule Mi

l (the map task of J il ) parallelly between machines;

16 Schedule Ril on machine σ1 and all rest of map tasks and reduce tasks on machine σ2 (make
sure that all map tasks are in front of reduce tasks on σ2);

17 end
18 Process the jobs in J i according to the schedule from time ti to ti+1;
19 end
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Lemma 2 The schedule produced by Algorithm M is feasible, i.e. (1) for any job
J ij (M

i
j , R

i
j ), R

i
j is processed after Mi

j has been finished, and (2) there is no reduce
task that is processed on two machines simultaneously.

Proof When Ri
l ≤ 1

2 R
i , theAlgorithm M schedules allmap tasks first, thus it’s obvious

that Ri
j is processed after Mi

j has been finished for any i . Note that there is at most

one reduce task Ri
d that will be divided into two parts in the reduce tasks list formed

by the Algorithm M, and one part at the end of the first half list, while the other part
at the beginning of the second half list (as Ri

3 exhibited in Fig. 5). Hence, if the two
parts of the reduce task Ri

d are processed on two machines simultaneously, Ri
d must

be larger than 1
2 R

i , which is contradictory to Ri
d ≤ Ri

l ≤ 1
2 R

i .

When 1
2 R

i < Ri
l ≤ 1

2 (R
i + Mi − Mi

l ), according to Algorithm M, there is no
reduce task that will be split, which means no reduce task will be processed on two
machines simultaneously. Moreover, Ri

j is processed after Mi
j has been finished for

any i , because Ri
l is processed after M

i
l , and all other reduce tasks are processed after

all map tasks (see Fig. 6).
The case when Ri

l > 1
2 (R

i + Mi − Mi
l ) is similar to the previous case (see Fig. 7).

Therefore, the lemma is proved. ��

M1
i M2

i

R2
i R3

i

Machine

TimeR1
i

σ2

σ1

R3
i R4

i

Fig. 5 A possible temporary 1-type schedule (i.e. Ril ≤ 1
2 R

i )

Ml
i M1

i
R2
i R3

i

Machine

Time

R1
iσ2

σ1 Rl
i

Fig. 6 A possible temporary 2-type schedule (i.e. 12 R
i < Ril ≤ 1

2 (Ri + Mi − Mi
l ))

Ml
i
M1

i R2
i R3

i

Machine

Time

R1
iσ2

σ1 Rl
i

Fig. 7 A possible temporary 3-type schedule (i.e. Ril > 1
2 (Ri + Mi − Mi

l ))
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Without loss of generality, we assume that there is no common idle throughout
the online schedule, i.e. at least one machine is busy during the schedule. From the
assumption, we have that the first group of jobs is released at time 0, i.e. t1 = 0.

Lemma 3 Algorithm M is 1-competitive when all jobs are released at time 0.

Proof If all jobs are released at time 0, there is only one job set J 1 and one schedule
produced by the Algorithm M. We will consider three different types of schedule
produced by Algorithm M in the following.

1. If the schedule is 1-type schedule, i.e. Ri
l ≤ 1

2 R
i :

According to Algorithm M, the 1-type schedule guarantees that the two machines
have the same completion timeCM(J 1), and there is no idle time during the period
[0, CM(J 1)]. Hence, Copt (J 1) = CM(J 1) (as shown in Fig. 5).

2. If the schedule is 2-type schedule, i.e. 1
2 R

i < Ri
l ≤ 1

2 (R
i + Mi − Mi

l ):
According to Algorithm M, Mi

l and part of other map tasks will be scheduled in

parallel. So the total length of the rest map tasks is Mi − (Mi
l + (Ri + Mi −

Mi
l − 2Ri

l )) = 2Ri
l − Ri . Then the Ri

l is scheduled on machine σ1. Finally, the

rest of the map tasks with length 2Ri
l − Ri along with the rest of the reduce tasks

with length Ri − Ri
l are scheduled on machine σ2. Therefore, the completion time

of σ1 is
Mi

l
2 + Ri+Mi−Mi

l −2Ri
l

2 + Ri
l = Ri+Mi

2 , and the completion time of σ2 is
Mi

l
2 + Ri+Mi−Mi

l −2Ri
l

2 + (2Ri
l − Ri )+ (Ri − Ri

l ) = Ri+Mi

2 , i.e. CM(J 1) = Ri+Mi

2 .

Due to Copt (J 1) ≥ Ri+Mi

2 , the Algorithm M is optimal (as shown in Fig. 6).

3. If the schedule is 3-type schedule, i.e. Ri
l > 1

2 (R
i + Mi − Mi

l ):
After Mi

l is scheduled in parallel, the R
i
l is scheduled on σ1 and the rest of the map

taskswith lengthMi−Mi
l alongwith the rest of the reduce taskswith length R

i−Ri
l

are scheduled on σ2. Therefore, the completion time of σ1 is
Mi

l
2 + Ri

l , and the

completion time of σ2 is
Mi

l
2 +Mi −Mi

l +Ri −Ri
l . Due to Ri

l > 1
2 (R

i +Mi −Mi
l ),

CM(J 1) = max{Mi
l
2 + Ri

l ,
Mi

l
2 + Mi − Mi

l + Ri − Ri
l } = Mi

l
2 + Ri

l . Because

Copt ≥ Mi
l
2 + Ri

l , the Algorithm M is optimal (as shown in Fig. 7).

Therefore, the Algorithm M is optimal when all jobs are released at 0. ��
Lemma 4 If J j is released at time ti0 and its reduce task in job set J k satisfies

Rk
j > 1

2 (R
k + Mk − Mk

j ), then for any i ∈ [i0, k] it satisfies Ri
j > 1

2 (R
i + Mi − Mi

j ).

Proof Suppose to the contrary that ∃ i ∈ [i0, k], Ri
j ≤ 1

2 (R
i + Mi − Mi

j ) and

Rk
j > 1

2 (R
k + Mk − Mk

j ). At time ti , the Algorithm M produces a schedule and then
keeps processing tasks according to the schedule until the next group of new jobs are
released at time ti+1. Denote by Ri+

j the remaining length of Ri
j at time ti+1, and

Mi+
j , Ri+ , Mi+ in a similar fashion.
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1. If Algorithm M produces a 1-type schedule at time ti , we have Ri
j ≤ Ri

l ≤ 1
2 R

i .

According to the Algorithm M, at time ti+1, the remaining length of Ri
j , i.e. R

i+
j , is

no more than 1
2 R

i+ . Note that Ri+
j and Ri+1

j are equal in value and Ri+ ≤ Ri+1.

Therefore, Ri+1
j = Ri+

j ≤ 1
2 R

i+ ≤ 1
2 R

i+1 ≤ 1
2 (R

i+1 + Mi+1 − Mi+1
j ).

2. If Algorithm M produces a 2-type schedule at time ti , we have 1
2 R

i < Ri
l ≤

1
2 (R

i + Mi − Mi
l ). According to Algorithm M, Mi

l and part of the rest map tasks
will be processed first (see Fig. 6).
(1) If at time ti+1 the Ri

l has not been started, then besides Mi
l there is at most

Ri+Mi−Mi
l −2Ri

l map tasks have been processed during the period [ti , ti+1].
So, Ri+

l = Ri
l , R

i+ = Ri and Mi+ − Mi+
l ≥ Mi − (Ri + Mi − Mi

l − 2Ri
l ) −

Mi
l = 2Ri

l − Ri . Therefore, 1
2 (R

i+ + Mi+ − Mi+
l ) ≥ 1

2 (R
i + 2Ri

l − Ri ) =
Ri
l = Ri+

l . Due to Ri+ ≤ Ri+1 and Mi+ ≤ Mi+1, we can finally get that

Ri+1
j ≤ Ri+

l ≤ 1
2 (R

i+ + Mi+ − Mi+
l ) ≤ 1

2 (R
i+1 + Mi+1 − Mi+1

l ).

(2) If at time ti+1 the Ri
l has been started, obviously Ri+

l = 1
2 (R

i+ +Mi+ −Mi+
l ).

Due to Ri+ ≤ Ri+1 and Mi+ ≤ Mi+1, we can get that Ri+1
j ≤ Ri+

l =
1
2 (R

i+ + Mi+ − Mi+
l ) ≤ 1

2 (R
i+1 + Mi+1 − Mi+1

l ).

To sum up, we have Ri+1
j ≤ 1

2 (R
i+1 + Mi+1 − Mi+1

l ).

3. If Algorithm M produces a 3-type schedule at time ti , we have Ri
l > 1

2 (R
i + Mi −

Mi
l ). As Ri

j < 1
2 (R

i + Mi − Mi
l ), so j 
= l. According to Algorithm M, the

inequation Ri+
j < 1

2 R
i+ will always be true. Therefore, Ri+1

j = Ri+
j < 1

2 R
i+ ≤

1
2 R

i+1 ≤ 1
2 (R

i+1 + Mi+1 − Mi+1
l ).

To conclude, if Ri
j ≤ 1

2 (R
i + Mi − Mi

j ), then Ri+1
j ≤ 1

2 (R
i+1 + Mi+1 − Mi+1

j ) for

any i . By this analogy, we have Rk
j ≤ 1

2 (R
k + Mk − Mk

j ), a contradiction. ��
Lemma 4 implies that if J kj in job set J k leads to 3-type schedule at time tk , J j

always leads to 3-type schedule from its release time.

Theorem 3 When preemption is allowed, Algorithm M is 1-competitive.

Proof According to Lemma 3, we have Copt (J 1) = CM(J 1). Thus, we suppose
Copt (J i ) = CM(J i ) for any i ≤ k where k ≥ 1. Then we will show that the equation
Copt (J k+1) = CM(J k+1) still holds in any cases.

Case 1: Rk+1
l ≤ 1

2 (R
k+1 + Mk+1 − Mk+1

l ), i.e. the Algorithm M produces a 1-type
or 2-type schedule for job set J k+1.

In this case, the two machines have the same completion time CM(J k+1). If there
is no idle time in the online schedule during the period [0, CM(J k+1)], we can easily
get that Copt (J k+1) = CM(J k+1). So we consider the case there are some idle time
in the online schedule. Suppose the last idle time ends at time ti0 , when the job set
J i0 arrived. From the Algorithm M, we know that the schedule of J i0−1 is a 3-type
schedule, and the remaining task of J i0−1 at time ti0 is only a reduce task with length
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CM(J i0−1) − ti0 . Due to the fact that all machines are busy during [ti0 , CM(J k+1)],
the total workload of jobs released after ti0 is 2(CM(J k+1)− ti0)− (CM(J i0−1)− ti0).

For the offline schedule, due to Copt (J i0−1) = CM(J i0−1), there is at least
Copt (J i0−1)− ti0 length of tasks that have not been processed at time ti0 . Considering
the jobs released after time ti0 , we have

Copt (J k+1)

≥ ti0 + 1

2

(
Copt (J i0−1) − ti0 + 2

(
CM(J k+1) − ti0

) − (
CM(J i0−1) − ti0

))

= CM(J k+1) + 1

2

(
Copt (J i0−1) − CM(J i0−1)

)

= CM(J k+1)

Case 2: Rk+1
l > 1

2 (R
k+1 + Mk+1 − Mk+1

l ), i.e. the Algorithm M produces a 3-type
schedule for job set J k+1.

In this case, according toLemma4, the job J k+1
l always causes 3-type schedule from

its release time. Suppose l = i1, so the J k+1
l is released at time ri1 . According to the

Algorithm M, the process of Ji1 never be interrupted. Hence,CM(J k+1) = ri1+ 1
2Mi1+

Ri1 . Due to Copt (J k+1) ≥ ri1 + 1
2Mi1 + Ri1 , we have Copt (J k+1) ≥ CM(J k+1).

Above all, we can conclude that the equationCopt (J k+1) = CM(J k+1) is also true.
So Copt (J i ) = CM(J i ) is true for all i , i.e. the Algorithm M is optimal. ��

6 Conclusion

In this paper, we mainly focus on the theoretical study of the online MapReduce
scheduling problem of minimizing the makespan, where jobs are released over time.
Both preemptive and non-preemptive version of the problem are considered. Besides
the precedence between the map and reduce tasks, we also consider the complexity
difference between them (Zhu et al. 2014; Luo et al. 2015).With the assumption that the
reduce tasks are non-parallelizable due to the complexity, this problem can be viewed
as an extended online machine scheduling problem (only contains the reduce tasks
compared to us).We proved that, when preemption is not allowed, no online algorithm
can achieve a better competitive ratio than m+m(�(m)−�(k))

k+m(�(m)−�(k)) , where k is the root of the

equation k = ⌊ m−k
1+�(m)−�(k) + 1

⌋
. The numerical results in Table 1 show that we

get an increased lower bound compared with the basic online machine scheduling
problem (Chen and Vestjens 1997). Then we present an online MF-LPT algorithm
with a competitive ratio of (2− 1

m ). In addition, when preemption is allowed, we give
an 1-competitive algorithm for two machines, which is optimal obviously. However,
future work is needed to consider the m machines case of the preemptive version
problem.
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7 Appendix 1: The solution of ρ∗

To make (3.5) easier to solve, we transform it into:

min ρ = max{b1, b2, . . . , bm}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

i=1

xi =
m∑

i=1

si + 1 (7.1a)

m · x1 = b1 (7.1b)
(m − i)(xm−i+1 − s1)

1 − i · s1 + 1 = bm−i+1, i = 1, 2, . . . ,m − 1 (7.1c)

0 ≤ s1 ≤ s2 ≤ · · · ≤ sm (7.1d)

x1 ≥ x2 ≥ · · · ≥ xm ≥ s1 (7.1e)

Substituting (7.1b) and (7.1c) into (7.1a), we have

m∑

i=1

xi = b1
m

+
m−1∑

i=1

(bm−i+1 − 1)(1 − i · s1)
m − i

+ (m − 1)s1 =
m∑

i=1

si + 1 (7.2)

Noticing that, in (7.2), ∂b1
∂si

= m > 0 (∀i ∈ {2, 3, . . . ,m}) and ∂b j
∂si

= j−1
1−(m− j+1)s1

>

0 (∀i, j ∈ {2, 3, . . . ,m}), we have that ∀ j ∈ {1, 2, . . . ,m}, b j is monotonically
increasing in si for any i ∈ {2, 3, . . . ,m}. Thus, to minimize the objective function
ρ = max{b1, b2, . . . , bm}, the si must be as small as possible. As well as (7.1d),
we conclude that s1 = s2 = · · · = sm . So we can simplify (7.2) into the following
equation

b1
m

+
m−1∑

i=1

(bm−i+1 − 1)(1 − i · s1)
m − i

− s1 = 1 (7.3)

For (7.3), we have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂b1
∂s1

= m

(

1 +
m−1∑

i=1

(bm+1−i − 1) · i
(m − i)

)

> 0

∂b j

∂s1
=

( j − 1)
(
1 + ∑m−1

i=1
(bm+1−i−1)·i

(m−i)

)

1 − (m − j + 1) s1
> 0, j = 2, 3, . . . ,m

Since ∀ j ∈ {1, 2, . . . ,m}, b j is monotonically increasing in s1, to minimize the
objective function ρ = max{b1, b2, . . . , bm}, the s1 must be as small as possible,
i.e. s1 = 0. As well as (7.1e), we can simplify (7.3) into the following
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b1
m

+ b2 − 1

1
+ b3 − 1

2
+ · · · + bm − 1

m − 1
= 1 (7.4)

b1
m

≥ b2 − 1

1
≥ b3 − 1

2
≥ · · · ≥ bm − 1

m − 1
(7.5)

Suppose the number p ∈ {1, 2, . . . ,m} such that bp = max{b1, b2, . . . , bm}.
For (7.4), ∀ j ∈ {1, 2, . . . , p − 1, p + 1, . . . ,m}, ∂bp

∂b j
< 0 obviously. Hence,

∀ j ∈ {1, 2, . . . ,m}, bp is monotonically increasing in b j . To minimizie bp, b j must
be as large as possible with the constraints b j ≤ bp and (7.5).

Firstly, For b1, it should be equal to bp. Then, if we temporarily ignore the first
inequation in (7.5), ∀ j ∈ {2, 3, . . . ,m}, b j can freely increase to bp. But taking the
first inequation into account may lead to some b j can not reach bp. We denote the
last b j who can not reach bp by bk , i.e. {b2, b3, . . . , bk} cannot increase to bp. To

minimizie bp, ∀i ∈ {2, 3, . . . , k}, bi can increase to i−1
m bp + 1 so that bp

m = bi−1
i−1 .

Lastly, {bk+1, bk+2, . . . , bm} can increase to bp. Eventually, after each b j become as
large as possible, (7.4) turn into

bp
m

+ bp
m

+ · · · + bp
m︸ ︷︷ ︸

k

+ bp − 1

k
+ bp − 1

k + 1
+ · · · + bp − 1

m − 1︸ ︷︷ ︸
m−k

= k · bp
m

+ (
bp − 1

) m−1∑

k

1

i
= 1

(7.6)

where k satisfy ⎧
⎪⎪⎨

⎪⎪⎩

bp − 1

k − 1
≥ bp

m

bp − 1

k
<

bp
m

(7.7)

From (7.6) and (7.7), we have:

ρ∗ = bp = m + m(�(m) − �(k))

k + m(�(m) − �(k))

where �(n + 1) = ∑n
i=1

1
i − γ , and k is the root of k =

⌊
m−k

1+�(m)−�(k) + 1
⌋
.

8 Appendix 2: The proof of ρ∗ < 3
2

To prove ρ∗ = m+m(�(m)−�(k))
k+m(�(m)−�(k)) < 3

2 , we just need to prove

3k

m
+ �(m) − �(k) > 2 (8.1)
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Since we can hardly know the exact value of 3k
m + �(m) − �(k) in (8.1), we have to

use inequation to bound it. DeTemple (1993) propose that

1

24n2
< �(n) − ln

(
n − 1

2

)
<

1

24(n − 1)2
(8.2)

Substituting (8.2) into (8.1), we have

3k

m
+ �(m) − �(k) >

3k

m
+ 1

24m2 − 1

24(k − 1)2
+ ln

(
m − 1

2

k − 1
2

)

After calculation, for k ≥ 2, we have

3k

m
+ 1

24m2 − 1

24(k − 1)2
+ ln

(
m − 1

2

k − 1
2

)

> 2

For k = 1, 3k
m + �(m) − �(k) = 3

m + �(m) + γ , which is increasing in m when
m ≥ 2. Hence, 3

m + �(m) + γ ≥ 3
2 + �(2) + γ = 5

2 > 2. From the above we can
draw a conclusion that ρ∗ < 3

2 .
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