

More bounds for the Grundy number of graphs

Zixing Tang¹ · Baoyindureng Wu1 · Lin Hu1 · Manoucheher Zaker2

Published online: 21 December 2015 © Springer Science+Business Media New York 2015

Abstract A coloring of a graph $G = (V, E)$ is a partition $\{V_1, V_2, \ldots, V_k\}$ of *V* into independent sets or color classes. A vertex $v \in V_i$ is a Grundy vertex if it is adjacent to at least one vertex in each color class V_i for every $j < i$. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number $\Gamma(G)$ of a graph *G* is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {*P*4,*C*4} free graph by supporting a conjecture of Zaker, which says that $\Gamma(G) \ge \delta(G) + 1$ for any *C*4-free graph *G*.

Keywords Grundy number · Chromatic number · Clique number · Coloring number · Randić index

Research supported by NSFC (No. 11161046) and by Xinjiang Talent Youth Project (No. 2013721012).

 \boxtimes Baoyindureng Wu wubaoyin@hotmail.com

> Manoucheher Zaker mzaker@iasbs.ac.ir

¹ College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China

² Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran

1 Introduction

All graphs considered in this paper are finite and simple. Let $G = (V, E)$ be a finite simple graph with vertex set *V* and edge set E , $|V|$ and $|E|$ are its *order* and *size*, respectively. As usual, $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of *G*, respectively. A set $S \subseteq V$ is called a *clique* of *G* if any two vertices of *S* are adjacent in *G*. Moreover, *S* is *maximal* if there exists no clique properly contain it. The clique number of *G*, denoted by $\omega(G)$, is the cardinality of a maximum clique of *G*. Conversely, *S* is called an *independent* set of *G* if no two vertices of *S* are adjacent in *G*. The independence number of *G*, denoted by $\alpha(G)$, is the cardinality of a maximum independent set of *G*. The *induced subgraph* of *G* induced by *S*, denoted by *G*[*S*], is subgraph of *G* whose vertex set is *S* and whose edge set consists of all edges of *G* which have both ends in *S*.

Let C be a set of *k* colors. A *k*-coloring of G is a mapping $c: V \to C$, such that $c(u) \neq c(v)$ for any adjacent vertices *u* and *v* in *G*. The *chromatic number* of *G*, denoted by χ (*G*), is the minimum integer *k* for which *G* has a *k*-coloring. Alternately, a *k*-coloring may be viewed as a partition $\{V_1, \ldots, V_k\}$ of *V* into independent sets, where V_i is the set of vertices assigned color *i*. The sets V_i are called the color classes of the coloring.

The *coloring number col(G)* of a graph G is the least integer k such that G has a vertex ordering in which each vertex is preceded by fewer than *k* of its neighbors. The $degeneracy$ of *G*, denoted by $deg(G)$, is defined as $deg(G) = max\{\delta(H) : H \subseteq G\}$. It is well known (see Page 8 in [Jensen and Toft 1995](#page-9-0)) that for any graph *G*,

$$
col(G) = deg(G) + 1.
$$
\n⁽¹⁾

It is clear that for a graph *G*,

$$
\omega(G) \le \chi(G) \le \text{col}(G) \le \Delta(G) + 1. \tag{2}
$$

Let *c* be a *k*-coloring of *G* with the color classes $\{V_1, \ldots, V_k\}$. A vertex $v \in V_i$ is called a *Grundy vertex* if it has a neighbor in each V_i with $j < i$. Moreover, c is called a *Grundy k-coloring* of *G* if each vertex v of *G* is a Grundy vertex. The *Grundy* $number \Gamma(G)$ is the largest integer *k*, for which there exists a Grundy *k*-coloring for *G*. It is clear that for any graph *G*,

$$
\chi(G) \le \Gamma(G) \le \Delta(G) + 1. \tag{3}
$$

A stronger upper bound for Grundy number in terms of vertex degree was obtained in [Zaker](#page-9-1) [\(2008](#page-9-1)) as follows. For any graph *G* and $u \in V(G)$ we denote $\{v \in V(G)$: $uv \in E(G)$, $d(v) \leq d(u)$ by $N_>(u)$, where $d(v)$ is the degree of v. We define $\Delta_2(G) = \max_{u \in V(G)} \max_{v \in N_{\leq}(u)} d(v)$. It was proved in [Zaker](#page-9-1) [\(2008](#page-9-1)) that $\Gamma(G) \leq$ $\Delta_2(G) + 1$. Since $\Delta_2(G) \leq \Delta(G)$, we have

$$
\Gamma(G) \le \Delta_2(G) + 1 \le \Delta(G) + 1. \tag{4}
$$

 \mathcal{D} Springer

The study of Grundy number dates back to 1930s when [Grundy](#page-9-2) [\(1939\)](#page-9-2) used it to study kernels of directed graphs. The Grundy number was first named and studied by [Christen and Selkow](#page-9-3) [\(1979](#page-9-3)). [Zaker](#page-9-4) [\(2005](#page-9-4)) proved that determining the Grundy number of the complement of a bipartite graph is NP-hard.

A *complete k-coloring c* of a graph *G* is a *k*-coloring of the graph such that for each pair of different colors there are adjacent vertices with these colors. The *achromaic number* of *G*, denoted by $\psi(G)$, is the maximum number *k* for which the graph has a complete *k*-coloring. It is trivial to see that for any graph *G*,

$$
\Gamma(G) \le \psi(G). \tag{5}
$$

Note that $col(G)$ and $\Gamma(G)$ (or $\psi(G)$) is not comparable for a general graph *G*. For instacne, $col(C_4) = 3$, $\Gamma(C_4) = 2 = \psi(C_4)$, while $col(P_4) = 2$, $\Gamma(P_4) = 3 =$ $\psi(P_4)$. Grundy number was also studied under the name of first-fit chromatic number, see [Kierstead et al.](#page-9-5) [\(1995\)](#page-9-5) for instance.

2 New bounds on Grundy number

In this section, we give two upper bounds on the Grundy number of a graph in terms of its Randić index, and the order and clique number, respectively.

2.1 Randić index

The Randić index $R(G)$ of a (molecular) graph *G* was introduced by Randić [\(1975](#page-9-6)) as the sum of $\frac{1}{\sqrt{d(u)d(v)}}$ over all edges *uv* of *G*, where $d(u)$ denotes the degree of a vertex u in *G*, i.e, $R(G) = \sum_{n=1}^{\infty}$ *u*v∈*E*(*G*) $1/\sqrt{d(u)d(v)}$. This index is quite useful in mathematical chemistry and has been extensively studied, see [Li and Gutman](#page-9-7) [\(2006](#page-9-7)). For some recent results on Randić index, we refer to Divnić and Pavlović [\(2013](#page-9-8)), [Li and Shi](#page-9-9) [\(2010\)](#page-9-9), [Liu et al.](#page-9-10) [\(2011,](#page-9-10) [2013\)](#page-9-11).

Theorem 2.1 (Bollobás and Erdős 1998) *For a graph G of size m,*

$$
R(G) \ge \frac{\sqrt{8m+1}+1}{4},
$$

with equality if and only if G is consists of a complete graph and some isolated vertices.

Theorem 2.2 *For a connected graph G of order* $n \geq 2$ *,* $\psi(G) \leq 2R(G)$ *, with equality if and only if* $G \cong K_n$.

Proof Let $\psi(G) = k$. Then $m = e(G) \ge \frac{k(k-1)}{2}$. By Theorem [2.1,](#page-2-0)

$$
R(G) \ge \frac{\sqrt{8m+1}+1}{4} \ge \frac{\sqrt{4k(k-1)+1}+1}{4}
$$

 $\textcircled{2}$ Springer

Fig. 1 The graph B_k for $k \ge 2$

$$
=\frac{\sqrt{(2k-1)^2+1}}{4}=\frac{2k-1+1}{4}=\frac{k}{2}.
$$

This shows that $\psi(G) \leq 2R(G)$. If $k = 2R(G)$, then $m = \frac{k(k-1)}{2}$ and the equality is satisfied. Since *G* is connected, by Theorem [2.1,](#page-2-0) $G = K_k = \overline{K}_n$. \Box

If $G = K_n$, then $\psi(G) = n = 2R(G)$.

Corollary 2.3 *For a connected graph G of order n,* $\Gamma(G) \leq 2R(G)$ *, with equality if and only if* $G \cong K_n$.

Theorem 2.4 [\(Wu et al. 2014\)](#page-9-13) *If G is a connected graph of order n* \geq 2*, then col*(*G*) \leq 2*R*(*G*)*, with equality if and only if* $G \cong K_n$

So, combining the above two results, we have

Corollary 2.5 *For a connected graph G of order n* \geq 2, max{ $\psi(G), col(G)$ } \leq 2*R*(*G*)*, with equality if and only if* $G \cong K_n$.

2.2 Clique number

Zaker [\(2006](#page-9-14)) showed that for a graph G , $\Gamma(G) = 2$ if and only if *G* is a complete bipartite (see also the page 351 in [Chartrand and Zhang 2008\)](#page-9-15). [Zaker and Soltani](#page-9-16) [\(2015\)](#page-9-16) showed that for any integer $k \ge 2$, the smallest triangle-free graph of Grundy number *k* has $2k - 2$ vertices. Let B_k be the graph obtained from $K_{k-1,k-1}$ by deleting a matching of cardinality $k - 2$, see B_k for an illustration in Fig. [1.](#page-3-0) The authors showed that $\Gamma(B_k) = k$.

One may formulate the above result of Zaker and Soltani: $\Gamma(G) \leq \frac{n+2}{2}$ for any triangle-free graph *G* of order *n*.

Theorem 2.6 (i) *For a graph G of order* $n \geq 1$, $\Gamma(G) \leq \frac{n + \omega(G)}{2}$.

- (ii) Let k and n be any two integers such that $k + n$ is even and $k \leq n$. Then there *exists a graph* $G_{k,n}$ *on n vertices such that* $\omega(G_{k,n}) = k$ *and* $\Gamma(G_{k,n}) = \frac{n+k}{2}$.
- (iii) *In particular, if G is a connected triangle-free graph of order n* \geq 2*, then* $\Gamma(G) = \frac{n+2}{2}$ *if and only if* $G \cong B_{\frac{n+2}{2}}$.

Proof We prove <u>part</u> (i) of the assertion by induction on $\Gamma(G)$. Let $k = \Gamma(G)$. If $k = 1$, then $G = \overline{K}_n$. The result is trivially true. Next we assume that $k \geq 2$.

Let V_1, V_2, \ldots, V_k be the color classes of a Grundy coloring of *G*. Set $H = G \setminus V_1$. Then $\Gamma(H) = k - 1$. By the induction hypothesis, $\Gamma(H) \leq \frac{n - |V_1| + \omega(H)}{2}$. Hence,

$$
\Gamma(G) = \Gamma(H) + 1 \le \frac{n - |V_1| + \omega(H)}{2} + 1 = \frac{n + \omega(H) + 2 - |V_1|}{2}.
$$

We consider two cases. If $|V_1| \geq 2$, then

$$
\Gamma(G) \le \frac{n + \omega(H) + 2 - |V_1|}{2} \le \frac{n + \omega(G) + 2 - 2}{2} = \frac{n + \omega(G)}{2}.
$$

Now assume that $|V_1| = 1$. Since V_1 is a maximal independent set of G, every vertex in *H* is adjacent to the vertex in *V*₁, and thus $\omega(H) = \omega(G) - 1$. So,

$$
\Gamma(G) = \frac{n + \omega(G) + 1 - |V_1|}{2} = \frac{n + \omega(G)}{2}.
$$

To prove part (ii), we construct $G_{k,n}$ as follows. First consider a complete graph on *k* vertices and partition its vertex set into two subsets *A* and *B* such that $||A|-|B|| \leq 1$. Let *t* be an integer such that $t = \frac{n-k}{2}$. Let also H_t be the graph obtained from $K_{t,t}$ by deleting a perfect matching of size *t*. It is easily observed that $\Gamma(H_t) = t$, where any Grundy coloring with *t* colors consists of *t* color classes C_1, \ldots, C_t such that for each *i*, $|C_i| = 2$. Let $C_i = \{a_i, b_i\}$. Now for each $i \in \{1, \ldots, t\}$, join all vertices of *A* to a_i and join all vertices of *B* to b_i . We denote the resulting graph by $G_{k,n}$. We note by our construction that $\omega(G_{k,n}) = k$ and $\Gamma(G_{k,n}) \geq k + t$. Also, clearly $\Delta(G_{k,n}) = t + k - 1$. Then $\Gamma(G_{k,n}) = k + t = (n + k)/2$. This completes the proof of part (ii).

Now we show part (iii) of the statement. It is straightforward to check that $\Gamma(B_k)$ *k*. Next, we assume that *G* is connected triangle-free graph of order $n \geq 2$ with $\Gamma(G) = \frac{n+2}{2}$. Let $k = \frac{n+2}{2}$. To show $G \cong B_k$, let V_1, \ldots, V_k be a Grundy coloring of *G*.

Claim 1 *(a)* $|V_k| = 1$ *; (b)* $|V_{k-1}| = 1$ *; (c)* $|V_i| = 2$ *for each i* $\leq k - 2$ *.*

Since *G* is triangle-free, there are at most two color classes with cardinality 1 among V_1, \ldots, V_k . Since

$$
2k - 2 = |V_1| + \dots + |V_k| \ge 1 + 1 + 2 + \dots + 2 = 2(k - 1),
$$

there are exactly two color classes with cardinality 1, and all others have cardinality two. Let *u* and v the two vertices lying the color classes of cardinality 1. Observe that *u* and v are adjacent.

We show (a) by contradiction. Suppose that $|V_k| = 2$, and let $V_k = \{u_k, v_k\}$. Since *u* is adjacent to *v* and both u_k and v_k are adjacent to *u* and *v*, we have a contradiction with the fact that *G* is triangle-free. This shows $|V_k| = 1$.

To complete the proof of the claim, it suffices to show (b). Toward a contradiction, suppose $|V_{k-1}| = 2$, and let $V_{k-1} = \{u_{k-1}, v_{k-1}\}\$. By (a), let $|V_i| = 1$ for an integer *i* < *k* − 1. Without loss of generality, let $V_i = \{u\}$ and $V_k = \{v\}$. Since $u_{k-1}u \in E(G)$, $v_{k-1}u \in E(G)$, and at least one of u_{k-1} and v_{k-1} is adjacent to v, it follows that there must be a triangle in *G*, a contradiction.

So, the proof of the claim is completed.

Note that $uv \in E(G)$. Let $V_i = \{u_i, v_i\}$ for each $i \in \{1, ..., k-2\}$. Since *G* is triangle-free, exactly one of u_i and v_i is adjacent to u and the other one is adjacent to v. Without loss of generality, let $u_i v \in E(G)$ and $v_i u \in E(G)$ for each *i*. Since *G* is triangle-free, both $\{u_1, \ldots, u_{k-1}, u\}$ and $\{v_1, \ldots, v_{k-1}, v\}$ are independent sets of *G*, implying that *G* is a bipartite graph.

To complete the proof for $G \cong B_k$, it remains to show that $u_i v_j \in E(G)$ for any *i* and *j* with $i \neq j$. Without loss of generality, let $i < j$. Since $v_i v_j \notin E(G)$, $u_i v_j \in E(G)$.

So, the proof is completed.

Since for any graph *G* of order *n*, $\chi(\overline{G})\omega(G) = \chi(\overline{G})\alpha(\overline{G}) \ge n$, by Theorem [2.6,](#page-3-1) the following result is immediate.

Corollary 2.7 [\(Zaker 2007\)](#page-9-17) *For any graph G of order n,* $\Gamma(G) \leq \frac{\chi(G)+1}{2} \omega(G)$ *.*

Corollary 2.8 [\(Zaker 2005](#page-9-4)) *Let G be the complement of a bipartite graph. Then* $\Gamma(G) \leq \frac{3\omega(G)}{2}.$

Proof Let *n* be the order of *G* and (X, Y) be the bipartition of $V(\overline{G})$. Since *X* and *Y* are cliques of *G*, max $\{ |X|, |Y| \} \leq \omega(G)$. By Theorem [2.6,](#page-3-1)

$$
\Gamma(G) \le \frac{n + \omega(G)}{2} = \frac{|X| + |Y| + \omega(G)}{2} \le \frac{3\omega(G)}{2}.
$$

The following result is immediate from by the inequality (2) and Theorem [2.6.](#page-3-1)

Corollary 2.9 *For any graph G of order n,* $\Gamma(G) \leq \frac{n + \chi(G)}{2} \leq \frac{n + col(G)}{2}$.

[Chang](#page-9-18) [and](#page-9-18) [Hsu](#page-9-18) [\(2012\)](#page-9-18) proved that $\Gamma(G) \leq \log_{\frac{col(G)}{col(G)-1}} n+2$ for a nonempty graph *G* of order *n*. Note that this bound is not comparable to that given in the above corollary.

3 Nordhaus-Gaddum type inequality

Nordhaus and Gaddum [\(1956\)](#page-9-19) proved that for any graph *G* of order *n*,

$$
\chi(G) + \chi(\overline{G}) \le n + 1.
$$

Since then, relations of a similar type have been proposed for many other graph invariants, in several hundred papers, see the survey paper of [Aouchiche and Hansen](#page-9-20) [\(2013\)](#page-9-20). [Cockayne and Thomason](#page-9-21) [\(1982](#page-9-21)) proved that

$$
\Gamma(G) + \Gamma(\overline{G}) \le \lfloor \frac{5n+2}{4} \rfloor
$$

 \Box

Ч

for a graph *G* of order $n \ge 10$, and this is sharp. [Füredi et al.](#page-9-22) [\(2008](#page-9-22)) rediscovered the above theorem. [Harary and Hedetniemi](#page-9-23) [\(1970\)](#page-9-23) established that $\psi(G) + \chi(\overline{G}) \leq n+1$ for any graph *G* of order *n* extending the Nordhaus-Gaddum theorem.

Next, we give a theorem, which is stronger than the Nordhaus-Gaddum theorem, but is weaker than Harary-Hedetniemi's theorem. Our proof is turned out to be much simpler than that of Harary-Hedetniemi's theorem.

It is well known that $\chi(G - S) \geq \chi(G) - |S|$ for a set $S \subseteq V(G)$ of a graph *G*. The following result assures that a stronger assertion holds when *S* is a maximal clique of a graph *G*.

Lemma 3.1 *Let G be a graph of order at least two which is not a complete graph. For a maximal clique S of G,* $\chi(G - S) > \chi(G) - |S| + 1$.

Proof Let V_1, V_2, \ldots, V_k be the color classes of a *k*-coloring of $G - S$, where $k =$ $\chi(G-S)$. Since *S* is a maximal clique of *G*, for each vertex $v \in V(G) \setminus S$, there exists a vertex v' which is not adjacent to v. Hence $G[S \cup V_k]$ is *s*-colorable, where $s = |S|$. Let U_1, \ldots, U_s be the color classes of an *s*-coloring of $G[S \cup V_k]$. Thus, we can obtain a $(k + s - 1)$ -coloring of *G* with the color classes $V_1, V_2, \ldots, V_{k-1}, U_1, \ldots, U_s$. So,

$$
\chi(G) \le k + s - 1 = \chi(G - S) + |S| - 1.
$$

Ч

Theorem 3.2 *For a graph G of order n,* $\Gamma(G) + \chi(G) \leq n + 1$ *, and this is sharp.*

Proof We prove by induction on $\Gamma(G)$. If $\Gamma(G) = 1$, then $G = K_n$. The result is trivially holds, because $\Gamma(G) = 1$ and $\chi(G) = n$. The result also clearly true when $G = K_n$.

Now assume that *G* is not a complete graph and $\Gamma(G) \geq 2$. Let V_1, V_2, \ldots, V_k be a Grundy coloring of *G*. Set $H = G \setminus V_1$. Then $\Gamma(H) = \Gamma(G) - 1$. By the induction hypothesis,

$$
\Gamma(H) + \chi(\overline{H}) \le n - |V_1| + 1.
$$

Since V_1 is a maximal independent set of *G*, it is a maximal clique of \overline{G} . By Lemma [3.1,](#page-6-0) we have

$$
\chi(\overline{H}) \ge \chi(\overline{G}) - |V_1| + 1.
$$

Therefore

$$
\Gamma(G) + \chi(\overline{G}) \le (\Gamma(H) + 1) + (\chi(\overline{H}) + |V_1| - 1) \n\le (\Gamma(H) + \chi(\overline{H})) + |V_1| \n\le n - |V_1| + 1 + |V_1| \n= n + 1.
$$

 $\textcircled{2}$ Springer

To see the sharpness of the bound, let us consider $G_{n,k}$, which is the graph obtained from the joining each vertex of K_k to all vertices of $\overline{K_{n-k}}$, where $1 \leq k \leq n-1$. It can be checked that $\Gamma(G_{n,k}) = k+1$ and $\chi(G_{n,k}) = n-k$. So $\Gamma(G_{n,k}) + \chi(G_{n,k}) = n+1$. The proof is completed. \Box

Finck [\(1966\)](#page-9-24) characterized all graphs *G* of order *n* such that $\chi(G) + \chi(\overline{G}) =$ $n + 1$. It is an interesting problem to characterize all graphs *G* attaining the bound in Theorem [3.2.](#page-6-1) Since $\alpha(G) = \omega(\overline{G}) \leq \chi(\overline{G})$ for any graph *G*, the following corollary is a direct consequence of Theorem [3.2.](#page-6-1)

Corollary 3.3 [\(Effantin and Kheddouci 2007](#page-9-25)) *For a graph G of order n,*

$$
\Gamma(G) + \alpha(G) \le n + 1.
$$

4 Perfectness

Let *H* be a family of graphs. A graph *G* is called *H-free* if no induced subgraph of *G* is isomorphic to any $H \in \mathcal{H}$. In particular, we simply write *H*-free instead of $\{H\}$ -free if $\mathcal{H} = \{H\}$. A graph *G* is called *perfect*, if $\chi(H) = \omega(H)$ for each induced subgraph *H* of *G*. It is well known that every *P*4-free graph is perfect.

A *chordal* graph is a simple graph which contains no induced cycle of length four or more. [Berge](#page-9-26) [\(1961](#page-9-26)) showed that every chordal graph is perfect. A *simplicial* vertex of a graph is vertex whose neighbors induce a clique.

Theorem 4.1 [\(Dirac 1961](#page-9-27)) *Every chordal graph has a simplicial vertex.*

Corollary 4.2 *If G is a chordal graph, then* $\delta(G) \leq \omega(G) - 1$ *.*

Proof Let *v* be a simplicial vertex. By Theorem [4.1,](#page-7-0) $N(v)$ is a clique, and thus $d(v) \le \omega(G) - 1$. $\omega(G) - 1.$ \Box

Markossian et al. [\(1996](#page-9-28)) remarked that for a chordal graph *G*, $col(H) = \omega(H)$ for any induced subgraph *H* of *G*. Indeed, its converse is also true. For convenience, we give the proof here.

Theorem 4.3 *A graph G is chordal if and only if* $col(H) = \omega(H)$ *for any induced subgraph H of G.*

Proof The sufficiency is immediate from the fact that any cycle C_k with $k \geq 4$, $col(C_k) = 3 \neq 2 = \omega(C_k)$.

Since every induced subgraph of a chordal graph is still a chordal graph, to prove the necessity of the theorem, it suffices to show that $col(G) = \omega(G)$. Recall that $col(G) = deg(G) + 1$ and $deg(G) = max{\delta(H) : H \subseteq G}$. Observe that

 $\max{\delta(H) : H \subseteq G} = \max{\delta(H) : H \text{ is an induced subgraph of } G}.$

Since $\omega(G) - 1 \le \max\{\delta(H) : H \subseteq G\}$ and $\delta(H) \le \omega(H) - 1$ for any induced subgraph *H* of *G*, max{ $\delta(H)$: *H* is an induced subgraph of G } $\leq \omega(G) - 1$, we have $deg(G) = max{\delta(H) : H \subseteq G} = \omega(G) - 1$. Thus, $col(G) = \omega(G)$. \Box

Let $\alpha, \beta \in \{\omega, \chi, \Gamma, \psi\}$. A graph *G* is called $\alpha\beta$ *-perfect* if for each induced subgraph *H* of *G*, $\alpha(H) = \beta(H)$. Among other things, Christen and Selkow proved that

Theorem 4.4 [\(Christen and Selkow 1979](#page-9-3)) *For any graph G, the following statements are equivalent:*

 (1) *G* is $\Gamma \omega$ -perfect. (2) *G* is Γ *χ*-perfect.

*(3) G is P*4*-free.*

For a graph *G*, *m*(*G*) denotes the number of of maximal cliques of *G*. Clearly, $\alpha(G) \leq m(G)$. A graph *G* is called *trivially perfect* if for every induced subgraph *H* of $G, \alpha(H) = m(H)$. A partially order set (V, \leq) is an arborescence order if for all $x \in V$, $\{y : y < x\}$ is a totally ordered set.

Theorem 4.5 [\(Wolks 1962;](#page-9-29) [Golumbic 1978](#page-9-30)) *Let G be a graph. The following conditions are equivalent:*

- (i) *G is the comparability graph of an arborescence order.*
- (ii) *G is* {*P*4,*C*4}*-free.*
- (iii) *G is trivially perfect.*

Next we provide another characterization of {*P*4,*C*4}-free graphs.

Theorem 4.6 Let G be a graph. Then G is $\{P_4, C_4\}$ -free if and only if $\Gamma(H) = col(H)$ *for any induced subgraph H of G.*

Proof To show its sufficiency, we assume that $\Gamma(H) = col(H)$ for any induced subgraph *H* of *G*. Since $col(C_4) = 3$ while $\Gamma(C_4) = 2$, and $col(P_4) = 2$ while $\Gamma(P_4) = 3$, it follows that *G* is *C*₄-free and *P*₄-free.

To show its necessity, let *G* be a $\{P_4, C_4\}$ -free graph. Let *H* be an induced subgraph of *G*. Since *G* is P_4 -free, by Theorem [4.4,](#page-8-0) $\Gamma(H) = \omega(H)$. On the other hand, by Theorem [4.3,](#page-7-1) $col(H) = \omega(H)$. The result then follows. \Box

Gastineau et al. [\(2014](#page-9-31)) posed the following conjecture.

Conjecture 1 [\(Gastineau et al. 2014](#page-9-31)). *For any integer* $r \geq 1$ *, every C₄-free r-regular graph has Grundy number r* + 1.

So, Theorem [4.6](#page-8-1) *asserts that the above conjecture is true for every regular*{*P*4,*C*4} *free graph*. *However, it is not hard to show that a regular graph is* {*P*4,*C*4}*-free if and only if it is a complete graph*. *Indeed,* [Zaker](#page-9-32) [\(2011](#page-9-32)) *made the following beautiful conjecture, which implies Conjecture* [1.](#page-8-2)

Conjecture 2 [\(Zaker 2011](#page-9-32)) *If G* is *C*₄-free graph, then $\Gamma(G) \geq \delta(G) + 1$. *Note that Theorem* [4.6](#page-8-1) *shows that Conjecture* [2](#page-8-3) *is valid for all* {*P*4,*C*4}-*free graphs*.

Acknowledgements The authors are grateful to the referees for their careful readings and valuable comments.

References

- Aouchiche M, Hansen P (2013) A survey of Nordhaus-Gaddum type relations. Discrete Appl Math 161:466– 546
- Asté M, Havet F, Linhares-Sales C (2010) Grundy number and products of graphs. Discrete Math 310:1482– 1490
- Berge C (1961) Färbung von Graphen, deren Sämtliche bzw. deren ungerade Kreise starr sind,Wiss. Zeitung, Martin Luther Univ. Halle-Wittenberg, 114
- Bollobás B, Erdős P (1998) Graphs of extremal weights. Ars Combin 50:225–233
- Chang G, Hsu H (2012) First-fit chromatic numbers of *d*-degenerate graphs. Discrete Math 312:2088–2090
- Chartrand G, Zhang P (2008) Chromatic Graph Theory. Chapman and Hall/CRC, Boca Raton
- Christen CA, Selkow SM (1979) Some perfect coloring properties of graphs. J Combin Theory Ser B 27:49–59
- Cockayne EJ, Thomason AG (1982) Ordered colorings of graphs. J Combin Theory Ser B 27:286–292
- Dirac GA (1961) On rigid circuit graphs. Abh Math Sem Univ Hamurg 25:71–76 Divnić TR, Pavlović LR (2013) Proof of the first part of the conjecture of Aouchiche and Hansen about the
	- Randić index. Discrete Appl Math 161:953-960
- Effantin B, Kheddouci H (2007) Grundy number of graphs. Discuss Math Graph Theory 27:5–18
- Finck HJ (1966) On the chromatic number of a graph and its complements, theory of graphs. Proceedings of the Colloquium, Tihany, Hungary, pp 99–113
- Füredi Z, Gyárfás A, Sárközy GN, Selkow S (2008) Inequalities for the First-fit chromatic number. J Graph Theory 59:75–88
- Gastineau N, Kheddouci H, Togni O (2014) On the family of r-regular graphs with Grundy number r+1. Discrete Math 328:5–15
- Golumbic MC (1978) Trivially perfect graphs. Discrete Math 24:105–107
- Grundy PM (1939) Mathematics and games. Eureka 2:6–8
- Harary F, Hedetniemi S (1970) The achromatic number of a graph. J Combin Theory 8:154–161
- Jensen TR, Toft B (1995) Graph Coloring Problems. A Wiely-Interscience Publication, Wiely, New York
- Kierstead HA, Penrice SG, Trotter WT (1995) On-Line and first-fit coloring of graphs that do not induce *P*5. SIAM J Disc Math 8:485–498
- Li X, Gutman I (2006) Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No. 1, Kragujevac
- Li X, Shi Y (2010) On a relation between the Randić index and the chromatic number. Discrete Math 310:2448–2451
- Liu J, Liang M, Cheng B, Liu B (2011) A proof for a conjecture on the Randić index of graphs with diameter. Appl Math Lett 24:752–756
- Liu B, Pavlović LR, Divnić TR, Liu J, Stojanović MM (2013) On the conjecture of Aouchiche and Hansen about the Randić index. Discrete Math 313:225-235
- Markossian SE, Gasparian GS, Reed BA (1996) β-perfect graphs. J Combin Theory Ser B 67:1–11
- Nordhaus EA, Gaddum JW (1956) On complementary graphs. Am Math Monthly 63:175–177
- Randić M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615
- Wolks ES (1962) The comparability graph of a tree. Proc Am Math Soc 13:789–795
- Wu B, Yan J, Yang X (2014) Randić index and coloring number of a graph. Discrete Appl Math 178:163–165
- Zaker M (2005) Grundy chromatic number of the complement of bipartite graphs. Australas J Comb 31:325–329
- Zaker M (2006) Results on the Grundy chromatic number of graphs. Discrete Math 306:3166–3173
- Zaker M (2007) Inequalities for the Grundy chromatic number of graphs. Discrete Appl Math 155:2567– 2572
- Zaker M (2008) New bounds for the chromatic number of graphs. J Graph Theory 58:110–122
- Zaker M (2011) (δ , χ *FF*)-bounded families of graphs, unpublished manuscript
- Zaker M, Soltani H (2015) First-fit colorings of graphs with no cycles of a prescribed even length. J Comb Optim (in press)