
J Comb Optim (2017) 33:567–579
DOI 10.1007/s10878-015-9980-9

A coordination mechanism for a scheduling game
with parallel-batching machines

Q. Q. Nong1 · G. Q. Fan1 · Q. Z. Fang1

Published online: 4 January 2016
© Springer Science+Business Media New York 2015

Abstract In this paper we consider the scheduling problem with parallel-batching
machines from a game theoretic perspective. There are m parallel-batching machines
each of which can handle up to b jobs simultaneously as a batch. The processing time
of a batch is the time required for processing the longest job in the batch, and all the
jobs in a batch start and complete at the same time. There are n jobs. Each job is owned
by a rational and selfish agent and its individual cost is the completion time of its job.
The social cost is the largest completion time over all jobs, the makespan. We design a
coordination mechanism for the scheduling game problem. We discuss the existence
of pure Nash Equilibria and offer upper and lower bounds on the price of anarchy of
the coordination mechanism. We show that the mechanism has a price of anarchy no
more than 2 − 2

3b − 1
3 max{m,b} .

Keywords Game · Scheduling · Coordination mechanism · Nash Equilibrium · Price
of anarchy

1 Introduction

With the development of the Internet, large-scale autonomous systems have become
more and more common. The systems consist of many independent and selfish agents
that compete for the usage of shared resources and act rationally on behalf of their
own interest. Each agent has an individual cost and every system has some social cost.
The selfish behavior of the agents results in a situation that can be characterized by

B Q. Q. Nong
qqnong@ouc.edu.cn

1 School of Mathematical Science, Ocean University of China, Qingdao 266071, Shandong,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9980-9&domain=pdf

568 J Comb Optim (2017) 33:567–579

some kind of equilibrium. Since the agents try to minimize their own cost, rather than
the performance of the systems as a whole, such an equilibrium may lead to high cost
compared to the global social optimum. A natural approach is designing protocols
a priori in such a way that the selfish agents are induced to behavior that results in
equilibria that nevertheless exhibit a good overall system performance. In this paper
we are interested in a scheduling game on parallel-batching machines. Every agent
owns a job and its individual cost is the completion time of its job. The social cost is
the largest completion time over all jobs, the makespan.

Parallel-batching scheduling There are n jobs J = {1, . . . , n}, where each job
j ∈ J has a processing time p j , which is a rational number. The jobs are indexed in
non-increasing order of their processing times, i.e., p1 ≥ p2 ≥ · · · ≥ pn . There are m
parallel-batching machines M = {M1, . . . , Mm} each of which is a system that can
handle up to b (b < n) jobs simultaneously as a batch. The processing time of a batch
is the time required for processing the longest job in the batch, and all the jobs in a
batch start and complete at the same time. A schedule σ is m series of batches

B11, B12, . . . , B1b1;
...

Bi1, Bi2, . . . , Bibi ;
...

Bm1, Bm2, . . . , Bmbm ,

where: (i) Bi1, Bi2, . . . , Bibi are the batches processed on machine Mi ; (ii) the batches

form a partition of J , i.e.,
m⋃

i=1

bi⋃

k=1
Bik = J ; (iii) the starting time of each batch is

definite. The makespan Cmax(σ) of a schedule σ is the maximal completion time
over all jobs, and it is the social cost of the schedule. According to the scheduling
notation introduced by Graham et al. (1979), the scheduling problem is expressed as
P|b < n|Cmax.

Nash Equilibria and coordination mechanism What we described so far is a
traditional scheduling problem, in which a central decision maker is equipped with
all data of the problem and is asked to derive a feasible solution to optimize the
social cost. In this paper we consider the scheduling problem from a game theoretic
perspective as follows. Each of the n jobs is owned by an independent agent whose
strategy is to choose a machine on which the job is to be processed (the term job and
agent will be used interchangeably henceforth). The (pure) strategy set of a job isM =
{M1, . . . , Mm}. Each job is self-interested and does not care about the social optimum,
its goal is to minimize its own completion time C j . Each machine has a scheduling
policy that determines how to assign all the jobs that select it to batches and specify
the starting times of the resulting batches. A machine knows the IDs of those jobs that
select it and their processing times. A machine does not know the processing times and
strategies of the jobs that do not use it. The set of the policies of the machines is named
as a coordination mechanism. All the data, including the policies of the machines and

123

J Comb Optim (2017) 33:567–579 569

the processing times of the jobs, are publicly known to the jobs. A job will select a
machine according to the policies of the machines and the processing time information
of other jobs. Let x j ∈ M be the strategy of job j , and let x = (x1, x2, . . . , xn)
denote a (pure) strategy profile of the jobs. If the coordination mechanism of the
machines is specified, there is a one-to-one correspondence between the set of strategy
profiles and the set of schedules of the jobs. That is, given a coordination mechanism
and a strategy profile, one can specify how is J partitioned into batches and the
completion time of each job in J . Henceforth, we will use the term schedule and
strategy profile interchangeably if we have specified a coordination mechanism. A
pure Nash Equilibrium solution is a strategy profile x = (x1, x2, . . . , xn) such that for
every job j we have

C j (x) ≤ C j (x
′
j , x− j),∀x ′

j ∈ M \ {x j },

where C j (x) is the completion time of j under strategy profile x = (x1, x2, . . . , xn).
The quality of a coordination mechanism is measured by the price of anarchy (PoA)
(Koutsoupias and Papadimitriou 2009). It is defined as the ratio between the social cost
(makespan) of the worst Nash Equilibrium and the social cost of an optimal schedule.
The price of anarchy of a coordination mechanism of a scheduling game is defined by

PoA = max
I∈G

max
x∈Nash(I)

Cmax(x)

C∗
max(I)

,

where G is the set of all instances of the scheduling game problem, Nash(I) is the set
of all Nash Equilibria for I , and C∗

max(I) is the social cost of the optimal schedule of
I .

Related work Coordination mechanism design is introduced by Christodoulou
et al. (2009). From then on many researchers are interested in the design of coordi-
nation mechanisms for scheduling game problems. They mainly study coordination
mechanisms for four machine environments. To describe the machine environments,
we denote the processing time of job j on machine Mi by pi j . The four machine
environments are: (i) identical machine environment in which pi j = pkj for each job
j and machines Mi and Mk ; (ii) uniform or related machine environment in which
every job j has a length l j and every machine Mi has a speed si such that pi j = l j/si ;
(iii) unrelated machine environment in which the processing times pi j are arbitrary
positive numbers; (iv) restricted identical machine environment in which every job
j comes with a length l j and a set of machines S j such that pi j = l j for Mi ∈ S j

and pi j = ∞ otherwise. They analyzed the existence of pure Nash Equilibria under
SPT, LPT, MAKESPAN, RANDOM and EQUI for certain machine environment and
estimated the price of anarchy of the coordination mechanisms. SPT and LPT are
policies that schedule the jobs without preemption respectively in order of increasing
or decreasing processing times for each machine. MAKESPAN is a policy that each
machine schedules its jobs in parallel by time-multiplexing and each job shares a
fraction of CPU of the machine that is proportional to its processing time. RANDOM
policy schedules the jobs in a random order without preemption. EQUI is a policy that

123

570 J Comb Optim (2017) 33:567–579

Table 1 The price of anarchy for five different policies and scheduling problems

Problem Scheduling Policy

SPT LPT Makespan Randomized EQUI

P‖Cmax 2 − 1
m (Graham

1969;
Immorlica
et al. 2009)

4
3 − 1

3m
(Christodoulou
et al. 2009;
Graham 1969)

2 − 2
m+1 (Finn

and Horowitz
1979;
Schuurman
and Vredeveld
2007)

2 − 2
m+1 (Finn

and Horowitz
1979;
Schuurman
and Vredeveld
2007)

2 − 1
m (Durr and

Thang 2011)

Q‖Cmax �(logm)

(Aspnes et al.
1997;
Immorlica
et al. 2009)

1.52 ≤ POA ≤
1.59 (Dobson
1984; Friesen
1987;
Immorlica
et al. 2009)

�(
logm

log logm)

(Czumaj and
Vocking 2007)

�(
logm

log logm)

(Czumaj and
Vocking 2007)

�(logm) (Durr
and Thang
2011)

B‖Cmax �(logm)

(Aspnes et al.
1997;
Immorlica
et al. 2009)

�(logm) (Azar
et al. 1995;
Immorlica
et al. 2009)

�(
logm

log logm)

Awerbuch
et al. (2006),
Gairing et al.
(2004)

�(
logm

log logm)

(Azar et al.
1995; Friesen
1987)

�(logm) (Durr
and Thang
2011)

R‖Cmax �(m) (Azar
et al. 2008;
Cho and Sahni
1980; Ibarra
and Kim 1997)

Unbounded Unbounded
(Schuurman
and Vredeveld
2007)

�(m) (Graham
1969)

�(m) (Durr and
Thang 2011)

each machine schedules its jobs in parallel by time-multiplexing and each job shares
the same fraction until it is completed. The results are summarized in Table 1.

A number of researchers have studied the traditional parallel-batching scheduling
problems that are under centralized situation (Deng et al. 2003; Lee et al. 1992; Lee
and Uzsoy 1999; Ng et al. 2003; Potts and Kovalyov 2000; Uzsoy 1994; Zhang et al.
2001). Scheduling problem P|b < n|Cmax is N P−hard in the strong sense even for
b = 1 (Lageweg et al. 1981). Researchers therefore turn to studying approximation
algorithms for the problem. The quality of an approximation algorithm is often mea-
sured by its worst-case ratio: the smaller the ratio is, the better the algorithm will be.
We say that an algorithm has a worst-case ratio ρ (or is a ρ-approximation algorithm) if
for any input instance, it always returns in polynomial time of the input size a feasible
solution with an objective value not greater than ρ times of the optimal value. Lee et al.
(1992) considered the problem P|b < n|Cmax and developed a 4

3 − 1
3m -approximation

algorithm, where m is the number of batching machines. When b = 1 the problem
P|b < n|Cmax is P||Cmax, which is a scheduling problem considering how to assign
jobs to parallel machines and process them without preemption such that the makespan
is minimized. A well known approximation algorithms for P||Cmax is the LPT-Greedy
algorithm (Graham 1969). The algorithm assigns at time 0 the m longest jobs on the m
machines and after that, whenever a machine is free, put the longest job among those
not yet processed on the machine. The algorithm has a worst-case ratio of 4

3 − 1
3m .

123

J Comb Optim (2017) 33:567–579 571

Our contribution In this paper we design a coordination mechanism for the
scheduling game problem P|b < n|Cmax. We discuss the existence of pure Nash
Equilibria and show that the mechanism has a price of anarchy no more than
2 − 2/(3b) − 1/(3 max{m, b}).

2 The FBLPT coordination mechanism

In this section we present a coordination mechanism, named FBLPT (Full Batch
Longest Processing Time), for the scheduling game problem P|b < n|Cmax. Before
explaining the coordination mechanism, we first describe the FBLPT rule, which is a
rule to assign jobs into batches.

FBLPT Rule
(1) Sort the jobs in J in non-increasing order of their processing times (if p j = p′

j
and j < j ′, job j ≺ job j ′) and obtain a job list.

(2) If there are more than b jobs in the job list, place the first b jobs in a batch and
iterate. Otherwise, place the remaining jobs in a batch.

Lee et al. (1992) prove that the FBLPT rule is a rule to assign jobs into batches
such that the total processing time of the resulting batches is minimized. Based on this
insight, we design a coordination mechanism as follows.

FBLPT Coordination Mechanism
Scheduling Policy of Mi : Group all the jobs that have selected Mi into batches by

FBLPT rule. At time 0 start processing the resulting batches greedily in non-increasing
order of their processing times.

2.1 The existence of pure Nash Equilibrium

Consider the LPT-Greedy algorithm for the scheduling problem P|b < n|Cmax. The
idea of the algorithm is sorting the jobs in non-increasing order of their processing
times and then assigning the jobs one by one into some batch and processing the
resulting batches greedily. Define a subschedule to be in state j if jobs 1, 2, . . . , j
have been scheduled. Job j + 1 will be allocated in the last batch (if the batch is not
full) or in a new batch (if the last batch has been full) of a machine and the machine
will be the one that completes the processing of the job as early as possible. Denote the
completion time on machine Mi in state j by Li (j). It is equal to the total processing
time of the batches on machine Mi in state j . Let Ni (j) be the number of jobs scheduled
on machine Mi in state j . Let

Ti (j + 1) =
{
Li (j) + p j+1, if Ni (j) (mod) b = 0;
Li (j), otherwise.

123

572 J Comb Optim (2017) 33:567–579

The algorithm runs as below.

Algorithm LPT-Greedy
Initialization: Set j := 1. For i = 1, 2, . . . ,m set Li (0) := 0 and Ni (0) := 0.

Begin
While j ≤ n do
Suppose i∗ is the machine such that Ti∗(j) = min

1≤i≤m
{Ti (j)}. Then job j is assigned

in the � Ni∗ (j−1)+1
b �-th batch of Mi∗ .

Set Li∗(j) := Ti∗(j), Ni∗(j) := Ni∗(j − 1) + 1; for each i
= i∗, set Li (j) :=
Li (j − 1), Ni (j) := Ni (j − 1); set j := j + 1.

End

Consider the schedule produced by the LPT-Greedy algorithm. It is not difficult
to see that the subschedule of the jobs processed on machine Mi (1 ≤ i ≤ m)

is consistent with the one produced by the Scheduling Policy of Mi . We prove the
following theorem.

Theorem 1 The schedule generated by the LPT-Greedy algorithm is a pure Nash
Equilibrium of the scheduling game problem P|b < n|Cmax under the FBLPT coor-
dination mechanism.

Proof Let σ be the schedule produced by the Job-Greedy algorithm. We show that σ

is a Nash Equilibrium by induction. Job 1 starts at time 0. It has no incentive to switch
to other machines. Suppose that all jobs 1, 2, . . . , k have no incentive to switch to
other machines. We consider job k + 1. Since a machine assigns all the jobs that have
selected it into batches by FBLPT rule and processes the batches in the LPT order,
job k + 1 cannot start earlier than jobs 1, 2, . . . , k. For the same reason, the choices of
job k + 2, . . . , n have no influence on job j . The machine for job k + 1 in state k + 1
is the best selection and it has no incentive to switch to other machines. Thus σ is a
Nash Equilibrium. ��

2.2 An upper bound on the price of anarchy

To analyze the price of anarchy of the FBLPT coordination mechanism, we need the
following lemma.

Lemma 2 [See Lee et al. (1992)] There is an optimal schedule for the problem P|b <

n|Cmax such that the jobs in J are partitioned into batches by the FBLPT rule.

Theorem 3 The price of anarchy of the FBLPT coordination mechanism is at most

Cmax

C∗
max

≤ 2 − 2

3b
− 1

3 max{m, b} .

Proof We prove the result by contradiction. Assume that there are counterexamples
each of which has a Nash Equilibrium with a makespan strictly larger than 2 − 2

3b −
1

3 max{m,b} times of the optimum. Consider the one with the smallest number of jobs.
Denote the counterexample by I1 and assume that it has n1 jobs. Let σ1 be the worst

123

J Comb Optim (2017) 33:567–579 573

Nash Equilibrium of I1, whose makespan is strictly larger than 2 − 2
3b − 1

3 max{m,b}
times of the optimum. Let us have a look at the structure of σ1. Assume that there are
bi (1 ≤ i ≤ m) batches processed on Mi . Sort them in non-increasing order of their
starting times and denote them by Bi1, Bi2, . . . , Bibi , respectively. ��
Claim 1 There is only one batch completing at Cmax(σ1) and it consists of only one
job.

If it is not the case, consider the batches that complete at Cmax(σ1). Let Blbl be
the batch with the earliest starting time and suppose that it starts at t∗. Except the
longest job in batch Blbl , discard all jobs that start at or after t∗ in σ1. Consider the
resulting schedule. We obtain a new instance I2 with a smaller number of jobs. All
the jobs that start before t∗ is larger than the job remaining in Blbl , and all the batches
that start before t∗ is full (otherwise the job in Blbl can reduce its completion time
by unilaterally changing its strategy in σ1). Therefore, the resulting schedule is also
a Nash Equilibrium for instance I2. The makespan of it is equal to Cmax(σ1) and the
optimal makespan of I2 is not greater than that of I1. Thus, I2 is a counterexample
with fewer jobs than I1, a contradiction.

The claim together with the fact that all the batches that start before t∗ is full means
that n1 (mod) b = 1 and thus Blbl = {n1}.

Denote the processing time of batch Bik by Pik . We construct a new instance F by
adding b− 1 jobs, each with a processing time of pn1 , to the smallest counterexample
I1. Assume that the set of jobs in F is {1, 2, . . . , n}. Clearly, n (mod) b = 0. Consider
a schedule of F by adding the b− 1 jobs to the batch Blbl in σ1. Denote it by σ . Since
the processing time of the added b − 1 jobs is pn1 , which is the smallest processing
time. No job in σ can reduce its completion time by unilaterally changing its strategy.
Therefore, σ is a Nash Equilibrium for F . It is not difficult to see that σ is equal to σ1
in the sense that in σ the number of the batches processed on each Mi (1 ≤ i ≤ m) is
the same as in σ1 and the processing times of the batches are equal correspondingly.
Thus, the makespan of σ is equal to the makespan of σ1. Without causing confusion,
denote the makespan of σ by Cmax and denote the batches processed on Mi in σ by
Bi1, Bi2, . . . , Bibi , respectively.

On the other hand, consider the optimal schedule of F . Let σ ∗ be the optimal
schedule of I1 that is described in Lemma 2. Sort the batches of σ ∗ in non-increasing
order of their processing times and obtain a list L∗ = (B∗

1 , B∗
2 , . . . , B∗

d), where d =
� n1
b �. Partition the jobs in F into batches by FBLPT rule. Sort them in non-increasing

order of their processing times and obtain a list L = (B1, B2, . . . , Be), where e = � n
b �.

Noting that n1 (mod) b = 1 and n = n1 + b − 1, we have � n1
b � = � n

b �, i.e., d = e.
For each 1 ≤ k ≤ d the processing time of B∗

k is equal to that of Bk . By Lemma 2, we
can deduce that the optimum value of F , denoted by C∗

max, is equal to the optimum
value of I1. Therefore, the following claim holds.

Claim 2 F is a counterexample and σ is a Nash Equilibrium of F with a makespan
strictly larger than 2 − 2

3b − 1
3 max{m,b} times of the optimum.

In the following we analyze σ . We first give an upper bound on Cmax. In σ the
completion time of Ml is Cmax and the completion time of each other machine Mi

(i
= l) is at least Cmax − Plbl . We have

123

574 J Comb Optim (2017) 33:567–579

m∑

i=1

bi∑

k=1

Pik ≥ (m − 1)(Cmax − Plbl) + Cmax

= mCmax − (m − 1)Plbl . (1)

We then provide lower bounds on C∗
max. Clearly,

C∗
max ≥

n∑

j=1
p j

mb
. (2)

Let us give a lower bound on
n∑

j=1
p j . From each batch in σ remove the longest job.

Then the total processing time of the remaining jobs is

n∑

j=1

p j −
m∑

i=1

bi∑

k=1

Pik .

For each 1 ≤ i ≤ m, consider the resulting batches on machine Mi . Note that each
batch in σ is full. There are b − 1 jobs remaining in Bik (1 ≤ k ≤ bi) after removing
the longest job from it. Further, since Bi1, Bi2, . . . , Bibi satisfy the FBLPT rule, one
can see that for each k ∈ {1, 2, . . . , bi − 1}, the processing time of each job in batch
Bik is at least Pi,k+1 and the processing time of each job in batch Bibi is at least Plbl .
Thus the total processing time of the remaining jobs on machine Mi is at least

(b − 1)

⎛

⎝
bi∑

k=2

Pik + Plbl

⎞

⎠ .

Thus

n∑

j=1

p j −
m∑

i=1

bi∑

k=1

Pik ≥ (b − 1)

⎛

⎝
m∑

i=1

bi∑

k=2

Pik + mPlbl

⎞

⎠

= (b − 1)

⎛

⎝
m∑

i=1

bi∑

k=1

Pik −
m∑

i=1

Pi1 + mPlbl

⎞

⎠ ,

implying that,

n∑

j=1

p j ≥ b
m∑

i=1

bi∑

k=1

Pik − (b − 1)

(
m∑

i=1

Pi1 − mPlbl

)

. (3)

123

J Comb Optim (2017) 33:567–579 575

Since C∗
max ≥ Pi1 for i = 1, 2, . . . ,m, we have

mC∗
max ≥

m∑

i=1

Pi1. (4)

By inequalities (2), (3), (1) and (4), we have the following result:

mbC∗
max ≥

n∑

j=1

p j

≥ b
m∑

i=1

bi∑

k=1

Pik − (b − 1)

(
m∑

i=1

Pi1 − mPlbl

)

≥ b
(
mCmax − (m − 1)Plbl

) − (b − 1)m
(
C∗

max − Plbl
)
,

which implies that

mbCmax ≤ m(2b − 1)C∗
max + (m − b)Plbl ,

and thus

Cmax

C∗
max

≤ 2 − 1

b
+ (

1

b
− 1

m
)
Plbl
C∗

max
. (5)

In the sequel we show that the ratio Cmax
C∗

max
is not greater than 2 − 2

3b − 1
3 max{m,b} .

We distinguish three cases to discuss.
Case 1 C∗

max ≥ 3Plbl and b ≤ m.
From inequality (5), we have

Cmax

C∗
max

≤ 2 − 1

b
+ 1

3
(

1

b
− 1

m
)

= 2 − 2

3b
− 1

3m

= 2 − 2

3b
− 1

3 max{m, b} .

Case 2 C∗
max ≥ 3Plbl and b > m.

Then 1
b − 1

m < 0 and we have

Cmax

C∗
max

≤ 2 − 1

b
+ (

1

b
− 1

m
)
Plbl
C∗

max

< 2 − 1

b

123

576 J Comb Optim (2017) 33:567–579

= 2 − 2

3b
− 1

3b

= 2 − 2

3b
− 1

3 max{m, b} .

Case 3 C∗
max < 3Plbl .

Note that Plbl is the processing time of the shortest job inJ . The inequalityC∗
max <

3Plbl implies that in the optimal schedule of F there are at most two batches on each
machine and thus n ≤ 2mb.

If n ≤ mb, recalling that each batch is full in σ , we can deduce that there is at most
one batch on each machine. Hence

Cmax ≤ max
1≤i≤m

{Pi1} ≤ C∗
max,

which means that Cmax
C∗

max
≤ 1.

If n > mb, there is at least one machine which processes two batches in the optimal
schedule. Thus C∗

max ≥ 2Plbl . We claim that

C∗
max ≥ Cmax − Plbl .

Since n ≤ 2mb and each batch in σ is full, there are at most 2m batches in σ . If bl = 2
then Cmax = Pl1 + Plbl and thus

C∗
max ≥ Pl1 ≥ Cmax − Plbl .

If bl ≥ 3, there exists one machine Ma which processes only one batch and the batch
is completed at Pa1. Recalling that in σ the completion time of a machine is at least
Cmax − Plbl , we have

Pa1 ≥ Cmax − Plbl .

Together with the fact that C∗
max ≥ Pa1, we have

C∗
max ≥ Pa1 ≥ Cmax − Plbl .

In both cases the claim follows. Therefore,

Cmax

C∗
max

≤ 1 + Plbl
C∗

max
≤ 3

2
.

The above discussion implies that

Cmax

C∗
max

≤ 2 − 2

3b
− 1

3 max{m, b} .

123

J Comb Optim (2017) 33:567–579 577

Thus σ is not a Nash Equilibrium of F with a makespan strictly larger than 2 − 2
3b −

1
3 max{m,b} times of the optimum, leading to a contradiction. This completes the proof
of the theorem. ��

Interestingly, if b = 1 we have

2 − 2

3b
− 1

3 max{m, b} = 4

3
− 1

3m
,

which is exactly the worst-case ratio of the LPT-Greedy algorithm.

2.3 Lower bounds on the price of anarchy

To give a lower bound on the price of anarchy of the mechanism, we only need to offer
an instance and estimate the ratio between the makespan of a Nash Equilibrium and
the optimum. We distinguish two cases to discuss.

Case 1 m ≤ b.
Consider the following instance. There are b(m−1)X +b jobs, where X = mk+1

for some positive integer k. b jobs are long and each of them has a processing time of
X . b(m − 1)X jobs are short and each of them has a processing time of 1.

We can see that the optimal schedule of the instance is as follows: a machine
processes a batch consisting of all the long jobs, and each of the other machines
processes X batches each consisting of b short jobs. Thus the optimal makespan is
C∗

max = X = mk + 1. Consider a schedule π as follows. For each 1 ≤ i ≤ m − 1, the
first batch processed on Mi is a batch that contains one long job and b − 1 short jobs.
The first batch on Mm consists of b −m + 1 long jobs and m − 1 short jobs. On each
machine, following the long batch there are (m − 1)k batches each of which consists
of b short jobs. It is easy to see that π is a Nash Equilibrium and its makespan is

Cmax = X + (m − 1)k = (2m − 1)k + 1.

Thus

Cmax

C∗
max

= (2m − 1)k + 1

mk + 1
→ 2 − 1

m
, as k → ∞.

Specially, if m = b we have

Cmax

C∗
max

= (2b − 1)k + 1

bk + 1
→ 2 − 1

b
, as k → ∞.

Case 2 m > b.
Define r to be a positive integer such that

r =
{
b, if m (mod) b = 0;
m (mod) b, otherwise.

123

578 J Comb Optim (2017) 33:567–579

Set z = �m/b�, and we have z = m+b−r
b . Consider the following instance. There

are m long jobs each with a processing time of X , as before, X = mk + 1 for some
positive integer k. Besides the long jobs, there are

(m − z)bX + b − r

short jobs and each of them has a processing time of 1.
We can see that the optimal schedule of the instance is as follows: for each 1 ≤

i ≤ z − 1, machine Mi processes a batch consisting of b long jobs; Mz processes a
batch containing r long jobs and b − r short jobs; for each z + 1 ≤ i ≤ m, machine
Mi processes X batches each consisting of b short jobs. Thus the optimal makespan
is C∗

max = X = mk + 1. Consider a schedule π ′ as follows. For each 1 ≤ i ≤ m,
machine Mi processes a batch containing one long job and then b− 1 shorts jobs and
(m − z)k batches each with b short jobs. Clearly, π ′ is a Nash Equilibrium and its
makespan is

Cmax = X + (m − z)k = (2m − z)k + 1.

Thus

Cmax

C∗
max

= (2m − z)k + 1

mk + 1
→ 2 − z

m
= 2 −

m+b−r
b

m
= 2 − 1

b
− 1

m
+ r

mb
, as k → ∞.

In summary, we have proved the following theorem.

Theorem 4 If m ≤ b there is an instance with a Nash Equilibrium such that Cmax
C∗

max
≥

2 − 1
m ; If m > b there is an instance with a Nash Equilibrium such that Cmax

C∗
max

≥
2 − 1

b − 1
m + r

mb . ��
Corollary 5 When m = b the analysis of the price of anarchy of the FBLPT coordi-
nation mechanism in Theorem 3 is tight.

Proof Note that 2 − 2
3b − 1

3 max{m,b} = 2 − 1
b = 2 − 1

m when m = b. The result
follows. ��
Acknowledgements This research was supported in part by the National Natural Science Foundation
of China under Grant Numbers 11201439 and 11271341. This work was also supported in part by the
Shandong Provincial Natural Science Foundation, China, under Grant Number ZR2012AQ12 and by the
Doctoral Fund of Ministry of Education of China (20120132120001).

References

Aspnes J, Azar Y, Fiat A, Plotkin SA, Waarts O (1997) On-line routing of virtual circuits with applications
to load balancing and machine scheduling. J ACM 44(3):486–504

Awerbuch B, Azar Y, Richter Y, Tsur D (2006) Tradeoffs in worst-case equilibria. Theor Comput Sci
361(2–3):200–209

123

J Comb Optim (2017) 33:567–579 579

Azar Y, Jain K, Mirrokni VS (2008) (Almost) optimal coordination mechanisms for unrelated machine
scheduling. In: Proceedings of the 19th annual ACM-SIAM symposium on discrete algorithms, SODA,
pp 323-332

Azar Y, Naor J, Rom R (1995) The competitiveness of on-line assignments. J Algorithms 18(2):221–237
Cho Y, Sahni S (1980) Bounds for list schedules on uniform processors. SIAM J Comput 9:91–103
Christodoulou G, Koutsoupias E, Nanavati A (2009) Coordination mechanisms. Theor Comput Sci

410(36):3327–3336
Czumaj A, Vocking B (2007) Tight bounds for worst-case equilibria. ACM Trans Algorithms (TALG)

3(1):1–17
Deng X, Poon CK, Zhang Y (2003) Approximation algorithms in batching processing. J Comb Optim

7:247–257
Dobson G (1984) Scheduling independent tasks on uniform processors. SIAM J Comput 13:716–721
Durr C, Thang NK (2011) Non-clairvoyant scheduling games. Theory Comput Syst 49(1):3–23
Finn G, Horowitz E (1979) A linear time approximation algorithm for multiprocessor scheduling. BIT

19:312–320
Friesen DK (1987) Tighter bounds for LPT scheduling on uniform processors. SIAM J Comput 16:554–560
Gairing M, Lucking T, Mavronicolas M, Monien B (2004) Computing nash equilibria for scheduling on

restricted parallel links. In: STOC, pp 613-622
Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J Appl Math 45:416–429
Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-

ministic sequencing andscheduling: a survey. Ann Discrete Math 5(2):287–326
Ibarra OH, Kim CE (1997) Huristic algorithms for scheduling independent tasks on nonidentical processors.

J ACM 24:280–289
Immorlica N, Li L, Mirrokni VS, Schulz A (2009) Coordination mechanisms for selfish scheduling. Theor

Comput Sci 410:1589–1598
Koutsoupias E, Papadimitriou C (2009) Worst-case equilibria. Comput Sci Rev 3(2):65–69
Lageweg BJ, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1981) Computer aided complexity classification of

deterministic scheduling problems. Research report BW138/81, Mathematisch Centrum, Amsterdam
Lee CY, Uzsoy R, Martin Vega LA (1992) Efficient algorithms for scheduling semiconductor burn-in

operations. Oper Res 40:764–775
Lee CY, Uzsoy R (1999) Minimizing makespan on a single batch processing machine with dynamic job

arrivals. Int J Prod Res 37:219–236
Ng CT, Cheng TCE, Yuan JJ (2003) The single machine batching problem with family setup times to

minimize maximum lateness is strongly N P-hard. J Sched 6:483–490
Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res 120:228–249
Schuurman P, Vredeveld T (2007) Performance guarantees of local search for multiprocessor scheduling.

INFORMS J Comput 19:52–63
Uzsoy R (1994) A single batch processing machine with non-identical job sizes. Int J Prod Res 32:1615–

1635
Zhang G, Cai X, Wong CK (2001) On-line algorithms for minimizing makespan on batch processing

machines. Nav Res Logist 48:241–258

123

	A coordination mechanism for a scheduling game with parallel-batching machines
	Abstract
	1 Introduction
	2 The FBLPT coordination mechanism
	2.1 The existence of pure Nash Equilibrium
	2.2 An upper bound on the price of anarchy
	2.3 Lower bounds on the price of anarchy

	Acknowledgements
	References

