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Abstract This paper presents a multi-neighborhood based path relinking algorithm
(MN-PR) for solving the two-sided assembly line balancing problem.By incorporating
an effective local search into a path relinking framework, the proposed MN-PR algo-
rithm integrates a number of distinguishing features, such as a multi-neighborhood
based local search procedure, a dedicated path relinking operator to generate new
solutions and a strategy to fix an infeasible solution generated by the path relinking
procedure to a feasible one. Our proposedMN-PR algorithm is tested on a set of totally
45 public instances widely used in the literature. Comparisons with other reference
algorithms show the efficacy of the proposed algorithm in terms of the solution quality.
Particularly, the proposed MN-PR algorithm is able to improve the best upper bounds
for one instance with 65 tasks and 326 cycle time. This paper also presents an analysis
to show the significance of the main components of the proposed algorithm.

Keywords Two-sided assembly line balancing problem · Local search ·
Path relinking · Multi-neighborhood search

1 Introduction

The two-sided assembly lines appear commonly in plants which produce large-sized
products, such as automobiles and domestic products, replacing traditional one-sided
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assembly lines. They use both (left and right) sides of the line in parallel, making it
possible to decrease the line length, reduce the throughput time, cut down the cost of
tools and fixtures, and lessen material handling.

The two-sided assembly line balancing problem (TALBP) belongs to the class of job
scheduling problems (Huang and Yin 2004; Huang andWang 2006) and has proven to
beNP-hard (Scholl andBecker 2006). Thus, there does not exist polynomial time exact
algorithm for solving it unless P = N P . During the last two decades, a large number
of researchers have extensively studied the TALBP problem. For example, Bartholdi
first studied the TALBP problem in 1993, considering minimizing the number of
stations as the objective based on a simple assignment rule (Bartholdi 1993). Lee
et al. (2001) developed a group assignment procedure for TALBP, assigning task
groups instead of individual tasks with the objective of maximizing work relatedness
and work slackness. Hu et al. developed a station-oriented enumerative assignment
procedure based on the Hoffman heuristic to solve the TALBP (Hu et al. 2008). The
experimental results verified that the proposed procedure performed well. Özcan and
Toklu (2009c) presented a pre-emptive goal programming model for precise goals
and fuzzy goals, respectively, for TALBP. The proposed mathematical model aims to
minimize the number of mated-stations and the secondary objective is to minimize
the number of stations for a given cycle time with zoning constraints.

Meanwhile, metaheuristic based heuristics have shown to be a feasible way to
find high quality solutions with a reasonable time for the TALBP. Simaria and Vilar-
inho proposed an ant colony optimization algorithm to address the mixed-model of
TALBP with the precedence, zoning, capacity, side and synchronism constraints and
the objective of minimizing the number of workstations (Simaria and Vilarinho 2009).
The results showed that the proposed procedure is superior to the procedure of Lee et al.
(2001) for a singlemodel for TALBP. Kim et al. (2000) addressed the TALBP using the
genetic algorithm (GA). The objective was to minimize the number of stations within
a given cycle time with positional constraints. Özcan and Toklu (2009a) proposed a
tabu search algorithm for the TALBP with the objective of minimizing the number
of stations and the smoothness index. Özcan and Toklu presented a simulated anneal-
ing algorithm for the mixed-model of TALBP with the main objective of minimizing
the number of mated-stations and the secondary objective of minimizing the number
of operators, considering two performance criteria simultaneously: maximizing the
weighted line efficiency and minimizing the weighted smoothness index (Özcan and
Toklu 2009b). Özbakyr and Tapkan presented a bees algorithm to solve TALBP with
and without zoning constraints in order to minimize the number of stations for a given
cycle time. The results showed that the proposed bees algorithm outperformed the
compared reference algorithms for most of the tested problems (Özbakir and Tapkan
2011). Taha et al. developed a genetic algorithm (GA) to solve TALBP, where a sta-
tion oriented procedure was proposed to assign tasks to mated-stations and these rules
were shown to be effective especially for large problem instances. The results showed
that the proposed GA found the best solution for more than 90% of the test prob-
lems (Taha et al. 2011). Khorasanian et al. (2013) suggested a performance criterion
called assembly line tasks consistency to calculate the average relationship between
the tasks assigned to the stations. They proposed a simulated annealing algorithm
to solve TALBP with and without considering the relationships between tasks. The
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computational results showed that the proposed simulated annealing algorithm out-
performed the compared reference algorithms and found five new best solutions for
the number of stations performance criterion and ten new best solutions for the num-
ber of mated-stations performance criterion for the tested public benchmark instances
(Khorasanian et al. 2013).

A new family of assembly line balancing problems, called Time and Space con-
strained Assembly Line Balancing Problem (TSALBP), considers space limitations
in addition to the common constraints in Simple Assembly Line Balancing Problem
(SALBP) (Bautista and Pereira 2007). Although the acronym TSALBP is very similar
to TALBP, they possess very different natures.

Recently, the general path relinking (PR) framework (Glover 1997; Glover et al.
2000) has attracted increasing attention in the community of combinatorial optimiza-
tion, and shows outstanding performances in solving a number of hard problems,
such as unconstrained binary quadratic optimization (Wang et al. 2012), multiple-
level warehouse layout (Zhang and Lai 2006), capacitated clustering (Deng and Bard
2013), and multi-depot periodic vehicle routing (Rahimi-Vahed et al. 2013). In this
paper, we introduce an effective path relinking algorithm for solving the TALBPwhich
relies on both a solution relinking procedure and a local search procedure. To the best
of our knowledge, this is the first path relinking algorithm for solving the TALBP
problem. Assessed on a set of 45 benchmark instances commonly used in the litera-
ture, the proposed algorithm proves highly effective compared to the state-of-the-art
algorithms in the literature, by improving the best solutions for one instance, and
obtaining comparable or even competitive results compared with four state-of-the-art
reference algorithms in the literature.

The rest of the paper is organized as follows. In Sect. 2, we describe in detail
the TALBP problem. In Sect. 3, our proposed MN-PR algorithm is given and each
main component of the algorithm is described in details. In Sect. 4, we show our
computational results and comparisons with the current best performing algorithms
in the literature. In Sect. 5, we investigate the significance of some key ingredients of
our MN-PR algorithm, before concluding the paper in Sect. 6.

2 Problem description

Different from the single assembly line, a two-sided assembly line has a mated station
for each cycle time. Thus, there are two operators working at the opposite sides of
the line simultaneously performing different tasks of the same individual product. The
tasks are performed on themated-stations according to certain sequence dependence of
tasks andmay have restrictions on the operation directions. Some assembly operations
can only be performed on a specified side, while others could be performed at either
side of the line. Therefore, the tasks are classified into three types: Left (L), Right
(R), and Either (E) tasks. A task can only be assigned to a station if the following
two constraints are both satisfied: (1) the sum of the task time and the total task times
of the tasks performed before that task in the same station is less than or equal the
cycle time; (2) the sum of the task time and the finishing time of its predecessor in the
opposite-side of that mated-station is less than or equal the cycle time.
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Fig. 1 An example of the
TALBP problem

The task precedence relationships can be defined by a precedence diagram, where
the operation time t and the operation direction (R, L or E) are shown for each
task. For example, Fig. 1 shows the precedence diagram of the tasks needed to
assemble a product on a two-sided assembly line. In this diagram, each node rep-
resents a task and each directed arrow between nodes i and j indicates that task
i immediately precedes task j . There is a label (ti , di ) above each node i . The
first element of this label indicates the time required for performing task i , and the
second element designates the side on which task i can be performed. For the sec-
ond element, there are three types named R, L , and E . The type R(L) for a task
implies that the task can only be performed on the right (left) side of the line. If
a task has the type E , it can be performed on either side of the line. The TALBP
studied in this paper follows the general assumptions of the TALBP with deter-
ministic operation times and without assignment restrictions except the precedence
constraints.

The objective of the TALBP is thus to optimize the numbers of the mated-station
and stations, which are respectively denoted as NM and NS. Note that NM is
the main objective while NS is a side objective when the main objective NM
ties.

3 Multi-neighborhood based path relinking for TALBP

In this section, we present our multi-neighborhood based path relinking algorithm
(MN-PR) for solving the TALBP. Our proposed MN-PR algorithm integrates several
distinguishing features which ensure its effectiveness, including two complementary
neighborhoods, a path relinking operator to generate new solutions and an infeasible
solution fixing strategy.
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3.1 Search space and evaluation function

The solution of theTALBPcan be represented as a sequence of all the tasks. By running
a procedure, called feasible solution building procedure as described in Sect. 3.3, we
can obtain a unique solution from a given sequence. Thus, for the TALBP, the search
spaceΩ explored by ourMN-PR algorithm is composed of all feasible task sequences.
The size of the search space Ω is bounded by O(n!), where n is the number of tasks
in the instance. We say a sequence is feasible if for any task, all its preceding tasks are
before it in the sequence.

To evaluate the quality of a candidate solution s ∈ Ω , we adopt an evaluation func-
tion which is defined by considering the two objectives simultaneously: (i) minimizing
the number of mated-stations, (ii) minimizing the number of stations. Formally, it is
stated as:

f = NM + NS

2 ∗ NM + 1
(1)

where NS and NM are the numbers of stations and mated stations in the solution,
respectively.

3.2 Main framework

Path relinking algorithms are known to be highly effective for solving a large number
of constraint satisfaction and optimization problems. By combining the more global
relinking procedure and the more intensive local search, the path relinking frame-
work offers a useful balance between intensification and diversification as a means of
exploiting the search space.

In principle, our multi-neighborhood based path relinking algorithm (MN-PR)
repeatedly alternates between a path relinking operator that is used to generate new
offspring solutions and a local search procedure that optimizes the newly generated
offspring solutions. As soon as an offspring solution is improved by local search, the
population is accordingly updated based on two criteria: solution quality and popula-
tion diversity.

The general architecture of the MN-PR algorithm is described in Algorithm 1.
Notice that we use a simplified description of the PR framework here compared with
the traditional path relinking, which can be considered as a hybrid evolutionary algo-
rithm where the recombination operator is replaced by a path relinking operator. The
proposedMN-PR algorithm is composed of four main components: population initial-
ization, a local search procedure, a path relinking operator and a population updating
rule.

Starting from an initial random population, MN-PR uses the local search procedure
to optimize each individual to reach a local optimum (lines 4–6). Then, the path
relinking operator is employed to generate new offspring solutions (line 8), whereupon
a new round of local search is again launched to optimize the objective function.
Subsequently, the population updating rule decides whether such an improved solution
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should be inserted into the population andwhich existing individual should be replaced
(line 10). In the following subsections, the main components of our MN-PR algorithm
are described in details.

Several stopping criteria are possible for the above MN-PR algorithm, such as a
maximum number of iterations, the number of times of updating the population, and
so on. In this work, our MN-PR algorithm terminates when the maximum number of
population updatings is reached.

Algorithm 1 Pseudo-code of our MN-PR algorithm for TALBP
1: Input: problem instance
2: Output: the best solution found so far
3: P = {s1, . . . , s p} ← Population_Initialization()
4: for each si ∈ P do
5: si ← Local_Search(si )
6: end for
7: while stop condition is not met do
8: for two random individuals sa and sb ∈ P do
9: s0 ← Path_Relinking(sa , sb)
10: s0 ← Local_Search(s0)
11: P ← Pool_Updating(P, s0)
12: end for
13: end while

3.3 Building a feasible solution from a sequence

Since our solution is represented as a sequence of all the tasks, we need to build a
feasible solution from a given sequence. Specifically, we use a side assignment rule
proposed by Taha et al. (2011) to generate a feasible solution from a sequence. The
main idea is that tasks are assigned to stations according to a station-oriented heuristic.
For a given sequence, a new mated station is firstly opened. Then, tasks are selected
according to their positions in the sequence and their preferred operation direction
to fill this mated station as much as possible while considering the cycle time. This
procedure is repeated until all the tasks are assigned. Interested readers are referred to
Taha et al. (2011) for more details.

3.4 Population initialization

In our MN-PR algorithm, the individuals of the initial population are randomly gener-
ated. To generate our initial population, we apply the following procedure as described
in Algorithm 2. In this manner, each of the generated individuals in the population is
a feasible solution.

123



402 J Comb Optim (2016) 32:396–415

Algorithm 2 Initial population generation procedure
1: Input: problem instance
2: Output: initial population
3: for (i=1 to p) do
4: Initialize a sequence s ← ∅

5: TW P ← tasks without predecessors
6: while TW P �= ∅ do
7: Randomly choose a task j ∈ TW P and assign it at the end of sequence s
8: Delete task j from TW P
9: TW P ← tasks whose predecessors have all been assigned
10: end while
11: if (s is different from all the other sequences in the population) then
12: Call feasible solution building procedure to get a solution for sequence s
13: Add this solution s into the population
14: end if
15: end for

3.5 Local search procedure

A simple descent local search is employed in our proposed MN-PR algorithm. At
each iteration, the best neighboring solution is selected to be comparedwith the current
solution. If the objective value of the best neighboring solution is better than that of the
current solution, this neighboring solution is used to replace the current solution. This
procedure is repeated to iteratively improve the current solution until no improving
solutions can be found in the current neighborhood.

In our MN-PR algorithm, our local search method employs two complementary
neighborhoods. Given a sequence as the starting point of our local search, the first
neighborhood is first explored. When no improving solution can be found using the
first neighborhood, we switch to the second neighborhood and optimize the objective
function further until it also reaches the local optimum solution too.

In local search, a neighborhood is typically defined by a move operator mv, which
transforms a solution X to generate a neighboring solution X ′, denoted by X ′ =
X ⊕ mv. Let M(X) be the set of all possible moves which can be applied to X , then
the neighborhood N of X is defined by N (X) = {X ′ : X ′ = X ⊕ mv,mv ∈ M(X)}.

Tomove fromone solution to another in the search space, our local search procedure
employs two different neighborhood structures:

The first neighborhood is defined by moving a ask from its original position in the
sequence to another position. Note that the new position of the moved task should be
feasible such that its new position is between all its predecessors and all its successors.
This neighborhood move is called insert move, denoted as N1. Figure2 gives an
example of this neighborhood, where task 5 can be inserted before task 3 and task 4,
as well as being inserted after task 6.

Our second neighborhood is called swap move neighborhood, denoted as N2. It
consists of swapping the positions of two tasks in the given sequence. In order to
get a feasible solution after this neighborhood move, we impose a restriction that the
new positions of the swapped tasks are both between all its predecessors and all its
successors. In addition, for the purpose of reducing the size of the search space, we
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Fig. 2 Neighborhood structure
N1

Fig. 3 Neighborhood structure
N2

restrict the distance between the positions of the two swapped tasks to be no more than
3, which can also be verified by the fact in our experiments that long distance swap
moves usually deteriorate the solution quality especially for high quality solutions.
Figure3 illustrates an example of this swap neighborhood.

According to our experiments, these two neighborhoods are complementary to each
other and can enhance the search effectiveness by combining them together, although
the insert neighborhood has been widely used in the literature and can be considered
as the basic neighborhood in our local search procedure.

3.6 Path relinking operator

The path relinking operator aims to generate new solutions by creating paths connect-
ing two high-quality (parent) solutions, and it is composed of two main operations.
The first one is to construct a path connecting two parent solutions, where the parent
solutions located at the beginning and the end of the path are respectively called the
initiating solution and the guiding solution, while other solutions are called interme-
diate ones. Another operation is to choose one solution as the reference solution from
the constructed path for further improvement. In order to describe our path relinking
procedure, we first give some primary definitions, denoting the initiating solution by
sa and the guiding solution by sb :

– LCS: The longest common subsequence of sa and sb

– NC : The set of tasks not included in the LCS of solutions sa and sb

– HD: The Hamming moving distance from sa to sb
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In this work, we present two path relinking operators respectively called the greedy
path relinking (GPR) operator and the random path relinking (RPR) operator. For the
GPR operator, the procedure of creating a path connecting two parent solutions is
described in Algorithm 3, where a solution sequence (i.e., a path) of length HD + 1
(s(0), s(1), s(2), . . . , s(HD)) is generated in a step by step way by starting from
s(0). Note that s(m) differs from s(m − 1) by the relative position of only one task,
m = 1, 2, . . . , HD. In addition, s(0) and s(HD) correspond respectively to the
initiating solution sa and the guiding solution sb, while other solutions are intermediate
(or path) solutions. Moreover, at each step, a best insert move is always chosen to
generate the next intermediate solution. In Algorithm 3, s(r + 1) ← s(r) ⊕ l∗ (line
19) means that the task in the l∗th position of s(r) is moved to the position as the
guiding solution sb and this generated solution is denoted as s(r + 1).

Algorithm 3 Pseudo-code of constructing a path from sa to sb with a greedy path
relinking operator

1: Input: A pair of solutions (sa , sb)
2: Output: Path solutions s(0), s(1), . . . , s(r) from sa to sb

3: Find the LCS(sa , sb) of sa and sb

4: s(0) ← sa , s ← sa , r ← 0, NC ← ∅

5: for each taski ∈ sa do
6: if (taski /∈ LCS) then
7: NC ← taski
8: end if
9: end for
10: while NC �= ∅ do
11: min = ∞
12: for each taski ∈ NC do
13: Find taski ’s position l in s(r) and tentatively move it to the position as in sb

14: if f (s(r) ⊕ l) < min then
15: min = f (s(r) ⊕ l)
16: j = taski ; l∗ = l
17: end if
18: end for
19: Move task j to its new position as in sb: s(r + 1) ← s(r) ⊕ l∗
20: Remove task j from NC : NC ← NC\{ j}
21: r ← r + 1
22: end while

After the creation of the path, we choose one solution from this path such that the
chosen solution is far enough from the initiating and guiding solutions and has a good
objective value (Wang et al. 2012). Specifically, we construct a candidate solution list
(CSL) that consists of the intermediate solutions having a distance of at least ξ · HD
(where ξ is a predetermined parameter value between 0 and 1.0 and is empirically set
to be 0.4 in our experiments) from both the initiating and guiding solutions. Then, the
solution having the best objective value in CSL is chosen as the reference solution.

For the RPR operator described in Algorithm 4, the intermediate solutions are
generated from sa to sb in a random way. The only difference with the GPR operator
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is that at each step it chooses a randommove towards the guiding solution sb regardless
of the objective function. This process is repeated until NC becomes empty.

The reference solution selection strategy is the same as the GPR operator. However,
one should notice that the intermediate solutions on the generated path from sa to sb

may not be feasible solutions for the RPR operator. In this case, we just use the
infeasible solution fixing strategy as described in Sect. 3.7 to fix this solution into a
feasible one.

Finally, with a consideration of efficiency (see Sect. 5.2 for a comparison between
the GPR and RPR operators), our MN-PR algorithm employs the RPR operator as
its path relinking operator, and the GPR operator is designed just for the purpose of
comparison and analysis.

Algorithm 4 Pseudo-code of constructing a path from sa to sb with a random path
relinking operator

1: Input: A pair of solutions (sa , sb)
2: Output: Path solutions s(0), s(1), . . . , s(r) from sa to sb

3: Find the LCS of sa and sb

4: s(0) ← sa , s ← sa , r ← 0, NC ← ∅

5: for each taski ∈ sa do
6: if (taski /∈ LCS) then
7: NC ← taski
8: end if
9: end for
10: while NC �= ∅ do
11: Randomly pick a taski from NC
12: Find taski ’s position l in s(r)
13: Move taski to its new position as in sb: s(r + 1) ← s(r) ⊕ l
14: Remove taski from NC : NC ← NC\{taski }
15: r ← r + 1
16: end while

3.7 Infeasible solution fixing strategy

One should notice that not all the path solutions s(1), . . . , s(r) constructed from sa to
sb are feasible ones, since the precedence constraint of the TALBP is very strong and
the generated intermediate solutions may not be feasible. For this reason, we use an
infeasible fixing strategy fix those infeasible solutions into feasible ones.

If a solution is infeasible, it must violate some of the task precedence constraints.
For example, if task A is the predecessor of task B, but task B is in front of task A in
the sequence, an infeasible solution is generated. In this case, we need to remove this
conflict by moving task A to a position after task B or moving task B to a position
before task A. However, if there are several conflicts in a sequence, it is possible that
a new conflict occurs while solving a previous conflict. In order to avoid this situation
and improve the fixing efficiency, two rules are considered as follows:

1. Each time the task involved in the largest conflict (defined as the largest distance
of the two conflicting tasks) is selected to move;
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2. If a task is once moved to remove a conflict, this task cannot be moved any more.

With these two rules, our infeasible solution fixing strategy can quickly fix an
infeasible solution into a feasible one, based on which our local search can then
further optimize it to a local optimum.

3.8 Population updating

In our MN-PR algorithm, we use a simple population updating criterion to decide if a
newly generated offspring solution should be inserted into the population and which
solution should be replaced if yes. Specifically, when an offspring s0 is obtained
by the path relinking procedure, we optimize s0 by the local search procedure. If
the improved s0 is better than the worst solution in the population according to the
objective value and is not the same as any solution in the population, the worst solution
in the population is replaced by the improved solution s0. This population updating
strategy can help to maintain an elite population with certain population diversities.

4 Computational results

In this section, experiments are carried out to evaluate the performance of our proposed
MN-PR algorithm.

4.1 Test instances

To ensure a fair comparison, we test our proposed algorithm on the same set of TALBP
instances as those used by the reference algorithms in the literature. The benchmark
problems include: P12 and P24 are taken from Kim et al. (2000), P16, P65, and P205
are taken fromLee et al. (2001), and P148 is taken fromBartholdi (1993) andmodified
by Lee et al. (2001).

4.2 Experimental protocol and reference algorithms

Our algorithm is programmed by using the C# programming language ofVisual Studio
2010 and the experiments are conducted on a PC with an Intel(R) Core(TM) i3-
2310M CPU 2.10GHz and 4GB of RAM. For each instance, our MN-PR algorithm
is independently run for 5 times and each run is limited to be 100 times of population
updating. The following results report the best results of these 5 runs.

Our results are compared with four state-of-the-art algorithms for solving the
TALBP in the literature, which include: a tabu search algorithm (TSA) proposed by
Özcan and Toklu (2009a), a bee colony algorithm (BA) proposed by Özbakir and Tap-
kan (2011), a genetic algorithm (GA) proposed by Taha et al. (2011) and a simulated
annealing algorithm (mSA) proposed by Khorasanian et al. (2013).

123



J Comb Optim (2016) 32:396–415 407

4.3 Results and comparisons with reference algorithms

The computational results of our MN-PR algorithm and comparisons with four high-
performance reference algorithms are presented in Table1. The first two columns give
the problem name and the cycle time (CT) for each instance. In the third column,
the lower bounds of both the number of stations (NS) and mated stations (NM)
are presented. The next four columns illustrate the computational results of the four
reference algorithms where the TSA and BA algorithms only report their NS values,
while the results of our MN-PR algorithm are provided in the last two columns. In
addition, the last three rows provide the summarized comparison between our MN-PR
algorithm and the four reference algorithms, which respectively represent the number
of instances for which our MN-PR algorithm can get better, equal and worse results
than the corresponding reference algorithms. In the table, “x” denotes that the reference
algorithm does not report the result for the corresponding instance.

FromTable1, one observes that when ourMN-PR algorithm is comparedwith TSA,
the results are very close with each other for the small-sized problems. However, our
MN-PR outperforms TSA for large instances. For all the ten P205 problems, our MN-
PR algorithm can obtain better results than TSA. In total, our MN-PR algorithm can
get 13 better results than TSA, while no worse results are obtained. As for the BA
algorithm, our MN-PR algorithm also obtains better results. Specifically, our MN-PR
algorithm can get 6 better results while one worse result is obtained. When compared
with GA, our MN-PR algorithm can get better or equal results for all the 45 tested
instances. Particularly, our MN-PR algorithm can get better NS and NM values for
5 and 4 instances, respectively. Finally, compared with mSA, the best performing
algorithm in the literature for TALBP, although our MN-PR algorithm obtains worse
NS and NM values for 4 and 3 instances, our MN-PR algorithm can get better NS
value for one instance (P65_326) and equal results for all the remaining instances.

It is worthy to notice that our MN-PR algorithm improves the upper bound for the
NS value of instance P65_326. Two different best solutions for instance P65_326 are
shown in Figs. 4 and 5. Interested readers are referred to Lee et al. (2001) for detailed
information about instance P65_326.

5 Analysis and discussion

Now we turn our attention to analyzing some important features of the MN-PR
algorithm, including the importance of the proposed path relinking operator and the
multi-neighborhood strategy.

5.1 Importance of multi-neighborhood strategy

In this section, we try to figure out which neighborhood is the most essential one in our
MN-PR algorithm. The experiments are performed by comparing the original MN-PR
algorithmwith simplified versions of our MN-PR algorithm. Specifically, we consider
two variants of the MN-PR algorithm respectively with neighborhoods N1 and N2.
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Fig. 4 A solution of NS = 16, NM = 9 for instance P65_326

Fig. 5 Another solution of NS = 16, NM = 9 for instance P65_326

Table2 shows the results of the above mentioned variants of the MN-PR algorithm
for 22 large size instances, since small size problem instances are very easy to solve
for all the variants of our algorithms. For each variant of our MN-PR algorithm, the
best NS and NM values as well as the computational time to reach this best solution
are reported.

From Table2 one finds that the original MN-PR algorithm outperforms other vari-
ants. The MN-PR algorithm with neighborhood N2 performs worse than the other
two variants of our MN-PR algorithm, showing that neighborhood N1 is the basic
neighborhood in our algorithm. One also obverses that with both neighborhoods, our
MN-PR algorithm can obtain better results the other two variants with just one neigh-
borhood respectively for 5 and 11 instances, indicating the importance of combining
the two neighborhoods.

From the experiments we can observe that each neighborhood is important in our
MN-PR algorithm. The combination of these different neighborhoods make the algo-
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Table 2 Comparison among the MN-PR algorithms with neighborhood N1, N2 and N1 + N2 in terms of
the best solution found on the 22 large instances

Prob. CT LB MN-PR with N1 MN-PR with N2 MN-PR with N1 + N2

NM[NS] NM[NS] t(s) NM[NS] t(s) NM[NS] t(s)

P65 326 8[16] 9[17] 24.3 9[17] 14.3 9[16] 49.5

381 7[14] 8[14] 32.6 8[15] 12.4 7[14] 55.9

435 6[12] 7[13] 21.5 7[13] 12.5 7[12] 46.3

490 6[11] 6[11] 24.8 6[11] 15.2 6[11] 40.3

544 5[10] 5[10] 22.7 5[10] 13.1 5[10] 35.9

P148 204 13[26] 14[27] 321.9 14[26] 130.5 13[26] 459.9

255 11[21] 11[21] 359.7 11[22] 91.3 11[21] 420.1

306 9[17] 9[18] 275.8 9[18] 81.1 9[18] 401.7

357 8[15] 8[15] 335.8 8[15] 91.8 8[15] 451.5

408 7[13] 7[13] 299.9 7[13] 84.9 7[13] 451.1

459 6[12] 6[12] 256.8 6[12] 87.1 6[12] 367.5

510 6[11] 6[11] 295.3 6[11] 82.6 6[11] 453

P205 1133 11[21] 11[22] 264.7 12[23] 130 11[22] 416.5

1322 9[18] 10[19] 302.5 10[19] 153.8 10[19] 352.6

1510 8[16] 9[17] 311.3 9[17] 142.6 8[16] 460.1

1699 7[14] 8[15] 276 8[15] 124.3 8[15] 433.5

1888 7[13] 7[14] 199.1 7[14] 109.2 7[14] 320.8

2077 6[12] 6[12] 280.7 7[13] 120 6[12] 381.7

2266 6[11] 6[11] 211.9 6[12] 104.4 6[11] 441.3

2454 5[10] 5[10] 270.4 6[11] 122 5[10] 454.7

2643 5[9] 5[10] 218.3 5[10] 109.9 5[10] 337.3

2832 5[9] 5[9] 288.6 5[10] 102.2 5[9] 373.9

Bold values indicate the best result among all the reference algorithms

rithm more powerful and each neighborhood is meaningful in the proposed MN-PR
algorithm.

5.2 Comparison between the Path Relinking Operators

The relinking operator is one of the fundamental ingredients of ourMN-PR algorithm.
In order to analyze the influence of the relinking operator on the performance of
the MN-PR algorithm, we compare our GPR and RPR relinking operators, and the
corresponding MN-PR algorithms are respectively denoted by GPR and RPR. The
experiment is carried out on the same set of benchmarks as mentioned in Sect. 5.1.
The computational results are summarized in Table3. The first two columns give the
instance name and the cycle time. Columns 3 gives the lower bound. Computational
results of GPR and RPR are respectively listed in the following columns, including
the best NS and NM values, as well as the computing time to reach the best solution
(t (s) in seconds).
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Table 3 Comparison between the MN-PR algorithms with GPR and RPR operators

Prob. CT LB MN-PR with GPR MN-PR with RPR

NM[NS] NM[NS] t(s) NM[NS] t(s)

P65 326 8[16] 9[17] 38.5 9[16] 49.5

381 7[14] 8[14] 34.9 7[14] 55.9

435 6[12] 7[13] 35.9 7[12] 46.3

490 6[11] 6[11] 38.4 6[11] 40.3

544 5[10] 5[10] 33.4 5[10] 35.9

P148 204 13[26] 14[27] 314.3 13[26] 459.9

255 11[21] 11[21] 346.2 11[21] 420.1

306 9[17] 9[18] 308.4 9[18] 401.7

357 8[15] 8[15] 335.3 8[15] 451.5

408 7[13] 7[13] 332.6 7[13] 451.1

459 6[12] 6[12] 334.9 6[12] 367.5

510 6[11] 6[11] 321.9 6[11] 453

P205 1133 11[21] 12[23] 334.1 11[22] 416.5

1322 9[18] 10[20] 296.2 10[19] 352.6

1510 8[16] 9[17] 309.6 8[16] 460.1

1699 7[14] 8[15] 301.9 8[15] 433.5

1888 7[13] 7[14] 278.1 7[14] 320.8

2077 6[12] 6[12] 327 6[12] 381.7

2266 6[11] 6[12] 298.4 6[11] 441.3

2454 5[10] 5[10] 351.8 5[10] 454.7

2643 5[9] 5[10] 308.7 5[10] 337.3

2832 5[9] 5[10] 298.6 5[9] 373.9

Bold values indicate the best result among all the reference algorithms

In comparison with GPR, RPR obtains better results for nine instances in terms
of NS or NM values and no worse results are obtained, which implies that the RPR
operator is more robust than the GPR operator. On the other hand, the computing
time of RPR is comparable to that of GPR. Therefore, it can be concluded that the
search capability of the random relinking operator is better than the greedy relinking
operator, which can be explained by the fact that the random relinking operator may
bring more diversification into the search and it is more appropriate to be integrated
with the intensive local search procedure.

6 Conclusion

In this paper, we propose a multi-neighborhood based path relinking algorithm for
solving the two-sided assembly line balancing problem. The proposed MN-PR algo-
rithm includes a number of distinguishing features, such as amulti-neighborhoodbased
local search strategy, a dedicated path relinking procedure to generate new solutions
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and a strategy to fix an infeasible solution created by the path relinking procedure to
a feasible one.

We test the proposed MN-PR algorithm on a set of 45 benchmark instances com-
monly used in the literature. Computational results show that our algorithm is highly
effective in comparison with the state-of-the-art algorithms in the literature. For most
instances, our proposed MN-PR algorithm is able to find the optimal or near optimal
solutions in a reasonable time. Specifically, it improves the best known NS value for
instance P65_326.

We studied some essential ingredients of the proposed algorithm which shed light
on the following points. First, the multi-neighborhood strategy plays a crucial role in
the high performance of the MN-PR algorithm. Second, the random path relinking
(RPR) operator is generally better than the greedy path relinking (GPR) operator for
TALBP.

There are several directions to extend this work. One immediate possibility is to
introduce new diversification strategies in the path relinking procedure, such as exte-
rior path relinking, to increase the diversity of the algorithm. The other possibility
is to develop more advanced local search procedures, such as tabu search (Lü and
Huang 2009; Huang et al. 2013). Finally, it is important to consider problem specific
knowledge to enhance the performance of the present MN-PR algorithm.
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