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Abstract In the study of computer science, optimization, computation of Hessians
matrix, graph coloring is an important tool. In this paper, we consider a classical
coloring, total coloring. Let G = (V, E) be a graph. Total coloring is a coloring of
V ∪ E such that no two adjacent or incident elements (vertex/edge) receive the same
color. Let G be a planar graph with Δ ≥ 8. We proved that if for every vertex v ∈ V ,
there exists two integers iv, jv ∈ {3, 4, 5, 6, 7} such that v is not incident with adjacent
iv-cycles and jv-cycles, then the total chromatic number of graph G is Δ + 1.
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1 Introduction

In graph theory, coloring is an important and classical problem. It has many applica-
tions in pattern matching, frequency assignment in optical communication networks,
and so on. A vertex coloring of a graph is a coloring such that every vertex receives
color, and every two adjacent vertices have different colors. A total coloring assigns
each vertex or edge with a color such that no adjacent vertices receive the same color,
no adjacent edges receive the same color, and no incident vertex and edge receive the
same color. For a graph G = (V, E), its total graph T (G) is defined to have vertex set
V ∪ E and edge set consisting of all pairs of adjacent or incident elements in V ∪ E .
A total coloring of graph G is equivalent to a vertex coloring of T (G).

In total coloring problem, the target of total coloring is to find the minimum number
of colors to do this coloring. For simplicity of speaking, if G has a total coloring with
k colors, then G is said to be total-k-colorable. The total chromatic number χ ′′(G)

is the smallest number k such that G is total-k-colorable. Clearly, χ ′′(G) ≥ Δ + 1.
In 1964, Behzad and Vizing gave a popular conjecture that every graph G is total-
(Δ + 2)-colorable, where Δ is the maximum vertex degree of G. For short, this
conjecture is referred as TCC which has attracted many researchers’ attention. Yap
(1996) proved χ ′′(Kn) = n if n is odd and χ ′′(Kn) = n + 1 otherwise. Moreover,
TCC is also proved for interval graph Bojarshinov (2001), series-parallel graphs Wu
(2004), and so on. For a general graph, TCC hold for graphs with Δ ≤ 5 (see Yap
1996; Kowalik et al. 2008). Snchez-Arroyo (1989) proved that it is NP-complete to
decide whether χ ′′(G) = Δ + 1 for a given graph. McDiarmid and Snchez-Arroyo
(1994) further proved that for every fixed k ≥ 3, it is even NP-complete to decide
whether χ ′′(G) = k + 1 for a given k-regular bipartite graph G.

In our paper, we consider planar graph. For planar graphs, the only open case of
TCC is Δ = 6 (see Kostochka 1996; Sanders and Zhao 1999). Interestingly, the
total chromatic number of planar graphs with large maximum degree equals the lower
bound, i.e., χ ′′(G) = Δ+1. This result was proved forΔ ≥ 9 in Kowalik et al. (2008).
In the following, we consider the planar graph with Δ ≥ 8. Some related results can
be found in Du et al. (2009), Liu et al. (2009), Roussel and Zhu (2010), Shen and
Wang (2009), Wang et al. (2013), and Yap (1996). In this paper we get the following
theorem.

Theorem 1 Suppose G is a planar graph withΔ ≥ 8. If for every vertex v, there exists
two integers iv, jv ∈ {3, 4, 5, 6, 7} such that v is not incident with adjacent iv-cycles
and jv-cycles, then χ ′′(G) = Δ + 1.

Here, we say that two cycles are adjacent if they share at least one common edge.
Note that in Theorem 1, iv and jv are related to v, respectively. If iv = i, jv = j for
each vertex v ∈ V , then we can easily get one corollary.

Corollary 1 For two fixed integers i and j (i, j ∈ {3, 4, 5, 6, 7}), if G is a planar
graph with Δ ≥ 8 and without adjacent i-cycles and j-cycles, then χ ′′(G) = Δ + 1.
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Fig. 1 Reducible configurations of Lemma 1

This corollary generalizes the result for Δ = 8, which has been recently proved
(see Wang et al. 2014), that is χ ′′(G) = Δ + 1 if G is a planar graph without adjacent
cycles of size i and j , for some i, j ∈ {3, 4, 5}. Clearly, it also generalizes the result in
Du et al. (2009) that if G is a planar graph with Δ ≥ 8 and without adjacent triangles,
then χ ′′(G) = 9. In addition, it strengthens the results in Shen and Wang (2009), Wu
and Wang (2008) and Tan et al. (2009).

In this paper, all graphs are finite, simple and undirected. Most of the notions are
standard and we refer the readers to Bondy and Murty (1976). Let G be a graph.
A k-vertex, k−-vertex or a k+-vertex is a vertex of degree k, at most k or at least
k, respectively. Similarly, we can define a k-face, k−-face and a k+-face. We use
(v1, v2, · · · , vn) to denote a cycle whose vertices are consecutively v1, v2, · · · , vn .
If the boundary of a face f is (v1, v2, · · · , vn), then f is simply referred to as a
(d(v1), d(v2), · · · , d(vn))-face.We use nk(v) to denote the number of k-vertices adja-
cent to v, use nk( f ) to denote the number of k-vertices incident with f , and use fk(v)

to denote the number of k-faces incident with v.

2 Reducible configurations

In Kowalik et al. (2008), Theorem 1 was proved for Δ ≥ 9. So in the following we
assume that Δ = 8. Let G = (V, E, F) be a minimal counterexample to Theorem 1
with |V | + |E | as small as possible.

In this section we start the proof of Theorem 1 by obtaining structural informations
about our minimal counterexample G, which shows that certain configurations are
reducible, that is, they cannot occur in G. First, we shown some known properties.

(a) G is 2-connected.
(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ Δ + 2 = 10 (see Wang

et al. 2014).
(c) The subgraph G28 of G induced by all edges joining 2-vertices to Δ-vertices is a

forest (see Wang et al. 2014).

Lemma 1 (Du et al. 2009) G has no configurations depicted in Fig. 1, where the
vertices marked by • have no other neighbors in G and 7-v denotes the vertex with
degree of 7.

Lemma 2 (Wang et al. 2014) Suppose d(v) = d ≥ 6, whose adjacent ver-
tices are consecutively v1, v2, · · · , vd and whose incident faces are consecutively
f1, f2, · · · , fd , where vi is incident with fi−1 and fi (i = 1, 2, · · · , d). Note that
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Fig. 2 Reducible configurations of Corollary 2

f0 and fd are the same face. Let d(v1) = 2 and N (v1) = {v, u1}. Then G does not
satisfy one of the following conditions, where

(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2, d(vi ) = 3
(2 ≤ i ≤ k) and d( f j ) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that d(vk) = 2,
d(vi ) = 3 (k + 1 ≤ i ≤ t), d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi ) = 3 (k ≤
i ≤ t), d( fk−1) = d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

(4) there exists an integer k (2 ≤ k ≤ d−2) such that d(vd) = d(vi ) = 3 (2 ≤ i ≤ k),
d( fk) = 3 and d( f j ) = 4 (0 ≤ j ≤ k − 1).

By Lemma 2, we can easily get the corollary as follows.

Corollary 2 (Wang et al. 2014) G does not contain the configurations depicted in
Fig. 2.

Lemma 3 If a 6-vertex u is adjacent to one 4-vertex v and incident with one 3-cycle
(u, v, s), then u is adjacent to no other 4-vertex.

Proof Suppose u is adjacent to another 4-vertex w. By the minimality of G, G ′ =
G − uv has a total-9-coloring φ. Erase the colors on v and w. Let C(x) = {φ(xy) :
y ∈ N (x)} ∪ {φ(x)}, then the forbidden colors for uv is at most 9. Without loss of
generality, let C(u) = {1, 2, 3, 4, 5, 6}, C(v) = {7, 8, 9}, φ(u) = 1, φ(us) = 5,
φ(vs) = 7, φ(uw) = 6. Then C(w) \ φ(uw) = {7, 8, 9}. Otherwise, without loss of
generality, if 7 /∈ C(w), we can recolor uw with 7 and color uv with 6. By proper
coloring the 4-vertices v and w, we get a total-9-coloring of G, a contradiction. In the
following, change the colors of us and vs, that is, recolor us with 7, recolor vs with
5. Then color 5 does not appear in C(u). So recolor uw with 5, color uv with 6, by
proper coloring the 4-vertices v andw, we get a total-9-coloring of G, a contradiction.

��
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3 Discharging

We shall complete the proof of Theorem 1 by using the dischargingmethod. This is an
important and interesting tool in the proof of the coloring of planar graphs. By Euler’s
formula |V | − |E | + |F | = 2, we have

∑

v∈V
(2d(v) − 6) +

∑

f ∈F
(d( f ) − 6) = −6(|V | − |E | + |F |) = −12 < 0

We define c(x) to be the initial charge. Let c(v) = 2d(v) − 6 for each v ∈ V and
c( f ) = d( f ) − 6 for each f ∈ F . So

∑
x∈V∪F c(x) = −12 < 0. Then we apply the

following rules to redistribute the initial charge that leads to a new charge c′(x).

(R1) From each 8-vertex to each of its adjacent 2-vertices, transfer 1.
(R2) From each 4-vertex to each of the k-faces incident with it, where 3 ≤ k ≤ 5,

transfer 1
2 .

(R3) From each 5-vertex v to each of the k-faces incident with it, where 3 ≤ k ≤ 5,
transfer
4
5 , if k = 3 and f3(v) = 5;
7
8 , if k = 3 and f3(v) = 4;
7
6 , if k = 3 and f3(v) = 3;
5
4 , if k = 3 and f3(v) ≤ 2;
1
2 , if k = 4;
1
5 , if k = 5.

(R4) From each 6-vertex v to each of the k-faces f incident with it, transfer
5
4 , if k = 3 and n4( f ) = 1;

11
10 , if k = 3 and n5( f ) = 1 or n5( f ) = 2;
1, if k = 3 and n6+( f ) ≥ 3;
1
2 , if k = 4;
1
3 , if k = 5.

(R5) From each 7+-vertex to each of the k-faces f incident with it, transfer
3
2 , if k = 3 and n3( f ) = 1;
5
4 , if k = 3 and n3( f ) = 0;
1, if k = 4 and n3−( f ) = 2;
3
4 , if k = 4, n3−( f ) = 1 and n4( f ) = 1 or n5( f ) = 1;
2
3 , if k = 4, n3−( f ) = 1 and n6+( f ) = 3;
1
2 , if k = 4 and n3−( f ) = 0 ;
1
3 , if k = 5.

The rest of this paper is to check that c′(x) ≥ 0 for all x ∈ V ∪ F which will be
the desired contradiction.

Final charge of faces. Let f ∈ F . Suppose d( f ) = 3. Then c( f ) = d( f )−6 = −3.
If n3−( f ) = 1, then n7+( f ) = 2 by (b), and c′( f ) = −3 + 3

2 × 2 = 0 by (R5). If
n4( f ) = 1, then c′( f ) = −3+ 5

4×2+ 1
2 = 0 by (R2), (R4) and (R5). Ifn5( f ) = 1, then

n6+( f ) = 2 and c′( f ) ≥ −3+ 11
10 ×2+ 4

5 = 0. If n5( f ) = 2 and one 5-vertex incident
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with f is incident with at least four 3-faces, then the other 5-vertex incident with f is
incident with at most three 3-faces. So c′( f ) = −3+min{ 45 + 7

6 + 11
10 ,

7
8 + 7

6 + 11
10 } > 0.

If n5( f ) = 2 and no 5-vertex incident with f is incident with at least four 3-faces,
then c′( f ) ≥ −3+ 7

6 ×2+ 11
10 = 13

30 > 0. If n5( f ) = 3, then the number of 5-vertices
incident with f and incident with five 3-faces is at most one, so c′( f ) = −3+min{ 45 +
7
6 × 2, 7

8 + 7
6 × 2, 7

6 × 3} = 2
15 > 0. If n6+( f ) = 3, then c′( f ) = −3 + 1 × 3 = 0.

Suppose d( f ) = 4. Then c( f ) = d( f )−6 = −2. If n3−( f ) = 2, then n7+( f ) = 2 by
(b), and c′( f ) = −2+1×2 = 0 by (R5). If n3−( f ) = 1 and n4( f ) = 1, then c′( f ) =
−2+ 1

2 + 3
4 ×2 = 0. If n3−( f ) = 1 and n5( f ) = 1, then c′( f ) = −2+ 1

2 + 3
4 ×2 = 0.

If n3−( f ) = 1 and n6+( f ) = 3, then c′( f ) = −2 + 2
3 × 3 = 0. If n3−( f ) = 0, then

c′( f ) = −2 + 1
2 × 4 = 0. Suppose d( f ) = 5. Then c( f ) = d( f ) − 6 = −1 and

n5+( f ) ≥ 3. If n5( f ) = 0, then c′( f ) ≥ −1 + 1
3 × 3 = 0. Otherwise, n5( f ) ≥ 1

and c′( f ) ≥ −1+min{ 15 × 5, 1
5 + 1

3 × 3, 1
5 × 4+ 1

3 } = 0. Suppose d( f ) ≥ 6. Then
c( f ) = d( f ) − 6 ≥ 0.

Final charge of vertices. Let v ∈ V . Note that G has no vertex of degree one.
Suppose d(v) = 2. Then c(v) = 2d(v) − 6 = −2 and n8(v) = 2. So c′(v) =
−2 + 1 × 2 = 0 by (R1). Suppose d(v) = 3. Then clearly c′(v) = c(v) = 0.
Suppose d(v) = 4. Then c(v) = 2 and v sends at most 1

2 to each of its incident
faces. So c′(v) ≥ 2 − 1

2 × 4 = 0 by (R2). Suppose d(v) = 5. Then c(v) = 4, and
n4−(v) = 0. If f3(v) = 5, then c′(v) = 4 − 4

5 × 5 = 0 by (R3). If f3(v) = 4, then
c′(v) ≥ 4− 7

8 ×4− 1
2 = 0. Suppose f3(v) = 3. Then v is incident with at most one 4-

face. If f4(v) = 1, then f5(v) = 0 and so c′(v) ≥ 4− 7
6 ×3− 1

2 = 0. If f4(v) = 0, then
c′(v) ≥ 4− 7

6 ×3− 1
5 ×2 = 1

10 > 0. If f3(v) ≤ 2, then c′(v) ≥ 4− 5
4 ×2− 1

2 ×3 = 0.
Suppose d(v) = 6. Then we have c(v) = 6, n3−(v) = 0, and f3(v) ≤ 5. By lemma 2,
v is incident with at most two 3-faces each of which receives 5

4 from v. If f3(v) = 5,
then f6+(v) = 1 and c′(v) ≥ 6 − 5

4 × 2 − 11
10 × 3 = 1

5 > 0. If f3(v) ≤ 4, then
c′(v) ≥ 6 − 5

4 × 2 − 11
10 × 2 − 1

2 × 2 = 3
10 > 0.

Suppose d(v) = 7. Then c(v) = 8, n2(v) = 0, and f3(v) ≤ 5. We also known v

is incident with at most two 3-faces each of which receives 3
2 from v. Moreover, if

v is incident with one 3-face which incident with a 3-vertex, then v is adjacent to no
other 3-vertex. If f3(v) = 5, then c′(v) ≥ 8 − 3

2 × 2 − 5
4 × 3 − 1

2 × 2 = 1
4 > 0. If

f3(v) = 4, then c′(v) ≥ 8 − 3
2 × 2 − 5

4 × 2 − 3
4 × 3 = 1

4 > 0. If f3(v) = 3, then
c′(v) ≥ 8− 3

2 ×2− 5
4 − 3

4 ×4 = 3
4 > 0. If f3(v) ≤ 2, then c′(v) ≥ 8− 3

2 ×2−1×5 =
0.

In the following, we consider the vertex of degree 8. Suppose d(v) = 8, whose
adjacent vertices are consecutively v1, v2, · · · , v8 and whose incident faces are con-
secutively f1, f2, · · · , f8, where vi is incident with fi−1 and fi (i = 1, 2, · · · , 8).
Note that f0 and f8 are the same face. We also have c(v) = 2 × 8 − 6 = 10.

Lemma 4 Suppose d(v) = 8 and v1, v2, · · · , vk−1, vk be the consecutively adjacent
vertices of v for k ≥ 3. If d(v1) = d(vk) = 2, d(v j ) ≥ 3 for all j = 2, 3, · · · , k − 1,
and min{d( f2), d( f3), · · · , d( fk−2)} ≥ 3, then v sends at most 3

2 + (k − 3) × 5
4 (in

total) to f1, f2, · · · , fk−1.
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Proof Firstly, we have min{d( f1), d( fk−1)} ≥ 4 by Lemma 1. Suppose min{d( f1)
, d( fk−1)} ≥ 5. Then v is not incident with two 3-faces which are incident with a
common 3-vertex, and the 3-face incident with v needs more charge than the 4-face
incident with v. So v sends at most 1

3 × 2+ (k − 3) × 5
4 (in total) to f1, f2, · · · , fk−1,

which is less than 3
2 + (k−3)× 5

4 . Suppose min{d( f1) , d( fk−1)} = 4 and max{d( f1)

, d( fk−1)} ≥ 5. Then v sends at most 13 +1+(k−3)× 5
4 (in total) to f1, f2, · · · , fk−1,

which is less than 3
2+(k−3)× 5

4 . Suppose d( f1) = d( fk−1) = 4. Ifmin{d( f2), d( f3),
· · · , d( fk−2)} ≥ 5, thenv sends atmost 1×2+(k−3)× 1

3 (in total) to f1, f2, · · · , fk−1,
which is less than 3

2 + (k − 3) × 5
4 . If min{d( f2), d( f3), · · · , d( fk−2)} = 4 and

max{d( f2), d( f3), · · · , d( fk−2)} ≥ 5, then v sends atmost 1×2+(k−5)×1+ 3
4+ 1

3 (in
total) to f1, f2, · · · , fk−1, which is less than 3

2 + (k − 3) × 5
4 for k ≥ 3. If d( f2) =

d( f3) = · · · = d( fk−2) = 4, then v sends at most 1×2+ (k−5)×1+ 3
4 ×2(in total)

to f1, f2, · · · , fk−1, which is less than 3
2 + (k − 3) × 5

4 for k ≥ 3. In the following,
suppose min{d( f2), d( f3), · · · , d( fk−2)} = 3. Since v needs to sends at least 5

4 to
each of its incident 3-faces and sends at most 1 to each of its incident 4-faces, we
suppose d( f2) = d( f3) = · · · = d( fk−2) = 3. Then there are at most two 3-faces,
that is f2, fk−2, which may be need receive 3

2 from v. Suppose there is exactly one
3-face from f2, fk−2 which needs receive 3

2 from v. Then max{d( f1), d( fk−1)} ≥ 5.
So v sends at most 3

2 + (k − 4) × 5
4 + 3

4 + 1
3 (in total) to f1, f2, · · · , fk−1. Suppose

each of f2 and fk−2 needs receive 3
2 from v. Then min{d( f1), d( fk−1)} ≥ 5. So v

sends at most 3
2 × 2 + (k − 5) × 5

4 + 1
3 × 2(in total) to f1, f2, · · · , fk−1. Suppose

none of f2 and fk−2 needs receive 3
2 from v. Then v sends at most 3

2 + (k − 3)× 5
4 (in

total) to f1, f2, · · · , fk−1. ��
Suppose n2(v) = 8. Then clearly f6+(v) = 8 and v sends each of its adjacent

2-vertices at most 1 by R1. So c′(v) = 10 − 1 × 8 = 2. Suppose n2(v) = 7. Then
f6+(v) ≥ 6, f4(v) ≤ 2 and f3(v) = 0. So c′(v) ≥ 10 − 1 × 7 − 1 × 2 = 1.
Suppose n2(v) = 6. Then f3(v) ≤ 1. If f3(v) = 1, then f6+(v) ≥ 5 and c′(v) ≥
10 − 1 × 6 − 3

2 − 1 × 2 = 1
2 > 0. Otherwise, f3(v) = 0, f6+(v) ≥ 4 and c′(v) ≥

10 − 1 × 6 − 1 × 4 = 0. Suppose n2(v) = 5. Then f3(v) ≤ 2. If f3(v) = 2, then
f6+(v) ≥ 4 and c′(v) ≥ 10 − 1 × 5 − 3

2 × 2 − 1 × 2 = 0. If f3(v) = 1, then
f6+(v) ≥ 3 and f4(v) ≤ 4. We also known there are at least two 4-faces each of
which needs receive 3

4 from v. So c′(v) ≥ 10 − 1 × 5 − 3
2 − 1 − 3

4 × 2 = 0. If
f3(v) = 0, then f6+(v) ≥ 2, f4(v) ≤ 6 and none of 4-faces incident with v needs
receive 1 from v. So c′(v) ≥ 10 − 1 × 5 − 3

4 × 6 = 1
2 > 0.

Suppose n2(v) = 4. Then there are eight possibilities in which 2-vertices are
located. They are shown as configurations in Fig. 3. In Fig. 3(1), by Lemma 4, c′(v) ≥
10− 4− 3

2 − 5
4 × 3 = 3

4 > 0. In Fig. 3(2), c′(v) ≥ 10− 4− 3
2 − 5

4 × 2− 3
2 = 1

2 > 0.
In Fig. 3(3) and (7), c′(v) ≥ 10 − 4 − ( 32 + 5

4 ) × 2 = 1
2 > 0. In Fig. 3(4), c′(v) ≥

10−4− 3
2− 5

4×2− 3
2 = 1

2 > 0. In Fig. 3(5-6), c′(v) ≥ 10−4− 3
2− 5

4− 3
2×2 = 1

4 > 0.
In Fig. 3(8), c′(v) ≥ 10 − 4 − 3

2 × 4 = 0.
Suppose n2(v) = 3. Then there are five possibilities in which 2-vertices are located.

They are shown as configurations in Fig. 4. In Fig. 4(1), by Lemma 4, c′(v) ≥ 10 −
3 − 3

2 − 5
4 × 4 = 1

2 > 0. In Fig. 4(2), c′(v) ≥ 10 − 3 − 3
2 − 5

4 × 3 − 3
2 = 1

4 > 0.
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Fig. 3 n2(v) = 4

)1( )2( )3( )4( )5(

Fig. 4 n2(v) = 3

)1( )4()3()2(

Fig. 5 n2(v) = 2

In Fig. 4(3), c′(v) ≥ 10 − 3 − 3
2 − 5

4 × 2 − 3
2 − 5

4 = 1
4 > 0. In Fig. 4(4), c′(v) ≥

10− 3− 3
2 − 5

4 × 2− 3
2 × 2 = 0. In Fig. 4(5), c′(v) ≥ 10− 3− ( 32 + 5

4 )× 2− 3
2 = 0.

Suppose n2(v) = 2. Then there are four possibilities inwhich 2-vertices are located.
They are shown as configurations in Fig. 5. In Fig. 5(1), by Lemma 4, c′(v) ≥ 10 −
2− 3

2 − 5
4 ×5 = 1

4 > 0. In Fig. 5(2), c′(v) ≥ 10−2− 3
2 − 5

4 ×4− 3
2 = 0. In Fig. 5(3),

c′(v) ≥ 10−2− 3
2− 5

4×3− 3
2− 5

4 = 0. In Fig. 5(4), c′(v) ≥ 10−2−( 32+ 5
4×2)×2 = 0.

Suppose n2(v) = 1, let u be a 2-vertex adjacent to v and uv is not incident with
a 3-cycle. Then f3(v) ≤ 5. Suppose f3(v) = 5. Then v is incident with at least two
6+-faces or at least one 7+-face. So c′(v) ≥ 10 − 1 − 3

2 × 3 − 5
4 × 2 − 1 × 2 = 0.

Suppose f3(v) = 4. Then v is incident with at least two 5+-faces or at least one
6+-face. So c′(v) ≥ 10 − 1 − 3

2 × 4 − 1 × 3 = 0. Suppose f3(v) = 3. Then v is
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incident with at least one 5+-face. So c′(v) ≥ 10 − 1− 3
2 × 3− 1× 4− 1

3 = 1
6 > 0.

Suppose f3(v) ≤ 2. Then c′(v) ≥ 10 − 1 − 3
2 × 2 − 1 × 6 = 0.

Suppose uv is incident with a 3-cycle. Then f3(v) ≤ 6, v is incident with at most
one 3-face which need receive 3

2 from v and other 3-faces each of which receive
5
4 from v. Suppose f3(v) = 6. Then v is incident with at least one 6+-face and
c′(v) ≥ 10 − 1 − 3

2 − 5
4 × 5 − 1 = 3

4 > 0. Suppose f3(v) = 5. Then c′(v) ≥
10−1− 3

2−max{ 54×4+ 3
4×2+1, 5

4×4+2×2+ 1
3 } = 0. Suppose f3(v) = 4. Then v is

incident with at least one 5+-face and c′(v) ≥ 10−1− 3
2 − 5

4 ×3−1×3− 1
3 = 5

12 > 0.
Suppose f3(v) ≤ 3. Then c′(v) ≥ 10 − 1 − 3

2 − 5
4 × 2 − 1 × 5 = 0.

Suppose n2(v) = 0. Then f3(v) ≤ 6. Suppose f3(v) = 6. Then v is incident with
at least one 6+-face and c′(v) ≥ 10 − 3

2 × 6 − 1 = 0. Suppose f3(v) = 5. Then v

is incident with at least one 5+-face and c′(v) ≥ 10 − 3
2 × 5 − 1 × 2 − 1

3 = 1
6 > 0.

Suppose f3(v) ≤ 4. Then c′(v) ≥ 10 − 3
2 × 4 − 1 × 4 = 0.

Hence we complete the proof of Theorem 1.
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