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Abstract A maximal clique of G is a clique not properly contained in any other
clique. A k-clique-coloring of a graph G is an assignment of k colors to the vertices
of G such that no maximal clique with at least two vertices is monochromatic. The
smallest integer k admitting a k-clique-coloring of G is called clique-coloring number
of G. Cerioli and Korenchendler (Electron Notes Discret Math 35:287–292, 2009)
showed that there is a polynomial-time algorithm to solve the clique-coloring problem
in circular-arc graphs and asked whether there exists a linear-time algorithm to find
an optimal clique-coloring in circular-arc graphs or not. In this paper we present a
linear-time algorithm of the optimal clique-coloring in circular-arc graphs.

Keywords Clique-coloring · Circular-arc graph · Linear time algorithm

Mathematics Subject Classification 05C15 · 05C69

1 Introduction

All graphs considered here are finite, simple and nonempty. Let G be a graph with
vertex set V (G) and edge set E(G). The number of vertices of G is called the order
of G and let n and m denote |V (G)| and |E(G)|, respectively. For a vertex v ∈ V (G),
the open neighborhood N (v) of v is defined as the set of vertices adjacent to v, i.e.,
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N (v) = {u : uv ∈ E(G)}. The closed neighborhood of v is N [v] = N (v) ∪ {v}.
Every vertex in N (v) is also called a neighbor of v. The degree of v is equal to
|N (v)|, denoted by dG(v) or simply d(v). For a subset S ⊆ V (G), the subgraph
induced by S is denoted byG[S]. As usual, Kn , Pn andCn denote the complete graph,
path and cycle on n vertices, respectively. For standard terminology not given here we
refer the reader to Bondy and Murty (2008).

A hypergraph H is a pair (V, E) where V is a finite set of vertices and E is a
family of non-empty subsets of V called hyperedges. A k-colouring ofH is a mapping
φ : V → {1, 2, . . . , k} such that for each S ∈ E , with |S| ≥ 2, there exist u, v ∈ S
with φ(u) �= φ(v), that is, there is no monochromatic hyperedge of size at least two.
If such a function exists we say that H is k-colorable. The chromatic number χ(H)

of H is the smallest k for which H admits a k-colouring.
A clique C is defined as a complete subgraph of a graph G, or equivalently a subset

of V (G), which induces a complete subgraph of G. A clique is said to be maximal
if it is not properly contained in any other clique of G. We call clique-hypergraph of
G the hypergraph H(G) = (V, E) that has the same vertices as G and whose set of
hyperedges is the set of maximal cliques of G of cardinality at least 2.

A k-coloring of the clique-hypergraphH(G) is also called a k-clique-coloring ofG,
and the chromatic number χ(H(G)) of H(G) is called the clique-chromatic number
of G, denoted by χC (G). IfH(G) is k-colorable we say that G is k-clique-colorable.
The k-clique coloring problem consists in deciding, for a given graph, if it admits a
k-clique coloring.

Note that what we call k-clique-coloration here is also called weak k-coloring
by Andreae et al. (1991), Bacsó and Zs (2009) or strong k-division by Hoàng and
McDiarmid (2002). Clique-coloring has some similarities with usual vertex coloring,
for example, any (vertex) k-coloring ofG is also a k-clique-coloring ofG, and optimal
(vertex) colorings and clique-colorings coincide in the case of triangle-free graphs.
But there are also essential differences, for example, a clique-coloring of a graph may
not be a clique-coloring for its induced subgraphs. Induced subgraphs may even have
a greater clique-chromatic number than the original graph. Let G be a graph with
χC (G) > 2 and G ′ be obtained from G by adding a vertex of full degree. Clearly,
χ(G ′) = 2 while χC (G) > 2.

The clique-hypergraph coloring problemwas posed byDuffus et al. (1991). Clique-
coloring is harder than ordinary vertex coloring. Bacsó et al. (2004) proved that the
decision problem of clique-coloring on general graphs is coNP-complete and it is NP-
complete on graphs with maximum degree 3. Kratochvíl and Zs (2002) proved that
testing χC = 2 is still NP-hard for perfect graph and it is NP-complete on 3-chromatic
perfect graphs. Défossez (2009) proved that testing χC = 2 is �

p
2 -complete on odd-

hole-free graphs. In 2011, Marx (2011) proved that testing χC = k is �
p
2 -complete

on general graphs.
Many classes of special graphs have been studied and turned out to have a bounded

clique-chromatic number. Bacsó et al. (2004) proved that almost all perfect graphs
are 3-clique-colorable. Défossez (2006) conjectured that every odd-hole-free graph is
3-clique-colorable. For several subclasses of odd-hole-free graphs, we have a positive
answer. {Odd hole, claw}-free graphs in Bacsó et al. (2004), {odd hole, co-diamond}-
free graphs in Défossez (2009), {odd hole, bull}-free graphs in Défossez (2006) and
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{odd hole, P5}-free graphs in Défossez (2006) are 2-clique-colorable, and {diamond,
odd hole}-free graphs in Défossez (2006) are all 4-clique-colorable. Furthermore,
all planar graphs in Mohar and S̆krekovski (1999), Circular-arc graphs in Cerioli and
Korenchendler (2009) andUEHgraphs inCerioli and Priscila (2008) have been proved
to be 3-clique-colorable. Claw-free planar graphs in Shan et al. (2014), planar graphs
withoutmaximal 2-cliques inThomassen (2008), claw-free graphs ofmaximumdegree
at most four in Bacsó and Zs (2009) and powers of cycles in Campos et al. (2013),
other than odd cycles longer than three, are 2-clique-colorable.

Circular-arc graphs are natural generalizations of interval graphs to the circle. They
possess interesting structures (see, Durán et al. 2014; Tucker 1970). Some of the
motivations for studying circular-arc graphs are their rich structure, in addition to
their applications in cyclic scheduling problems, such as those that arise in traffic light
scheduling, in assignment of variables to registers in loops, and in other areas (see
Golumbic 2004; Roberts 1978).

Circular-arc graphs and interval graphs are frequently studied in algorithmic graph
theory (see, Golumbic 2004). For the optimal clique-coloring problem on circular-arc
graphs, Cerioli and Korenchendler (2009) provided a polynomial-time algorithm and
they asked whether there exists a linear-time algorithm. In this paper we present a
linear-time algorithm to find an optimal clique-coloring of circular-arc graphs.

2 Preliminaries

A circular-arc graph is the intersection graph of a set of arcs on a circleC . Formally, let
A = {I1, I2, . . . , In} be a set of arcs on a circle C . Then the corresponding circular-
arc graph is G = (V, E) where V = {I1, I2, . . . , In} and Ii I j ∈ E if and only if
Ii ∩ I j �= ∅. The set A of arcs is called circular-arc model of G. A family of sets
S is said to satisfy the Helly property if every subfamily of it, consisting of pairwise
intersecting sets, has a common element (Butzer et al. 1984). A Helly circular-arc
(HCA) graph is a circular-arc graph admitting a circular-arc model whose arcs satisfy
the Helly property.

Let A be an arc model of a circular-arc graph G. We say that each arc Ai =
(si , ti ) ∈ A traverses the circle C , in clockwise direction, from the point si to the
point ti , called the extreme points of Ai . We may assume, without loss of generality,
that no two extreme points coincide. For A′ ⊂ A, the arcs in A′ are removable (or
A′ is a removable arc set) if there exists an arc Ai ∈ A \ A′ satisfying the following
conditions:

(i) Every arc A′ ∈ A′ is properly contained in Ai .
(ii) For every A ∈ A \ (A′ ∪ {Ai }) and A′ ∈ A′, A ∩ A′ = ∅.
(iii) The vertices corresponding to arcs in A′ induce a connected graph.

Specially, if A \ A′ = {Ai }, then the corresponding vertex of the arc Ai is a vertex
of full degree and the circular-arc graph G is 2-clique-colorable and 2-connected. If
A \ A′ �= {Ai } and A′ is a removable arc set, then the vertex vi corresponding to the
arc Ai is a cut vertex ofG andA′ ∪{Ai } induce a maximal 2-connected subgraph ofG.
Note that, given a cut vertex vi and a maximal 2-connected subgraph G ′ including vi ,
we can easily check that whether the arc set corresponding to G ′ − vi is a removable
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arc set in O(|V (G ′ − vi )|) time. If an arc model A has no removable arc set, we call
A an irreducible arc model and the corresponding circular-arc graph G of A is an
irreducible circular-arc graph. Note that all the cut vertices and maximal 2-connected
subgraphs of a circular-arc graph can be listed in linear time (see, Hopcroft and Tarjan
1973), so we immediately have the following result.

Lemma 2.1 Given an arc model A and the corresponding circular-arc graph G of
A, we can get the irreducible arc model A∗ of A in linear time.

A simplicial vertex of a graph G is a vertex whose neighbors induce a clique. A
simplicial order of G is an enumeration v1, v2, . . . , vn of its vertices such that vi is
a simplicial vertex of induced subgraph G[{vi , vi+1, . . . , vn}], 1 ≤ i ≤ n. In other
words, each set Xi = {v j ∈ N [vi ] : j > i} induce a clique.A chordal graph is a simple
graph in which every cycle of length greater than three has a chord. Equivalently, the
graph contains no induced cycle of length four or more. For chordal graphs, we have
the following lemma.

Lemma 2.2 (Bondy andMurty 2008; Rose et al. 1976) A graph is chordal if and only
if it has a simplicial order.

There is a linear-time algorithm due to Rose et al. (1976), and known as lexico-
graphic breadth-first search, for finding a simplicial order of a graph if one exists.
In this algorithm, a simplicial order of a graph G is found if G is recognized to be
chordal; otherwise an induced cycle of length four or more is found. By using the
algorithm, we can easily give a 2-clique-coloring of chordal graphs as follows.

Algorithm 1 Find a 2-clique-coloring of a chordal graph.
Input. A chordal graph G = (V, E).
Output. A 2-clique-coloring φ : V → {1, 2} of G.
Step 1: Give a simplicial order σ = {v1, v2, · · · , vn} of G by running the algorithm
‘lexicographic breadth-first search’.
Step 2: Set S := ∅, i := n.
Step 3: If i = 0, then turn to Step 4 directly. Otherwise, let Xi := {v j ∈ N [vi ] : j ≥ i}.
If Xi ∩ S = ∅, then set S := S ∪ {vi }; if not, set S := S. Set i := i − 1, turn to Step 3
again.
Step 4: For every v ∈ S, let φ(v) = 1. For every v ∈ V − S, let φ(v) = 2. Stop.

Theorem 2.1 Algorithm 1 gives a 2-clique-coloring of a chordal graph G in linear
time O(n + m).

Proof We first show, by induction on |V (G)|, that the set S in the end of Algorithm 1
is an independent set of G and it contains one vertex of every maximal clique of G.
This is clearly true if |V (G)| ≤ 2. Suppose, then, that |V (G)| = n ≥ 3. By Lemma
2.2, G has a simplicial order. Let σ = {v1, v2, . . . , vn} be a simplicial order of G.
Then clearly σ ′ = {v2, . . . , vn} is also a simplicial order of G ′ = G − v1. Note that,
when i = 2 and Step 3 is carried out, the set S is the set S′ obtained by Algorithm 1 for
G ′. By the inductive hypothesis, S′ is an independent set ofG ′ and includes one vertex
of every maximal clique of G ′. Note that when i = 1 and Step 3 is carried, the set S
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equals either S′ or S′ ∪ {v1}. By Step 3, it is easy to see that S is an independent set,
and all maximal cliques of G except the maximal clique G[N [v1]] are also maximal
cliques of G ′. This implies that S contains exactly one vertex of every maximal clique
of G.

By Step 4, we see that φ is a 2-clique-coloring of G. In step 1 the time is O(n+m)

by the algorithm ‘lexicographic breadth-first search’. Obviously, it needs O(m) in step
3 and O(n) in step 4. So the running time of Algorithm 1 is O(n + m). ��

By Theorem 2.1, we have the following result on the optimal clique-coloring of
circular-arc graphs.

Lemma 2.3 Let G be a circular-arc graph with arc model A and A′ a removable
arc set of A. Let G ′ and H be the circular-arc graphs whose arc models are A \ A′
and A′ ∪ {Ai }, respectively, where Ai is the arc in the definition of the removable
set. Then χC (G) = χC (G ′), and we can obtain an optimal clique-coloring of G in
O(n1 + m1) time from any given optimal clique-coloring of G ′, where n1 = |V (H)|
and m1 = |E(H)|.
Proof Since A′ is a removable arc set, the graph H is an interval graph. Note that
an interval graph is also a chordal graph. By Theorem 2.1, we can give a 2-clique-
coloring of H in O(n1 + m1), where n1 = |V (H)| and m1 = |E(H)|. Obviously, a
maximal clique of G ′ is also a maximal clique of G, so χC (G) ≥ χC (G ′). Let φ′ be a
χC (G ′)-clique-coloring of G ′ and φ′′ be a 2-clique-coloring of H . Let v be the vertex
corresponding to the arc Ai . As mentioned earlier, v is a cut vertex of G. Without loss
of generality, we may assume that φ′′(v) = φ′(v). Hence φ′ ∪ φ′′ is a χC (G ′)-clique-
coloring of G. Thus χC (G) = χC (G ′) and, if given an optimal clique-coloring of G ′,
we can obtain an optimal clique-coloring of G in O(n1 + m1) time. ��

By Lemmas 2.1 and 2.3, we have the following result on optimal clique-coloring
of circular-arc graphs.

Theorem 2.2 Let A be the arc model of a circular-arc graph G and A∗ be the arc
model of the irreducible circular-arc graph G∗ from G. Given an optimal clique-
coloring of G∗, we can obtain an optimal clique-coloring of G in linear time.

3 The optimal clique-coloring of circular-arc graphs

ForHelly circular-arc graphs,Cerioli andKorenchendler (2009) obtained the following
result.

Theorem 3.1 (Cerioli and Korenchendler 2009)For an irreducible Helly circular-arc
graph G, χC (G) = 2 if and only if G is not an odd cycle of length at least 5.

By using the ideas involved in the proof of Theorem 3.1, we can get an optimal
clique-coloring of an irreducible Helly circular-arc graph G in linear time.

Theorem 3.2 If G is an irreducible Helly circular-arc graph, then we can give an
optimal clique-coloring of G in linear time.

123



152 J Comb Optim (2017) 33:147–155

Proof First we can easily decide whetherG is an odd cycle of length at least 5 in linear
time. If it is, then clearly χC (G) = 3 and we can give a 3-clique-coloring of G in
linear time. If not, then by using the algorithm ‘lexicographic breadth-first search’ in
Rose et al. (1976), we decide whether G is a chordal graph, which needs linear time.
If G is a chordal graph, then χC (G) = 2 and we can give an optimal clique-coloring
of G by using Algorithm 1. Otherwise, we can get a hole Ck (k ≥ 4) (see Bondy and
Murty 2008; Rose et al. 1976). SinceCk is an induced cycle, the arcs corresponding to
the vertices of Ck cover the whole circle. Note that, if an edge e = viv j is a maximal
2-clique, this edge must be on the cycle Ck by the Helly-property of G. This implies
that we can easily check whether G has no maximal 2-cliques in linear time. We
consider the following two cases.

Case 1 G has no maximal 2-clique. In this case, every maximal clique has size at
least 3. By the Helly-property of G, every maximal clique of G contains at least one
vertex of Ck and one vertex of V \Ck . Hence we can obtain a 2-clique-coloring of G
by simply coloring the vertices onCk with color 1 and the others with color 2. Clearly,
the running time is linear.

Case 2 G has maximal 2-cliques. As mentioned above, every maximal 2-clique
of G is on Ck . Let P = {P1, P2, . . . , Pp} be the set of all maximal paths of G such
that every edge in these paths is a maximal clique of G and Q = {Q1, Q2, . . . , Qq}
be the set of all connected components of the subgraph induced by E(G) − {e :
e is a maximal 2-clique in G}. Then each Qi in Q is an interval graph. Note that some
component Qi may consist of only one vertex. If Qi consists of an isolated vertex, we
don’t need to consider the clique-coloring of Qi . If Qi has at least two vertices, then
every maximal clique of Qi is also a maximal clique of G. Moreover, every maximal
clique of Qi has more than two vertices, and at least one of them is a vertex of Ck .

Denote by v′
i and v′′

i the two vertices whose corresponding arcs have the smallest
starting extreme point and maximum ending extreme point, respectively, among those
arcs corresponding to vertices of Qi . Since G is an irreducible circular-arc graph, v′

i
and v′′

i are different and are vertices on Ck .
Nowwe can give two 2-clique-colorings f1 and f2 of Qi such that f1(v′

i ) = f1(v′′
i )

and f2(v′
i ) �= f2(v′′

i ). For the first case, assign color 1 to the vertices of Qi ∩ Ck

and color 2 to the others. Note that every maximal clique of Qi contains at least
three vertices and has at least a vertex is not on Ck , so no maximal clique of Qi

will be monochromatic. To obtain a color f2, just assign the color 1 to vertices in
V (Qi ) ∩ (V (Ck) \ {v′′

i }) and to vertices in V (Qi ) \ V (Ck) whose only neighbor on
Ck is v′′

i (maybe there is no such a vertex); the other vertices should be colored with
color 2. It is not hard to show that no maximal clique of Qi is monochromatic.

Now we give a 2-clique-coloring f of G as follows. First, color the paths in
P = {P1, P2, . . . , Pp} such that each maximal 2-clique has two colors. Then the
two vertices v′

i and v′′
i of each Qi have been colored. According to the colors of

v′
i and v′′

i , we give a 2-clique-colorings f1 or f2 of each Qi as above. So we get a
2-clique-coloring of G.

Note that coloring all paths in P needs at most O(n). In addition, the time of
coloring each Qi is O(|Qi |), thus the total time of coloring all Qi ’s is also O(n).
Hence the running time is linear. ��
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By Algorithm 1 and Theorem 3.2, we get the following algorithm in linear time for
the optimal clique-coloring of irreducible Helly circular-arc graphs.

Next we assume that, a circle and the set of arcs with given extreme points for
circular-arc graphs are given explicitly as part of the input in the following algorithms.

Algorithm 2 The optimal clique-coloring of an irreducible Helly circular-arc graph.
Input. An irreducible Helly circular-arc graph G = (V, E) and an arc model of G.
Output. A k-clique-coloring, where k = χC (G).
Step 1: If G is a odd cycle of order at least 5, give a 3-clique-coloring of G directly,
stop. If not, turn to Step 2.
Step 2: Check whether G is a chordal graph by using ‘lexicographic breadth-first
search’. If G is a chordal graph, then perform Algorithm 1 on G, stop. If not, then we
get a hole Ck (k ≥ 4), turn to Step 3.
Step 3: If every edge of Ck lies in a triangle of G (i.e., G has no maximal 2-clique),
then give a 2-clique-coloring of G by using the method in Case 1 of Theorem 3.2,
stop. If not, then find out P = {P1, P2, . . . , Pp}, Q = {Q1, Q2, . . . , Qq} and, v′

i and
v′′
i for each Qi (see Case 2 in Theorem 3.2), turn to Step 4.
Step 4:Give a 2-coloring of each path Pi . According to the colors of v′

i and v′′
i , further

give a 2-clique-coloring of each Qi , stop.

A circular-arc graph G is called a non-Helly circular-arc graph if G has no model
with the Helly property.

Lemma 3.1 (Joeris et al. 2011) If G is a non-Helly circular-arc graph with arc model
A, then A contains two or three arcs that cover the whole circle C.

Theorem 3.3 If G is a non-Helly circular-arc graph, then we can give a 2-clique-
coloring of G in linear time.

Proof Let A be the arc model of G. By Lemma 3.1, A contains either two or three
arcs that cover the whole circle C . We first check whether or not A contains two arcs
that cover the whole circle C in at most O(m) time, where m = |E(G)|.

If we find two arcs Ai and A j of A that cover the whole circle C , let vi and v j

be the vertices corresponding to Ai and A j , respectively. Clearly viv j ∈ E(G) and
N (vi ) ∪ N (v j ) = V (G). We now give a 2-clique-coloring of G by assigning color 1
to the vertices of N (vi ) and color 2 to all the other vertices of G in time O(n).

If there exist no such two arcs above, then A must contain three arcs Ai , A j , Ak

that cover the whole circle by Lemma 3.1. Joeris et al. (2011) provided a recognition
algorithm with complexity O(m) for HCA graphs. This algorithm can search directly
for the existence of such three arcs in time O(m). (see p. 223). By using the algorithm,
we find three arcs Ai , A j , Ak ∈ A which cover the whole circle. Let vi , v j and vk
be the three vertices of G corresponding to the three arcs Ai , A j , and Ak . Obviously,
every vertex of V (G)\ {vi , v j , vk} is adjacent to at least one of {vi , v j , vk}. We obtain
a 2-clique-coloring of G in time O(n) as follows. Assign color 1 to v if v = vi ,
v = v j , v ∈ N (vk) \ (N (vi ) ∪ N (v j )) or v ∈ (N (vk) ∩ (N (vi )) \ N (v j ) and
color 2 to the others. We claim that every maximal clique is not monochromatic. Let
V1 = N (vk)\(N (vi )∪N (v j )), V2 = (N (vk)∩(N (vi ))\N (v j ), V3 = N (vi )∩N (v j ),
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V4 = N (vi )\(N (v j )∪N (vk)) and V5 = N (v j )\N (vi ). According to our coloring, the
vertices with color 2 are in V3∪V4∪V5. Suppose that S is an arbitrary monochromatic
clique of G. If S has color 1, then we have that V (S) ⊆ V1 ∪ V2, V (S) ⊆ V2 ∪ {vi }
or V (S) = {vi , v j }. Hence S ∪ {vk} induces a bigger clique than S, but vk is assigned
color 2. If S has color 2, then we have that V (S) ⊆ V3 ∪ V4 or V (S) ⊆ V5 ∪ {vk}. But
V (S) ∪ {vi } or V (S) ∪ {v j } will induce a bigger clique than S, while both vi and v j

have color 1. Hence, no monochromatic clique is maximal, as claimed. ��
Finally, we obtain an algorithm for the optimal clique-coloring of circular-arc

graphs.

Algorithm 3 The optimal clique-coloring of circular-arc graphs.
Input. A circular-arc graph G = (V, E) and its arc model A.
Output. A k-clique-coloring, where k = χC (G).
Step 1: Find out all the removable arc sets of A and, give the irreducible arc model
A∗ and irreducible circular-arc graph G∗ with arc model A∗.
Step 2: Recognize whether G∗ is a Helly circular-arc graph (see Joeris et al. 2011). If
it is, then perform Algorithm 2 for G∗. If not, then give a 2-clique-coloring of G by
using the method in Theorem 3.3.
Step 3: Extend the optimal clique-coloring of G∗ into an optimal clique-coloring of
G by using Lemma 2.3 and Theorem 2.2.

Theorem 3.4 Algorithm 3 gives an optimal clique-coloring of G in linear time.

Proof By Theorems 2.2, 3.2 and 3.3, Algorithm 3 give an optimal clique-coloring of
G. By Lemma 2.1, the time is linear in Step 1. By Theorems 3.2 and 3.3, the time of
Step 2 is linear. By Theorem 2.2, the time of Step 3 is also linear. Thus Algorithm 3
runs in linear time. ��
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