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Abstract Given a connected and weighted graph G = (V, E) with each vertex v

having a nonnegative weight w(v), the minimum weighted connected vertex cover P3
problem (MWCVCP3) is required to find a subset C of vertices of the graph with
minimum total weight, such that each path with length 2 has at least one vertex in
C , and moreover, the induced subgraph G[C] is connected. This kind of problem has
many applications concerning wireless sensor networks and ad hoc networks. When
homogeneous sensors are deployed into a three-dimensional space instead of a plane,
themathematical model for the sensor network is a unit ball graph instead of a unit disk
graph. In this paper, we propose a new concept called weak c-local and give the first
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polynomial time approximation scheme (PTAS) for MWCVCP3 in unit ball graphs
when the weight is smooth and weak c-local.

Keywords PTAS · Connected vertex cover P3 · Smooth weights · Weak c-local ·
Unit ball graph

1 Introduction

In practice, when the sensors have omnidirectional antennas with the same transmis-
sion range, the topology of the three-dimensional wireless sensor network can be
modeled as a unit ball graph. An undirected graph G is called a unit ball graph if its
vertices can be represented as points in three-dimensional space so that the Euclidean
distance between two points corresponding to an edge in G is not greater than one.
In this paper, we consider the minimum weighted connected vertex cover P3 problem
in unit ball graph which plays an important role in three-dimensional wireless sensor
networks. We use Bondy and Murty (2008), Du et al. (2012) and Garey and John-
son (1979), for standard graph theory, approximation algorithms and computational
complexity terminology and notations.

Given an undirected and simple graph G = (V, E), a vertex cover (VC) of G is a
subset of vertices C ⊆ V which covers all edges, i.e., ∀e = (u, v) ∈ E , either u ∈ C
or v ∈ C . Let w : V → R

+ be a vertex weight function. The minimum weighted
vertex cover (MWVC) problem consists of finding a vertex cover of minimum total
weight. Many problems have been shown to be NP-complete by a transformation from
VC, including well-known problems as the Hamilton cycle problem and the clique
problem. Vertex covers are fundamental within graph theory, one reason being that
vertex covers can be considered as the duals of matchings. The VC problem also
represents a large class of related vertex deletion problems, in which one is interested
in finding a minimum subsetC ⊆ V whose deletion gives the graph induced by V −C
satisfying a desired property, e.g., such that the graph G[V − C] is edgeless (C is a
vertex cover) or G[V − C] has no cycle (C is a feedback vertex set). There are many
other examples, including weighted variants (in which one is interested in a setC with
a small total weight) and variants in which one imposes structural conditions on C
(like being connected).

Here we study a variation of the vertex cover problem in which the set C ⊆ V
should intersect every path of length two in G with the graph induced by C in G being
connected, and be of minimum total weight subject to these conditions. So the degree
of each vertex in the graph induced by V −C in G is at most one. For describing more
background and related recent results on this topic, we first define the more general
problem.

The concept of vertex cover Pk problem is a generalization of the vertex cover
problem. Given a graph G = (V, E) with vertex weight function w : V → R

+,
the minimum weight vertex cover Pk problem is the problem of finding a minimum
weight vertex cover setC ⊆ V such that the graph G[V −C] has no Pk as a subgraph,
where Pk is the path on k vertices. Or, equivalently, the problem is to find a minimum
weight vertex cover set C ⊆ V such that for any Pk in G, V (Pk) ∩ C �= ∅. Here, the
weight of a vertex set C ⊆ V is w(C) = ∑

v∈C w(v).
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If furthermore, the subgraph G[C] induced by a vertex cover Pk set C is required
to be connected, then we call C a connected vertex cover Pk set. In this paper, we
restrict our attention to the case of k = 3. The Minimum Weight Connected Vertex
Cover P3 problem (MWCVCP3 for short) is the optimisation problem of finding such
a set with minimum total weight.

Connectivity constraints come in naturally, e.g., in many applications concerning
wireless sensor networks, in which it is usually important to ensure connectivity if the
sensor devices have limited capabilities of computation, energy and communication.
Moreover, they are often deployed in accessible areas, where they can be rather easily
captured by attackers. Therefore, the design of security protocols has become a chal-
lenge. One such protocols, known as the Canvas protocol, was designed in Menezes
et al. (1996), Novotny (2010) to provide data integrity or data origin authentication
(Menezes et al. 1996) in sensor networks. The k-generalised Canvas scheme (Novotny
2010) guarantees data integrity if at least one vertex is not captured on each path of
length k − 1 in the communication graph. Thus, during the deployment and initial-
isation of a sensor network, it should be ensured that at least one protected vertex
exists on each path of length k − 1 in the communication graph, and the problem of
minimising the cost of the network by minimising the number of protected vertices
arises naturally in Novotny (2010).

In the field of wireless sensor networks, unit ball graphs are widely used. Awireless
sensor network is an ad hoc wireless network which consists of a huge amount of
static or mobile sensors. The sensors collaborate to sense, collect, and process the
raw information of the phenomenon in the sensing area and transmit the processed
information to the observers. Suppose the sensors of the network have omnidirectional
antennas with the same transmission range, two sensors can communicate if and only
if they fall into the transmission ranges of each other, in other words, if and only
if the Euclidean distance between them is at most one. There are cases in which
three-dimensional models are needed, such as under-water sensor systems, outer-
space sensor systems, notebooks in a multi-layered buildings, etc. For example, in a
mountain area or underwater (Akyildiz et al. 2005), environment is often not flat. In
such kind of underwater networks, in order to observe a given phenomenon, sensor
nodes float at different depths. Then deployed sensors would form a three-dimensional
wireless sensor network, which has a mathematical model, the unit ball graph. One
can use under-water sensor systems to detect and observe phenomena that cannot
be adequately observed by means of ocean bottom sensor nodes, i.e., to perform
cooperative sampling of the 3D ocean environment.

Given a graph without its geometric representation, it is NP-hard to determine
whether it can be represented as a unit ball graph (Breu and Kirkpatrickz 1998). Thus,
in our paper we assume the geometric representation of the unit ball graph is given.
This is usually the case in applications.

In practice, it is natural to assume that the vertices of the graph have some positive
weights. In the context of wireless ad-hoc networks, these weights usually reflect
residual energy, power capabilities, and information loads of a node for a specific task.
The assumption of the smoothness of the weights (Wang et al. 2005) is reasonable in
many applications such as homogeneous wireless sensor or ad hoc networks, where
the weights of neighboring nodes do not vary significantly.
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1.1 Related work

The case k = 2 of the minimumweight vertex cover Pk problemwithout the condition
of connectivity is the well-studied minimum weight vertex cover problem. Boštjan
(Brešar et al. 2011) proved that minimum vertex cover Pk problem is NP-complete for
any fixed integer k ≥ 2, Tu and Zhou (2011) gave a 2-approximation minimumweight
vertex cover P3 set by using the primal–dual method or the technique of layering.
With the condition of connectivity, Liu et al. (2013) present a PTAS for the minimum
k-path connected vertex cover problem in unit disk graphs. Notice that their work only
studied the problem without weight.

Wang et al. (2015) have proved that the minimumweighted connected vertex cover
P3 problem remains NP-hard when restricted to unit disk graphs, or even to the more
specific subclass of grid graphs. Since the unit disk graphs can be viewed as a subclass
of the unit ball graphs, we can draw the conclusion that the MWCVCP3 problem is
NP-hard on unit ball graphs.

A polynomial-time approximation scheme (PTAS) is a family of approximation
algorithms with performance ratio 1 + ε (for any positive real number ε) that can be
executed in polynomial time (depending on the size of the input and ε).

Wang and Jiang (1996) first introduced the concept of c-local and gave a PTAS for
the Steiner tree problems in the plane with Euclidean and rectilinear metrics under
the assumption of c-local. They call a Steiner tree problem c-local (for some positive
constant c) if in a minimum spanning tree for the terminals, the length of a longest
edge is at most c times the length of a shortest edge. Fan et al. (2011) presented a
PTAS for the minimum weight connected vertex cover problem in unit disk graphs,
provided the problem satisfies a c-local condition where in the solution C0 obtained
by some constant-approximation algorithm, the maximum weight of the vertices in
C0 is at most c, (assume, without loss of generality, that every vertex has weight at
least one). It should be noted that maybe some vertices in G which will never be
selected into the approximation solution, might have very large weights, since they
do not play any important role in connection. So the assumption of c-local is different
from the requirement that the maximum weight of the vertices of G is at most c.
Inspired by these works, Wang et al. (2015) define a similar concept of c-local for
MWCVCP3 and obtained a PTAS for MWCVCP3 problem on unit disk graphs under
c-local assumption, when the unit disk graphs have minimum degree at least two.

1.2 Our contribution

In this paper, we study the problem of constructing MWCVCP3 in unit ball graphs.
The contributions of this paper can be summarized as follows:

1. In this paper we introduce a new concept of weak c-local which is weaker than
the original concept of c-local as in Wang et al. (2015). We define an instance of
MWCVCP3 to be weak c-local (for some positive constant c) if in a solution C0
obtained by some approximation algorithm, the maximum weight of the vertices in
F ⊆ C0 which is a vertex cover P3 set, is at most c, assumingwithout loss of generality
that every vertex has weight at least one. Note that F may not be connected. Hence, if
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an instance I of MWCVCP3 is c-local, it must be weak c-local as F ⊆ C0. However,
an instance I of MWCVCP3 of weak c-local is not necessary to be c-local.

2. In this paper, we present a PTAS for MWCVCP3 problem with smooth weights
in unit ball graphs under the condition of weak c-local. It should be noticed that our
result is not a direct generalization of Wang et al. (2015) to higher dimensional space.
The technique used in Wang et al. (2015) is only valued when the minimum degree
δ(G) ≥ 2, and it assumes a stronger condition of c-local. To obtain the results in this
paper, new ideas of utilizing and combining the primal-dual approximation algorithm
(Tu and Zhou 2011) and the techniques in high dimensional spaces (Zhang and Wu
2013) have to be explored.

1.3 Organisation of the paper

In Sect. 2, we introduce some preliminaries which will be needed later. In Sect. 3, we
present our PTAS for MWCVCP3 problem on unit ball graphs. The approximation
solution, the proof of the correctness of our algorithm, analysis of the time complexity
and the performance ratio are given in Sect. 4. Finally, the concluding remarks and
future research are drawn in Sect. 5. In the appendix we show that the minimum
weighted connected vertex cover Pk(k ≥ 4) problem is NP-complete for grid graphs.

2 Preliminaries

In this section, we introduce some useful definitions and denotations that will be used
in the partition and shifting strategy.

Given a geometric representation of a connected unit ball graph G = (V, E) with
|V | = n, we initially find a minimal three-dimensional cube Q to contain all the unit
balls in G. Without loss of generality, assume Q = {(x, y, z)|0 ≤ x ≤ q, 0 ≤ y ≤
q, 0 ≤ z ≤ q}, where q is related to n. Letm be a large integer that will be determined
later. Set p = � q

m � + 1, and Q̃ = {(x, y, z)| −m ≤ x ≤ pm,−m ≤ y ≤ pm,−m ≤
z ≤ pm}. Using partition strategy, we divide Q̃ into (p + 1) × (p + 1) × (p + 1)
smaller cubes (called cells) such that each cell is an m × m × m cube (each cube is
half closed and half open, including the back, left, and bottom sides, excluding the
front, right, and top sides). Define this partition as P(0). For d = 0, 1, ...,m − 1, let
P(d) be the partition obtained from P(0) by shifting the left-bottom-hind corner of
P(0) from (−m,−m,−m) to (−m + d,−m + d,−m + d). It should be noted that
the enlargement of Q guarantees that after shifting, all the unit balls to be covered are
still enclosed by every partition P(d).

For each cell e, we define the boundary region Be and inner region Ie as follows.
The boundary region Be of e is the region contained in e such that each point in this
region is at most distance 3 from the boundary of e. The inner region Ie of e is the
region of e such that each point at least distance 1 away from the boundary of e. Note
that Ie and Be have an overlap of width 2 (see Fig. 1). This ensures the output of our
algorithm is a vertex cover P3 set. If we add some additional vertices in the algorithm,
the connection of the output computed by our algorithm can be ensured.
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3

2Boundary region Inner region

Fig. 1 Shaded areamarked by solid lines indicates the boundary region and shaded areamarked by dotted
lines indicates the inner region. Inner region and boundary region have an overlap of width 2

Next, we give a useful definition of smoothness (Wang et al. 2005; Zhu et al.
2010) which will be used to devise polynomial algorithms that solve MWCVCP3
problem.

Definition 1 Given an undirected and weighted graphG = (V, E)with each vertex v

assigned with a nonnegative weight w(v), the weight function w : V → R+ is called
smooth if there exists a constant β ≥ 1 such that max(uv)∈E w(u)

w(v)
≤ β.

3 The algorithm for the PTAS

We describe the algorithm in this section.We denote the boundary region of a partition
P(d) as B(P(d)) = ⋃

e∈P(d) Be. The algorithm is executed in three phases.

Phase 1Given the geometric representation of the unit ball graphG, adopt the primal-
dual approximation algorithm of Tu and Zhou (2011), we can obtain a vertex cover
P3 set F of G with w(F) ≤ 2w(F∗), where F∗ is an optimum vertex cover P3 set of
G.

If the induced subgraph G[F] is connected, we can obtain a connected vertex cover
P3 set S0 = F ; If G[F] is not connected, for two closest components R1 and R2
of G[F], we can make R1 and R2 connect by finding a path T with the minimum
total weight. Continue this procedure until G[F] is connected. Then we can obtain a
connected vertex cover P3 set S0 = F .

Denote by S0(d) = S0 ∩ B(P(d)) the set of vertices of S0 lying in the boundary
region of partition P(d). Using the shifting strategy to select a partition P(d∗) such
that w(S0(d∗)) = min{w(S0(d)) | 0 ≤ d ≤ m − 1}.
Phase 2 For every small cube e ∈ P(d∗), denote by Ge the subgraph of G induced by
the vertices in Ie, and Comp(Ge) the set of connected components in Ge. For each
small cube e and each component H ∈ Comp(Ge), use exhaust search to find a min-
imum weighted connected vertex cover P3 set SH of H. Set Se = ⋃

H∈Comp(Ge)
SH .

Phase 3 If there exists a connected component H ∈ Comp(Ge) such that SH ∩S0 = ∅
and there is no vertex of SH adjacent with other vertex in S0(d∗), we can make SH
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and S0(d∗) connect by finding a path PH with the minimum total weight (Here, we
enumerate all the paths which connect SH and S0(d∗), and then choose a path PH

with minimum total weight which can be executed in polynomial time). Set S[e] =⋃
H∈Comp(Ge)

PH , else, Set S[e] = ∅ (in this case, SH ∩ S0 = ∅, and there is a vertex
of SH adjacent with other vertex in S0(d∗)).
Final result Output S = S0(d∗) ∪

(⋃
e∈P(d∗) Se

)
∪

(⋃
e∈P(d∗) S[e]

)
.

4 Analysis of the algorithm

In this section, we first show that we can obtain a constant approximation solution.
Secondly, we prove the correctness of the algorithm. Furthermore, we analyze the time
complexity, and show that the algorithm can be executed in polynomial time. Finally,
we prove the main conclusions that the performance ratio of the algorithm is (1 + ε)

for any arbitrarily small positive constant ε.

4.1 Approximation solution

In this section, with the help of the primal-dual approximation algorithm of Tu and
Zhou (2011),we canobtain a constant ratio approximation solution of theMWCVCP3
problem in the following.

Lemma 1 There exists a ρ-approximation algorithm (with ρ = 2(1 + βc + β2c)) to
obtain a minimum weight connected vertex cover P3 set in a smooth weighted unit
ball graph G, if we assume that the problem is weak c-local.

Proof Let S∗ be an optimal solution for MWCVCP3 of a weighted unit ball graph
G. By using the primal-dual approximation algorithm of Tu and Zhou (2011) in Phase
1, we can obtain a vertex cover P3 set F of G such that

w(F) ≤ 2w(F∗) ≤ 2w(S∗) (*)

where F∗ is an optimum vertex cover P3 set ofG. If we assume that J is the maximum
weight of the vertices in F , we can obtain a constant ratio approximation solution of
the MWCVCP3 problem as following.

We assert that if the induced subgraph G[F] is not connected, we can reduce the
number of connected components of G[F] by one through adding at most 2 vertices
into F . Since the given unit ball graph is connected, we assume R1 and R2 are two
closest components of G[F], and denote by T = (v1, v2, . . . , vt ) the shortest path
between R1 and R2, where v1 ∈ V (R1), vt ∈ V (R2). Firstly, v2 /∈ F , otherwise this
path can be reduced to (v2, . . . , vt ). If v3 ∈ F , we can get t = 3, since R1 and R2 are
two closest components. Then adding v2 to F , we can connect R1 and R2. If v3 /∈ F ,
then v4 must be in F , otherwise there must exist a path P3 in G[V − F]. Hence, t = 4.
We add v2, v3 to F so that we can make R1 and R2 connect. Therefore, our assertion
is correct.
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So if the induced subgraph G[F] is not connected, we need to add at most 2(a−1)
vertices into F to get a connected vertex cover P3 set S0 of G, where a(a ≤ |F |) is the
number of connected components of G[F] in graph G. Since the weights is smooth,
and by the assumption that J is the maximum weight of the vertices in F , we can
connect R1 and R2 by adding at most two vertices whose total weights are no more
than β J + β2 J . Hence, we can get a connected vertex cover P3 set S0 of G such that

w(S0) ≤ w(F) + (a − 1)(β J + β2 J )

≤ w(F) + w(F)(β J + β2 J )

≤ 2(1 + β J + β2 J )w(S∗)
≤ 2(1 + βc + β2c)w(S∗),

where the second inequality follows that every vertex has weight at least one, the third
inequality follows from (∗), and the last inequality follows the assumption of weak
c-local. ��

4.2 Correctness

In this subsection, we prove that the output S of our algorithm is a connected vertex
cover P3 set for the graph G = (V, E).

Theorem 1 The output S of our algorithm is a connected vertex cover P3 set for the
graph G.

Proof Firstly, we prove that the induced graph G[S] is connected. We prove this by
three steps. In step 1, we show that distinct connected components in G[S0(d∗)] (if
they exist) can be connected through vertices in

⋃
e∈P(d∗) Se. In step 2, we show that

SH is connected with S0(d∗) if there exists a connected component H ∈ Comp(Ge)

such that SH ∩S0 �= ∅. In step 3, we can find a path PH which connects SH and S0(d∗)
if there exists a connected component H ∈ Comp(Ge) such that SH ∩ S0 = ∅.

Step 1. Let H1 and H2 be the two distinct connected components in the induced
subgraph G[S0(d∗)] which are ‘closest’ in G[S0] with each other. Since the induced
subgraph G[S0] is connected, there exists a path P = (v1, v2, . . . , vt−1, vt ) of G[S0]
connecting H1 and H2 through the inner region of one small cube e. Note that the inner
region Ie and the boundary region Be of each small cube have an overlap with width 2,
without loss of generally, we may assume that {v1, v2} ⊆ V (H1), {vt−1, vt } ⊆ V (H2)

and {v3, . . . , vt−2} ⊆ Ie\Be. Then we can observe that {v1, v2, vt−1, vt } ⊆ Be∩ Ie, so
the path P = (v1, v2, . . . , vt ) is in a connected component H of Ge. Based on Phase
2 of our algorithm, the path (v1, . . . , vt ) is covered by SH . It follows that at least one
vertex of {v1, v2, v3} belongs to SH , and at least one vertex of {vt−2, vt−1, vt } belongs
to SH . Since the induced subgraph G[SH ] is connected, we can observe that H1 and
H2 are connected through G[SH ], SH ∈ Se.

Step 2. For each small cube e of P(d∗), if there exists a connected component
H ∈ Comp(Ge) such that SH ∩ S0 �= ∅, there must exist a vertex x ∈ SH ∩ S0.
Since the induced subgraph G[S0] is connected in G, there exists a path L in G[S0]
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connecting x to another vertex y ∈ S0(d∗) which belongs to the other parts of G
outside of e. We assume that the path L = (v0, v1, . . . , vt ), where v0 = x, vt = y
and {v0, . . . , vt−1} ⊆ e. Let i be the index such that vi is the first vertex on L with
vi ∈ Be. Then we can see that vi−1 ∈ Ie \ Be, vi , vi+1 ∈ Ie, so there must exist a
vertex in {vi−1, vi , vi+1} belongs to SH . Therefore, SH is connected with S0(d∗).

Step 3. For each small cube e of P(d∗), if there exists a connected component
H ∈ Comp(Ge) such that SH ∩ S0 = ∅, we can make SH and S0(d∗) connect by
finding a path PH with the minimum total weight by Phase 3 of our algorithm. Or
there exists a vertex of SH adjacent with other vertex in S0(d∗). So after adding the
vertices of the path PH to S, we can get SH is connected with S0(d∗).

For each case, we can draw the conclusion that SH is connected with S0(d∗).
Therefore, we have proved that G[S] is connected.

Secondly, we prove that S is a vertex cover P3 set for G = (V, E). For any path
(u, v, w) with length 2 in G, the Euclidean distance of the edge uv or vw is no more
than one. Suppose (u, v, w) lies completely in a small cube e. Since the inner region
Ie and the boundary region Be have an overlap of width 2, there are two cases to be
considered. The first case is that the path (u, v, w) belongs to the boundary region
Be. According to Phase 1 of our algorithm, S0 is a connected vertex cover P3 set of
the graph G, and S0(d∗) is the set of vertices of S0 lying in the boundary region of
partition P(d∗). So we can get {u, v, w} ∩ S0(d∗) �= ∅. The second case is that the
path (u, v, w) is in the inner region Ie of a small cube e, and thus the path (u, v, w)

belong to a connected component H in Ge. Based on Phase 2 of our algorithm, SH is
a connected vertex cover P3 set of H , hence the path {u, v, w}∩ SH �= ∅. In any case,
the path (u, v, w) is covered by Se ∪ S0(d∗) ⊆ S. The case that (u, v, w) crosses two
adjacent cubes can be considered similarly to the first case. Hence, we have proved
that S is a vertex cover P3 set for G = (V, E).

Based on the above analysis, we complete the proof of the theorem. ��

4.3 Time complexity

In this subsection, we show that our algorithm runs in polynomial time. Phase 1 of our
algorithm can be executed in polynomial time to obtain a ρ-approximation solution.
Phase 3 can also be executed in polynomial time to find a path which connects SH
and S0(d∗). However, Phase 2 uses exhaustive search to achieve the desired solution.
This is the most time consuming part, so we need to prove that this phase can also be
completed within polynomial time.

Theorem 2 The running time of our algorithm is no more than nO(1/ε3), where n is
the number of vertices in the graph.

Proof In the Phase 2 of our algorithm, for each small cube e of P(d∗) and a connected
component H ∈ Comp(Ge), we can use the exhaust search to obtain a subset SH ⊆
V (H) such that SH is a minimum weight connected vertex cover P3 set of H , i.e., the
induced graphG[V (H)−SH ]will consist of isolated vertices and isolated edges only.
Let t0 and t1 denote the number of isolated vertices and isolated edges in G[V (H) −
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SH ] respectively. It is easily seen that t0 + t1 is less than the maximum number of
independent unit balls in the cube e.

For each small cube e, in order to make all the whole balls whose centers are in the
m ×m ×m cube lie completely in a specific cube, we need to enlarge the side length
m of a cube to m + 1. Since each unit ball occupies volume π/6, we can get that the

number of independent unit balls in an m × m × m cube e is at most � 6(m+1)3

π
�. So

we have

|V (H) − SH | = t0 + 2t1 ≤ 2t0 + 2t1 ≤ 2

⌈
6(m + 1)3

π

⌉

.

Now, in the following we show how to compute SH . Firstly, we enumerate all the

induced subgraphs of H with no more than 2� 6(m+1)3

π
� vertices. Then, we find all

induced subgraphs whose components do not contain a P3. Finally, we take comple-
ments and find the one which is connected with minimum total weight.

The above exhaustive search for SH takes time at most

2

⌈
6(m+1)3

π

⌉

∑

i=0

(
nH

i

)

= nO(m3)
H ,

where nH is the number of vertices in H , and the total running time for Phase 2 is at
most

∑

e,H

n
O

(
m3

)

H =
⎛

⎝
∑

e,H

nH

⎞

⎠

O
(
m3

)

= nO(m3) = nO(1/ε3).

(As we will see at the end of the proof of Theorem 3, m = �[12+144(2cβ3+cβ4)]ρ
ε

� is a
suitable choice for our purposes.) So we prove the conclusion. ��

4.4 Performance analysis

In this section, we prove that our algorithm has performance ratio (1+ ε). Firstly, we
introduce a lemma that will be used in this section, then give the performance ratio.

The following property for unit ball graph plays an important role in the approxi-
mation analysis.

Lemma 2 For any vertex u in a unit ball graph G, the neighborhood NG(u) contains
at most 12 independent vertices.

The proof of the Lemma 2 has been given in Zhang et al. (2009). For convenience
of the readers, we also present the proof in the appendix.

Based onDefinition 1, Lemmas 1, 2 andTheorem1,we then show that our algorithm
is a PTAS as follows.
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Theorem 3 Suppose S∗ is an optimal solution to the minimum weight connected
vertex cover P3 set in unit ball graph G, and S is the output of our algorithm. Then
we have

w(S) ≤ (1 + ε)w(S∗).

Proof We prove our conclusion in three steps.
Firstly, we prove that

w(S0(d
∗)) ≤ 12ρ

m
w(S∗), (4.1)

where m only depends on ε and c.
When we adopt the shifting strategy, it can be easily observed that a vertex of S0

appears at most 12 times in the boundary area of B(P(d))s (see Fig. 2). Therefore,
we have

w(S0(0)) + w(S0(1)) + · · · + w(S0(m − 1)) ≤ 12w(S0).

Combining this with w(S0) ≤ ρw(S∗), we have

w(S0(d
∗)) ≤ 12ρ

m
w(S∗).

Secondly, we are to add some vertices to S∗ such that the resulting vertex set S̃
satisfies the following two requirements:

(a) For each small cube e and each component H ∈ Comp(Ge), S̃ ∩ V (H) is a
connected vertex cover P3 set of H .

(b) w(S̃ ∩ Ie) ≤ w(S∗ ∩ Ie) + 12(cβ3 + cβ4)|S0(d∗) ∩ e|.

Fig. 2 The trace of a vertex has at most 12 points lying in the boundary area
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Then, we show that the path PH in Phase 3 of the algorithm satisfies |PH | ≤ 1, and

w(S[e]) ≤ 12cβ3|S0(d∗) ∩ e| (4.2)

Before showing how to construct S̃, and proving |PH | ≤ 1, we first show the
theorem can be proved as long as the above two requirements are satisfied. In fact, it
is easy to observe that in Phase 2 of our algorithm, Se is a minimum weight connected
vertex cover P3 set satisfying requirement (a), so we have w(Se) ≤ w(S̃ ∩ Ie).

Combining this with inequalities (4.1), (4.2) and requirement (b), and the assump-
tion that every vertex has weight at least one in the Introduction, we have

w(S) ≤ w(S0(d
∗)) +

∑

e∈P(d∗)
w(Se) +

∑

e∈P(d∗)
w(S[e])

≤ w(S0(d
∗)) +

∑

e∈P(d∗)

[
w(S∗ ∩ Ie) + 12

(
cβ3 + cβ4

)
|S0(d∗) ∩ e|

]

+ 12cβ3|S0(d∗)|
≤ w(S0(d

∗)) + w(S∗) + 12
(
2cβ3 + cβ4

)
|S0(d∗)|

≤ w(S0(d
∗)) + w(S∗) + 12

(
2cβ3 + cβ4

)
w(S0(d

∗))

≤
(

1 + [12 + 144
(
2cβ3 + cβ4

)]ρ
m

)

w(S∗).

If we let m = �[12+144(2cβ3+cβ4)]ρ
ε

� in our algorithm, w(S) ≤ (1+ ε)w(S∗). Then,
the theorem is proved.

In the following we show how to construct S̃ satisfying the requirements (a) and
(b), and then prove |PH | ≤ 1.

For convenience, let S∗
e = S∗ ∩ Ie for a small cube e. It is easy to see that for each

component H ∈ Comp(Ge), S∗
e ∩ V (H) is a vertex cover P3 of H . Suppose there

exists a component H ∈ Comp(Ge) such that condition (a) is not satisfied. According
to the proof of Lemma 1, there are two components R1, R2 of G[S∗

e ∩ V (H)] such
that R1 and R2 can be connected through one vertex or two vertices in V (H)\S∗

e . Add
this vertex or two vertices into S∗

e to merge R1 and R2. It is easy to see that the new
additional vertices are at most distance 2 away from some vertex of S0. By using the
assumption that the weight is smooth and the condition of weak c-local, we obtain S0
by adding some additional vertices to F , so we can get that any u ∈ S0, w(u) ≤ cβ2,
the total weight of the two additional vertices are at most cβ3 + cβ4. Continue this
procedure until S∗

e satisfies requirement (a). Suppose this is done by k times, we get
the new set S̃∗

e satisfies (a), then

w(S̃∗
e ) ≤ w(S∗

e ) + k
(
cβ3 + cβ4

)
. (4.3)

123



118 J Comb Optim (2017) 33:106–122

On the other hand, we can prove that

|S0(d∗) ∩ e| ≥ k

12
(4.4)

For this purpose, we assume that the components merged are in the order of R1 with
R2, R3 with R4, . . ., and R2k−1 with R2k .

We assume, without loss of generality, that these components are all different. For
each i = 1, 2, . . . , k, R2i−1 and R2i are not connected in Ie. Since R2i−1 is connected
to the outer parts of e through S∗, there are two cases to be distinguished.

The first case is that there only exists one vertex ui lying in V (R2i−1) ∩ Be ∩ Ie,
such that ui is adjacent to a vertex wi ∈ Be\Ie. Since R2i−1 belongs to H , and the
inner region Ie and the boundary region Be have an overlap of width 2, there exists a
vertex vi ∈ V (H) adjacent to ui , where vi ∈ Be ∩ Ie. Hence, there exists a P3 path
wi uivi , where wi , ui , vi ∈ Be, and at least one of the vertices of the path belongs to
S0, denoted by zi . Therefore, zi ∈ S0(d∗) ∩ e.

The second case is that there exists two vertices ui , vi lying in V (R2i−1)∩ Be ∩ Ie,
where uivi is an edge of G such that ui is adjacent to a vertex wi ∈ Be\Ie. Since
wi uivi is a P3 path, we have zi ∈ S0(d∗) ∩ e by the same argument as the first case.
Note that a vertex may be used more than once as zi . For instance, there may be
two independent vertices xi , yi covered by the same vertex of S0, as they belong to
different components of G[S∗ ∩ Ie]. Then it follows from Lemma 2 that the number
of times is no more than 12 when such a vertex serves as zi . Hence inequality (4.4)
holds.

According to inequalities (4.3) and (4.4), we have

w(S̃∗
e ) ≤ w(S∗

e ) + 12
(
cβ3 + cβ4

)
|S0(d∗) ∩ e|.

Let S̃ be the union of the modified S̃∗
e ’s, we can get

w(S̃ ∩ Ie) ≤ w(S∗ ∩ Ie) + 12
(
cβ3 + cβ4

)
|S0(d∗) ∩ e|.

Finally, we consider each path PH . From our algorithm we know that PH connects
SH and S0(d∗)with minimum total weight. Since the inner region Ie and the boundary
region Be of each small cube have an overlap area with width 2. So there exists a path
P = (v0, v1, . . . , vt ) connecting SH and Be \ Ie. Let v0 ∈ SH and vt ∈ Be \ Ie. Then
there must exist a vertex x ∈ {v0, v1, v2} belonging to S0(d∗). If v1 ∈ S0(d∗), then
SH is connected with S0(d∗). If v2 ∈ S0(d∗), then by the minimality of the path PH ,
we have |PH | ≤ 1.

A vertex may be used more than once as x . So, by using the similar argument as
above, we have

w(S[e]) ≤ 12cβ3|S0 ∩ Be ∩ Ie| ≤ 12cβ3|S0(d∗) ∩ e|

Based on the above conclusions, we complete the proof. ��
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5 Conclusion

We presented a polynomial time approximation scheme for this problem on unit ball
graphs with a given geometric representation, under the conditions that the problem is
weak c-local and the weights is smooth. This problem is an extension of the minimum
weight connected vertex cover problem for which, as far as we know, there is no
constant-factor approximation algorithm or PTAS known in unit disk graphs or unit
ball graphs without any additional restriction. We strongly believe that a completely
different new approach is needed in the case the assumption of the weak c-local and
smooth are dropped.

And we can easily extend the complexity result in Wang et al. (2015) and show that
the decision version of theminimumweighted connected vertex cover Pk problem (k ≥
4) is NP-complete for grid graphs. This is done in the Appendix. However, to our best
knowledge, the hardness results on the “unweighted” version of this problem remains
to be discovered. Furthermore, it is interesting to design and analyze approximation
algorithms for the minimum weight connect vertex cover P3 problem in grid graphs.
It is still open whether our results can be generalized to the minimum weight connect
vertex cover Pk problem under the same assumption. These are problems of our future
interest.
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Appendix

In this section we present the proof of Lemma 2 and the complexity result given in
the concluding section.

The proof of Lemma 2 is given as follows:

Proof The result can be obtained by transforming the problem into the famous
Gregory–Newton Problem concerning about kissing number (Zong 1999). The kiss-
ing number is the maximum number of unit balls that can simultaneously touch the
surface of a unit ball (’touch’ means two balls have exactly one point in common). Let
S(u) be the unit ball with center u, and {x1, . . . , xt } be a maximum set of independent
vertices in S(u). For each i = 1, . . . , t , draw a radial ri with origin u which goes
through xi . Suppose ri intersects the surface of S(u) at point x̃i . Let Si be a unit ball
touching S(u) at x̃i . Since x ′

i s are independent, the angle between any two radials is at
least π

3 . Hence S
′
i s are non-intersecting. It follows that t is at most the kissing number,

which is 12. ��
Next, we introduce a crucial lemma due to Valiant (1981) and some preliminaries

for proving the complexity result.

123



120 J Comb Optim (2017) 33:106–122

Lemma 3 (Valiant 1981) A planar graph G = (V, E)with maximum degree 4 can be
embedded in the plane using O(|V |) area in such a way that its vertices are at integer
coordinates (x, y) and its edges are drawn so that they are made up of a number of
line segments of the form x = i (we refer to this as horizontal line segments) or y = j
(vertical line segments), for integers i and j .

The above lemma plays an important role in the construction of a grid graph G
′

corresponding to the planar graph instance G of the following decision version of the
minimum connected vertex cover problem for planar graphs with maximum degree 4.
Instance: Given a planar graph G = (V, E) with maximum degree 4 and a positive
integer l.
Question: Does G have a connected vertex cover with at most l vertices?

The decision version of the minimumweighted connected vertex cover Pk problem
for grid graphs is stated as follows.
Instance: Given a grid graph G

′ = (V
′
, E

′
), two positive integer l

′
and k, and a

nonnegative weight for every vertex v
′ ∈ V

′
, where k ≥ 4.

Question: Does G
′
have a connected vertex cover Pk set with weight at most l

′
?

We now have all the ingredients to present and prove our complexity result.

Theorem 4 The decision version of the minimum weighted connected vertex cover
Pk problem is NP-complete for grid graphs, where k ≥ 4.

Proof It is not hard to see that this decision problem is in NP. To complete the com-
plexity proof we use a reduction from the minimum connected vertex cover problem
in planar graphs with maximum degree 4, which was shown to be NP-complete in
Garey and Johnson (1977). We transform a planar graph G = (V, E) with maximum
degree 4 into a grid graph G

′
such that G has a connected vertex cover C with |C | ≤ l

if and only if G
′
has a connected vertex cover Pk set C

′
with weight at most l

′
. We

assume without loss of generality that G is connected.
Using Lemma 3, we first embed G in a 2-dimensional grid with edges represented

by horizontal and vertical line segments of length at least k, where k ≥ 4, and with
parallel lines at least a grid square apart. The set V

′
of vertices of our grid graph

G
′
will be made up of two sets: V1, the set of all the grid points corresponding to

the vertices of G, and V2, consists of all the grid points that are internal to the paths
corresponding to the line segments that represent the edges of G. Note that all these
paths representing the edges of G have at least one internal Pk−1 (i.e., not containing
a vertex corresponding to the original graph G). For each vertex u ∈ V , we denote
the vertex of V1 corresponding to u by f (u). Figure 3 shows what a subgraph of G

′

corresponding to an edge uv of G might look like. Now, we define a weight function
w : V ′ → {1, 2, ...} by w( f (v)) = |V2| for every v ∈ V , and w(v) = 1 for every
v ∈ V2.

The constructionofG
′
can clearly be accomplished in polynomial time.To complete

our proof, we claim that there exists a connected vertex cover C in G with |C | ≤ l if
and only if there exists a connected vertex cover Pk set C

′
in G

′
with weight at most

(l + 1)|V2|.
First suppose that the desired connected vertex cover C exists in G. If we take C

′

to be the union of f (C) = { f (v) | v ∈ C} and V2, then, since C is a connected vertex
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Fig. 3 A possible subgraph of

G
′
corresponding to an edge uv

of G

f(u)

f(v)

at least k−1 vertices

cover inG, the subgraph induced by f (C) and V2 inG
′
is connected.Moreover, all the

neighbors of a vertex f (u) for u ∈ V \C are in V2, and hence in C
′
, so C

′
is indeed a

connected vertex cover Pk set in G
′
, with w(C

′
) at most |C ||V2|+ |V2| ≤ (l + 1)|V2|.

For the converse, suppose that there is a connected vertex cover Pk set C
′
with

w(C
′
) at most (l + 1)|V2| in G

′
. We are going to show that G has a connected vertex

cover of cardinality at most l. We may assume that E is not empty; otherwise there
is nothing to prove. Since E is not empty, there is at least one path between vertices
of f (V ) in G

′
, so with an internal Pk that is covered by C

′
. So, C

′
contains at least

one vertex of V2. Since w(C
′
) ≤ (l + 1)|V2|, this implies that C

′
contains at most l

vertices of f (V ). In the following, it remains to show that C = {v ∈ V | f (v) ∈ C
′ } is

a connected vertex cover of G. Clearly, C induces a connected subgraph of G because
f (C) together with paths of V2-vertices induces a connected subgraph of G

′
. Suppose

there is an edge e = uv of E that is not covered by C . Then neither f (u) nor f (v)

is in C . Since G ′[C ′] is connected, this implies that no V2-vertices on the path P of
G ′ between f (u) and f (v) representing e = uv belong to C ′. But then P contains an
internal Pk that is not covered by C ′, a contradiction. This completes the proof. ��
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