
J Comb Optim (2016) 32:1089–1106
DOI 10.1007/s10878-015-9925-3

Directed Steiner trees with diffusion costs

Dimitri Watel1,3 · Marc-Antoine Weisser1 ·
Cédric Bentz2 · Dominique Barth3

Published online: 4 July 2015
© Springer Science+Business Media New York 2015

Abstract Given a directed arc-weighted graph G with n nodes, a root r and k termi-
nals, the directed steiner tree problem (DST) consists in finding a minimum-weight
tree rooted at r and spanning all the terminals. If this problem has several applica-
tions in multicast routing in packet switching networks, the modeling is not adapted
anymore in networks based upon the circuit switching principle in which some nodes,
called non diffusing nodes, are unable to duplicate packets. We define a more general
problem, namely the directed steiner tree with a limited number of diffusing nodes
(DSTLD), that enables us to model multicast in a network containing at most d diffus-
ing nodes. We show that DSTLD is XP with respect to d, and use this result to build a⌈ k−1

d

⌉
-approximation algorithm for DST that is XP in d. We deduce from that result a

strong inapproximability property. In particular, we prove that, under the assumption
that NP � ZTIME[nlogO(1) n], there is no polynomial-time approximation algorithm

This paper is an extended version of Watel et al. (2014).

B Dimitri Watel
dimitri.watel@supelec.fr

Marc-Antoine Weisser
marc-antoine.weisser@supelec.fr

Cédric Bentz
cedric.bentz@cnam.fr

Dominique Barth
dominique.barth@prism.uvsq.fr

1 Department of Computer Science, SUPELEC System Sciences, 91192 Gif Sur Yvette, France

2 CEDRIC-CNAM, 292 rue Saint-Martin, 75141 Paris Cedex 03, France

3 University of Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9925-3&domain=pdf

1090 J Comb Optim (2016) 32:1089–1106

for DSTLD with ratio Ω
(k
d

)
. We finally give an evaluation of performances of an

exact algorithm dedicated to the case d ≤ 3.

Keywords Approximation · Parameterized complexity · Directed steiner tree ·
Diffusing node

1 Introduction

Given a directed arc-weighted graph with n nodes, the directed steiner tree problem
(DST) asks for a minimum-weight tree rooted at a specified node r (called the root)
and spanning a specified set X of k nodes, called terminals. This problem, as well
as its undirected counterpart, are known to have applications essentially in multicast
routing where one wants to minimize the bandwidth consumption (Cheng and Du
2001; Voß 2006; Rugeli and Novak 1995; Novak 2001). DST is used, instead of the
undirected version (Karp 1972), when assuming that the network is symmetric is not
relevant anymore.

Although the undirected version can be approximated in polynomial time within
a constant ratio (Kou et al. 1981; Robins and Zelikovsky 2000), it was proved in
Karp (1972) that DST is a generalization of the Set Cover problem and therefore is
inapproximable within a ratio strictly better than ln(n) unlessNP⊆ TIME[nO(log log n)]
(Feige 1998). It was later proved that, unless NP ⊆ ZTIME[nlogO(1) n], there is no
log2−ε(k)-approximation algorithm for any ε > 0 (Halperin and Krauthgamer 2003).

The best known approximation ratio for DST is O(kε) for any ε > 0 (Charikar et al.
1998). It uses the following result: computing a tree with fixed height l with minimum

weight yields an O(k
1
l)-approximation algorithm (Zelikovsky 1997; Helvig et al.

2001).Note that this latter approximation is neither polynomial norXP in the parameter
l. Both DST and its undirected counterpart are FPT with respect to the parameter k, as
they canbe solvedby an exact algorithm that runs in timeO(3kn+2k(k+log(n))n+n2)
and in space O(2kn) (Dreyfus andWagner 1971; Ding et al. 2007), but areW[2]-Hard
with respect to the parameter “Optimal solution value” (Downey and Fellows 1999;
Jones et al. 2013).

Nevertheless, using DST to model multicast amounts to assuming that when a
branching node (a node with at least 2 successors) of the tree receives a data, it
is able to transmit it to its multiple successors. This is indeed the case in classical
packet switching networks.However, previousworks emphasize the fact that, in optical
networks, this assumption does not hold anymore as most of the nodes, called non
diffusing nodes, cannot copy any data, but can only send it to one of its successors.
As a consequence, a non diffusing branching node has to receive p copies of the data
to transmit it to p successors, and the weight of the arc entering such a node in a tree
solution for the DST model must be paid p times. Fortunately, some routers, called
diffusing nodes, can duplicate data and thus need to receive it only once. Examples
of multicast trees with diffusing and non diffusing nodes are given in Fig. 1. In
the DST problem, it is implicitly assumed that every node is diffusing. The fact that
this may not be the case, and therefore that this may induce additional constraints
on the Steiner trees to be computed, was first considered in undirected wavelength

123

J Comb Optim (2016) 32:1089–1106 1091

r u

v1

v2

r u

v1

v2

Fig. 1 Two examples of multicast trees with one diffusing node and seven non diffusing nodes. On the left
side, u is the diffusing node, and r sends the data once to u, which then copies it twice to v1 and v2, so that
those nodes can transmit it to the terminals. On the right side, v1 is the diffusing node, and r has to send
the data three times to u, as v1 needs to receive the data once and v2 needs to receive it twice

divisionmultiplexing networks (Malli et al. 1998). The optimal placement of diffusing
nodes for given multicast trees was then studied in Lin andWang (2005). Polynomial-
time solvability and approximability results have been established in some cases, for
instance in undirected graphs where the diffusing nodes are already located (Du et al.
2005; Guo et al. 2005; Reinhard et al. 2009), or in case where a multicast tree is given
(Reinhard et al. 2012).

The authors of the present paper previously studied a more constrained model, both
in the directed and undirected cases, where no arc or edge could be used twice or more
to send the same data: in other words, every branching node of the solution must be a
diffusing node (Watel et al. 2013). This problem is equivalent to finding a minimum-
weight Steiner tree which uses a limited number of branching nodes (Watel et al.
2013; Gargano et al. 2002). Finding aminimum-weight directed Steiner tree satisfying
this constraint becomes a problem much harder to solve (exactly or approximately)
than DST, even if both the number of authorized branching nodes and the number of
terminals are fixed. This is due to families of instances where it is NP-Complete to
decide whether there exists a feasible solution, regardless of its weight.

If no node is diffusing, including the root, then the solution cannot contain any
branching node. This case (called the Steiner path problem) is polynomially equivalent
to the Steiner cycle problem (Salazar-González 2003; Steinová 2010), where onewants
to find a minimum-weight cycle containing the root and the terminals. As in the case
where one looks for a directed Steiner tree using a limited number of branching nodes,
it may be hard to decide whether a feasible solution exists for given instances of this
problem. On the contrary, in DST, every node is assumed to be diffusing, and thus no
arc needs to be used more than once. As optimal solutions for DST are trees with at
most k leaves, there is no need to select more than k − 1 diffusing nodes: the (at most)
k − 1 branching nodes of the tree.

In order to reflect the fact that not all nodes are diffusing, one first has to consider a
new way to define the value of a feasible solution, previously introduced in Reinhard
et al. (2009, 2012). The load of an arc in a solution is defined as the amount of data
transiting through it, in order to transfer information from the root to terminals, and the
weight of that arc is equal to its weight multiplied by its load. In the undirected model
introduced in Reinhard et al. (2009, 2012), only trees were considered as feasible
solutions, since it was assumed that, in these networks, optimal solutions were trees.
In such a model, one can recursively define the load as 1 for an arc entering a diffusing
node or a terminal (assuming that terminals have outdegree 0), and as the sum of the
loads of its outgoing arcs for any other node. It turns out that this definition can be

123

1092 J Comb Optim (2016) 32:1089–1106

r

u1 u2

v1 v2

2

2

5

4

r

u1 u2

v1 v2

2

2

5

4

Fig. 2 Examples of optimal placement and diffusion. Theweight of the dashed arcs is 0. On the left side, we
can install at most one diffusing node; u2 is chosen, and theweight of the computed solution is 2×2+5 = 9.
On the right side, we can install at most two diffusing nodes: v1 and v2 are chosen, and the weight of the
computed solution is 2 + 4 = 6

generalized to directed acyclic graphs, but cannot be applied to general digraphs (see
Sect. 2).

In this paper, we also limit the number of diffusing nodes that can exist in the
network under consideration by associating a fixed cost to the act of installing a device
enabling diffusion at any given node, turning it into a diffusing node. The goal could
then be either to minimize the total design cost of the network (which is equal to the
cost of installing devices plus the weight of the computed Steiner tree), or to install
devices while not exceeding a given budget (limiting the number of diffusing nodes),
in order to minimize the design cost of the network (i.e., the weight of the computed
Steiner tree). Both problems are actually polynomial-time equivalent in theory, but not
necessarily with respect to approximation or fixed-parameter tractability. We propose
to study the latter one, which appears to be closer to real-life considerations and to
problems previously studied in the literature. We give an example in Fig. 2.

1.1 Our results

We introduce and study the so-called directed steiner tree problem with a limited num-
ber of diffusing nodes (DSTLD), refining several previous models that were defined
in Du et al. (2005), Guo et al. (2005), Reinhard et al. (2009, 2012), and somewhat
overcoming difficulties raised by the models given in Watel et al. (2013), Gargano
et al. (2002), Salazar-González (2003), and Steinová (2010). For instance, in DSTLD,
we do not impose the optimal solution to be a tree, as this seems to be a more accurate
model for asymmetric network applications with diffusing routers (since, as illustrated
in Fig. 3, not imposing this constraint may lead to cheaper solutions). We prove this
problem to be XP but W[2]-Hard with respect to the number of authorized diffusing
routers d, and NP-Complete even if k − d is fixed.

The core of our paper lies in two results related to approximation. The first one is
a positive one. As already mentioned, computing the minimum-weight Steiner tree

of fixed height l yields a O(k
1
l)-approximation algorithm for DST (Zelikovsky 1997;

Helvig et al. 2001), but this algorithm is neither polynomial nor XP in the parameter
l. Here, we are not interested in the height of the tree, but in the number of diffusing
nodes it contains. We claim that one can transform any instance of DST to get an

123

J Comb Optim (2016) 32:1089–1106 1093

Fig. 3 In this example, the
maximal number of allowed
diffusing nodes is 1

r u v

t1

t2 t3 t4

1

0

instance of DSTLD with d < k diffusing nodes, solve that instance to get a solution
Td , and build from Td a

⌈ k−1
d

⌉
-approximation for the DST instance. As DSTLD is

XP in d, this approximation for DST is also XP in d. The second one is a negative
one, as it is a strong inapproximability result for DSTLD deduced from the previous
result. However, it should be noticed that both results are obtained by exhibiting links
between the best approximation ratio for DST and the one for DSTLD, that could lead
to further improvements in the future.

The paper is organized as follows. The next section provides an example where
returning a graph containing a cycle yields a better solution than returning a tree.
Then, in Sect. 3, we detail some notations that will be useful in this paper, and in Sect.
4 we properly define the new problem that we consider. Sections 5 and 6 respectively
study the parameterized complexity and the approximability of this problem. Finally,
Sect. 7 gives an evaluation of the efficiency of an exact algorithm dedicated to the
case d ≤ 3.

2 The optimal solution is not always a tree

The model developed by Reinhard et al. (2009, 2012) assumes that, in the undirected
case, the optimal routings are always trees. This property cannot be claimed for directed
cases. Figure 3 illustrates a case where returning a graph containing a cycle is a better
answer.

We assume that only one node can be selected as a diffusing node, including r . If
r is selected, then it sends the data once per terminal. The arc (r, u) is used 4 times,
and (u, v) 3 times, for a total weight of 4 ∗ 1 + 3 ∗ 1 = 7. If u is diffusing, then the
root sends the data to u, and u dispatches it to each terminal, for a total weight of
1 + 3 ∗ 1 = 4. Finally, if v is selected, the data is transmitted only once over the path
{(r, u), (u, v)}, the node v is able to send one data to t1 using the {(v, u), (u, t1)} path.
The number of data per arc is one for every arc, and the total weight is 1+1 = 2. This
optimal routing is not a tree but it is always possible to describe the routing as a tree.
For example, this solution can be described as {(r, v), (v, t1), (v, t2), (v, t3), (v, t4)},
a tree where each arc describes a shortest path in the original graph.

3 Notations

Given a directed graph H , we define as V (H) its vertex set, and as A(H) its arc set.
Moreover, given an instance of DST, we denote by n the number of vertices in this

123

1094 J Comb Optim (2016) 32:1089–1106

instance, by m the number of arcs, by X the set of terminals and by k the number of
terminals. If we further want to impose a bound on the maximum number of diffusing
nodes in the returned solution, we shall denote this bound by d.

Let u and v be two nodes in a directed graph G weighted over its arcs with function
ω. We define as P(u, v) the shortest path linking u and v in G, and as ω�(u, v)

the weight of this path. If P(u, v) does not exist, then ω�(u, v) = +∞. If multiple
shortest paths exist, one is arbitrary chosen as P(u, v). If G ′ is a subgraph of G,
then ω(G ′) = ∑

a∈A(G ′)
ω(a), and similarly ω�(G ′) = ∑

(u,v)∈A(G ′)
ω�(u, v); notice that

∑

a∈⋃
P(u,v),

(u,v)∈A(G ′)

ω(a) ≤ ω�(G ′) ≤ ω(G ′).

We assume without loss of generality that the root does not have any predecessor
and has only one successor. We also assume the terminals to be leaves. If not, we
first preprocess the graph to ensure those properties. For instance, if the root r has a
predecessor or two successors, we simply add a new node r ′, define r ′ as the new root
of the instance and add an arc (r ′, r) with weight 0.

Definition 1 Let I = (G = (V, A), r, X, ω) be an instance of DST. Then the shortest
paths instance I� = (G� = (V, V × V), r, X, ω�) defines the instance where G� is
a complete graph weighted by the lengths ω� of the shortest paths in G.

ω� satisfies the triangle inequality. Sincewe assume that the root has no predecessor
and that the terminals are all leaves, each arc entering r and each arc leaving a terminal
has infinite weight in the shortest paths instance.

Definition 2 A branching node is a node with at least two successors.

4 The directed steiner tree with limited number of diffusing nodes

In this section, we define our model and explain its relation with the optical network
problem with diffusing nodes. The main remark is that a diffusing node in a solution
for I is in fact a branching node in a solution for I�. From Fig. 3, an optimal solution
to DSTLD is not necessarily a tree in the initial graph, but it is always a tree in the
associated shortest paths instance.

Problem 1 Given a DST instance I = (G, r, X, ω) and an integer d ∈ [1; k − 1],
the directed steiner tree problem with limited number of diffusing nodes (DSTLD)
consists, in the shortest paths instance I� associated to I, in the search for a tree T �
rooted at r , spanning X , containing at most d branching nodes and minimizing the
weight ω�(T �) = ∑

(u,v)∈A(T �)

ω�(u, v).

We do not consider the case d = 0 as each terminal is a leaf.
As, from Sect. 2, an optimal solution in G may not be a tree, we no longer refer to

feasible solutions to DSTLD as Steiner trees in G but either as diffusions in G or as
Steiner trees in G�.

For instance,we give in Fig. 4 the shortest paths instanceI� for theDSTLD instance
I given as an example in Fig. 3. In I, we are searching for a diffusion with at most one

123

J Comb Optim (2016) 32:1089–1106 1095

Fig. 4 Shortest paths instance
I� for the DSTLD instance I
given in Fig. 3. The arcs of
weight +∞ do not appear r u v

t1

t2 t3 t4

diffusing node. As a consequence, we are searching for a tree T � in I� with at most one
branching node. The optimal solution is T � = {(r, v), (v, t1), (v, t2), (v, t3), (v, t4)},
where v is the unique branching node.

4.1 Link with DST

When d ≥ k−1, the instance of DSTLD and the instance of DST described in Problem
1 are equivalent:

– From a feasible solution T for DST, one can build a feasible solution T � for
DSTLD by replacing each arc (u, v) of T by the associated arc (u, v) in G�. Since
G� is weighted by lengths of shortest paths, we have ω�(T �) ≤ ω(T).

– Conversely, from a feasible solution T � for DSTLD, one can build a feasible
solution T for DST by returning

⋃
(u,v)∈A(T �) P(u, v). The two solutions satisfy

ω(T) ≤ ω�(T �).

As a consequence, any α(k)−approximation algorithm for DSTLD implies an
α(k)−approximation algorithm forDST.As, in this particular case, we have d ≥ k−1,
this result also holds for an α(d)−approximation for DSTLD.

Theorem 1 DSTLD is NP-Complete and any approximation algorithm for DSTLD
with ratio α(d) or α(k) implies an approximation algorithm with ratio α(k) for DST.

4.2 Application of DSTLD to multicast in an optical network

From a feasible solution of DSTLD, we can determine the diffusing nodes of the
network and the load inside each arc needed to transmit the data from the root to all
terminals. Let T � be a feasible solution of an instance of DSTLD.

– Each branching node in T � is a diffusing node in G.
– The load l(a) of an arc a in G is the number of times it appears in path P(u, v)

for every (u, v) ∈ A(T �).

We now suppose that the data is transmitted from the root to each terminal using
T �. It is copied at each diffusing node in the original graph. As a consequence, the
data goes through each path P(u, v) for (u, v) ∈ A(T �) exactly once, thus through
each arc a number of times equal to its load. Note that some diffusing nodes in G can

123

1096 J Comb Optim (2016) 32:1089–1106

be non branching nodes, and some branching nodes in G can be non diffusing. The
weight of T � is, as defined in the previous model of Reinhard et al. (2009, 2012), the
sum, over all the arcs, of the weight of each arc multiplied by its load.

For example, in Figs. 3 and 4, the optimal solution for DSTLD is the directed
tree T � = {(r, v), (v, t1), (v, t2), (v, t3), (v, t4)} of the shortest paths instance
I�. The weight of that tree is 2 and v is its unique branching node. In the
original instance I, we can notice that the corresponding shortest paths are
{(r, u, v), (v, u, t1), (v, t2), (v, t3), (v, t4)}. As a consequence, v is chosen as a dif-
fusing node, r sends a data to v through u, and v copies it to the four terminals: this
is the solution described in Sect. 2.

Lemma 1 ω�(T �) = ∑

a∈A(G)

l(a)ω(a)

Remark 1 The DSTLD model does not allow a non diffusing root to send the data
more than once although the root has no such limitation in a real network. This permits
us to simplify the proofs of this paper by reducing the number of different types of
node: diffusing or not.

Remark 2 Contrary to themodels inWatel et al. (2013), Gargano et al. (2002), Salazar-
González (2003), Steinová (2010), we can decide in polynomial time if an instance
contains a feasible solution. Indeed, if the original graph contains a path from the root
to every terminal, then we can return the star (with one branching node) in I� that is
centered at the root and contains all the terminals. On the contrary, if some terminal
is unreachable from the root, then the instance has no solution of finite weight.

4.3 Application of DSTLD to multicast in an optical network where the
diffusing nodes are already chosen

DSTLD assumes that every node in the network is able to diffuse if needed, but at
most d branching nodes will actually diffuse in order to limit, for example, energy
consumption or signal loss quality. On the contrary, we can assume, as in Du et al.
(2005); Guo et al. (2005); Reinhard et al. (2009), that the possible diffusing nodes
D are already placed in the graph, for instance because the technology for diffusing
routers is specific. We set d to |D|.

Note that any data sent from the root or a diffusing nodemust reach, along a shortest
path, either another diffusing node, or a terminal. Consequently, we can, as in Du et al.
(2005), Guo et al. (2005), look for a solution in the shortest paths instance I�

r restricted
to {r} ∪ X ∪ D, instead of the complete instance I�.

Because d = |D|, no tree in I�
r rooted at r and spanning X can have more than d

branching nodes. As a consequence, an optimal multicast routing is then described by
an optimal directed Steiner tree T ∗ in I�

r . Moreover, any α-approximation algorithm
for DST gives an α-approximation algorithm for this problem.

123

J Comb Optim (2016) 32:1089–1106 1097

5 Parameterized complexity

In this section, we establish three parameterized complexity results over the DSTLD
model. The two first ones claim that DSTLD parameterized by d belongs to the class
XP, although it is W[2]-Hard. The last one studies DSTLD parameterized by k − d
and shows it is an NP-Complete problem.

In order to show the first result, we firstly prove that any tree with internal non
branching nodes can be reduced to a smaller tree.

Lemma 2 Let T � be a feasible solution of an instance I� of DSTLD. A directed tree
with weight at most the one of T �, rooted at r , and containing only all the terminals
X and the branching nodes B of T � can be obtained in polynomial time from T �.

Proof We delete all the cycles and leaves not in X ∪ B. We get a directed tree rooted at
r with lower weight, with less branching nodes, and where all the leaves are in X ∪ B.
Let E be the set {r} ∪ X ∪ B. We now replace each path with endpoints in E and
internal nodes not in E by a single arc of G�. As the weights satisfy the triangular
inequality, the weight of the tree does not increase. The obtained tree is a feasible
solution and contains only r , X and B. ��

By Lemma 2, one of the optimal solutions is such a tree in G�. As any terminal
in the original graph is a leaf, it is also a leaf in any optimal solution. Thus, we can
reduce the search space to the trees with k leaves and at most d internal nodes.

Theorem 2 DSTLD is XP when parameterized by d.

Proof We prove there is an exact polynomial-time algorithm for DSTLD when d is
fixed. Let I� be an instance of DSTLD. Let κ = (u1, u2, . . . , u j) be j distinct nodes of
V , with j ≤ d. We now search for a minimum-weight feasible solution T �

κ containing
every node of κ and where each branching node is in κ . Obviously, if κ is exactly the
set of branching nodes of an optimal solution T ∗ of I�, then T �

κ is also an optimal
solution: by iterating over all possible sets κ , we thus return an optimal solution.

By Lemma 2, if T �
κ has a finite weight, then it can be searched for among all the

trees rooted at r , containing only κ and X , and in which r has only one child if it is
not in κ . We now point out that, if r ∈ κ , then the tree T �

κ is a spanning tree (rooted
at r) of the shortest paths graph G� restricted to r , κ and X . Thus, we search for a
minimum-weight spanning tree T � in that graph. Every branching node of T � is in κ:
indeed, every terminal is a leaf in G, unless the weight of T �

κ is infinite, so T � does
not use any terminal as a branching node.

If r /∈ κ , then we search for T �
κ among all the spanning trees (rooted at r) of the

shortest paths graph G� restricted to r , κ and X , where r has only one successor: there
are d such trees. Every branching node of such a tree is in κ in this case too.

A minimum-weight directed spanning tree can be found in time O((1 + k + d)2)

(Tarjan 1977), so our algorithm runs in time O(dnd(1 + k + d)2). ��
Theorem 3 DSTLD is W[2]-Hard when parameterized by d.

Proof We use a variant of the classic Directed Steiner Tree reduction from the Set
Cover problem. Given a set of elements U , a set S of subsets of U and an integer N ,

123

1098 J Comb Optim (2016) 32:1089–1106

I

r

I

r

Fig. 5 Example of reduction from a set cover instance with U = {x1, x2, x3, x4} and S =
{{x1, x2}, {x2, x3, x4}, {x2, x4}}. The instance I of DSTLD is on the left side and the associated short-
est paths instance I� is on the right side

the Set Cover problem is to find at most N sets of S covering all the elements in U .
We consider neither the trivial instances where either one set covers all the elements
or all the sets are needed in order to cover all the elements, nor the trivial instances
where some elements fromU cannot be covered. This problem isW [2]-complete with
respect to N (Downey and Fellows 1999).

We define a fixed-parameter reduction from this parameterized problem to the deci-
sion problem associated to DSTLD. Given an instance of the Set Cover problem, we
construct an instance I = (G = (V, A), r, X, ω, d, N ′) of the decision problem asso-
ciated to DSTLD, and the corresponding shortest paths instance I�. We ask whether
I� contains a tree T � rooted at r , covering X , containing at most d branching nodes,
and satisfying ω�(T �) ≤ N ′. For each set in S we add a set node s in V . For each
element in U , we add an terminal element in X . Finally we add a root r to V . We
link r to each set node with an arc of weight 1, and link a set node to an terminal
element with an arc of weight 0 if the associated element is in the associated set in the
Set Cover instance. We set the parameter d to N + 1 and the parameter N ′ to N . The
shortest paths instance, in which we want to compute T �, can be built by adding, for
each terminal t , an arc from r to t of weight 1. For each pair of vertices u, v such that
there exists no path from u to v so far, we also add an arc of weight +∞ from u to v.
An example is shown in Fig. 5 (where arcs of weight +∞ do not appear).

If there exists a cover c ⊂ S with |c| ≤ N , let T � be the tree of I� rooted at r and
using each set node associated with a set of c to cover X . As we do not consider the
Set Cover instances where an optimal solution contains only one set, we have |c| > 1.
Consequently, the root r is a branching node of T �, which has |c| + 1 ≤ d branching
nodes. The weight of T � is exactly |c| ≤ N = N ′. Thus, the instance I� contains a
feasible solution.

We now assume that there exists a feasible solution T � of I�. As we do not consider
the Set Cover instances where an optimal solution contains only one set, the root r has
at least two children in T �. Let D1 be the set nodes of T � that are branching nodes,
let X1 be the terminals covered by an arc going out of a set node of D1, and let X2 be
the other terminals, covered either directly by an arc linking the root to it or by an arc
going out of a non-branching set node. The weight of T � is |D1| + |X2| ≤ N ′ = N .
We build a cover c of X by selecting each set node of D1 and an arbitrary set covering
it for each element of X2. Then |c| ≤ N , and c is a feasible solution of the Set Cover
instance.

123

J Comb Optim (2016) 32:1089–1106 1099

This FPT reduction proves DSTLD to be W[2]-hard with respect to d. ��
Theorem 4 Even if p = k −d is a fixed parameter, DSTLD is NP-Complete, and any
α(d)-approximation algorithm for DSTLD in this case yields an α(k′)-approximation
algorithm for DST (where k′ is the number of terminals in an arbitrary instance of
DST).

Sketch of proof This theorem extends Theorem 1. Let p be a fixed integer. From an
instance I for DST with k′ terminals, one can build an instance Id for DSTLD with
k terminals satisfying k − d = p by adding to I a star of weight 0 centered at r
and having p leaves, all of them being terminals. Thus, k′ = k − p = d. Obviously,
from any feasible solution for Id , one can build in polynomial time a solution for I
at least as good as the solution for Id , and vice versa (since a solution for I that has
more than k′ −1 diffusing nodes can easily be transformed into a cheaper one that has
at most k′ − 1 diffusing nodes). Consequently, any α(d)-approximation for Id is an
α(k′)-approximation for I. ��

6 Approximability

In this section we are interested in approximation results over DSTLD. The first sub-
section gives a k-approximation for DSTLD. The second subsection establishes an
approximation ratio between an optimum solution for a DSTLD instance and an
optimum solution for an associated DST instance. The last subsection shows an inap-
proximability result for DSTLD which is a consequence of the first result.

6.1 A k-approximation for DSTLD

Lemma 3 The algorithm which returns the tree T � = {(r, x), x ∈ X} is a k-
approximation.

Proof This tree is a feasible solution as it contains one branching node (or 0 is there
is only one terminal) and d is always greater than 1. Let T̂ � be an optimal solution of
weight ω̂�. For every terminal x , T̂ � contains a path from r to x , thus ω�(r, x) ≤ ω̂�.
Consequently, ω�(T �) = ∑

x∈X
ω�(r, x) ≤ k · ω̂�. ��

This k-approximation is similar to the shortest paths algorithm for DST that returns
the union of all the shortest paths from r to the terminals. However, this one differs
from the shortest paths algorithm, as the weight of the returned tree T � is the sum of
the weights of the shortest paths, which is greater than the weight of the union of the
shortest paths.

One can build better approximations by using the algorithm described in the proof
of Theorem 2. Let Id = (G, r, X, ω, d) be an instance of DSTLD: any tree with less
than d branching nodes is a feasible solution for Id . As a consequence, we could
return an optimal solution of Id ′ = (G, r, X, ω, d ′), with d ′ ≤ d. As DSTLD is XP
with respect to d, this approximation is XP with respect to d ′. Note that the algorithm

123

1100 J Comb Optim (2016) 32:1089–1106

described in Lemma 3 returns a feasible solution of I1. This solution may not be
optimal, as an optimal solution can use a node different from the root as branching.

Remark 3 Note that the algorithm returning an optimal solution of Id ′ , for any fixed
integer d ′ ≥ 1, is also a k-approximation, and the ratio is tight (meaning there are
instances for which this ratio is reached).

6.2 How DST can be approximated by DSTLD

Restricting the search space to trees with fixed height l gives a O(k
1
l)-approximation

for DST (Zelikovsky 1997; Helvig et al. 2001). However, this approximation is neither
polynomial nor XP in l. We are interested here in reducing the number of authorized
diffusing nodes instead of the height of the tree.

Any DST instance I = (G, r, X, ω) can be transformed into a DSTLD instance Id
by adding a parameter d ≤ k − 1. We now prove that computing an optimal solution
for Id gives an approximated solution for I. As DSTLD is XP with respect to the
parameter d, it is possible to compute this solution efficiently for small values of d.
We now assume that k > 1. 5 Let T ∗ be an optimal solution for I, and let T ∗

d be an
optimal solution for Id .
Lemma 4

ω�(T ∗
d)

ω(T ∗) ≤ ⌈ k−1
d

⌉
.

Proof We will transform T ∗ into a feasible solution T �
d of Id , by replacing d subtrees

of T ∗ by stars. We first build the equivalent tree T ∗ in G�: each arc (u, v) of T ∗ is
replaced by the associated arc (u, v) in G�. As (u, v) is weighted in G� by the length
ω�(u, v) of a shortest path between u and v, its weight does not increase.

We define for a node u of T ∗ the subtree rooted at u as T ∗(u) and the set of terminals
it reaches as X (u). Let v be a node such that:

{ |X (v)| ≥ 1 + ⌈ k−1
d

⌉

|X (w)| < 1 + ⌈ k−1
d

⌉
for each successor w of v in T ∗.

If no node can satisfy those properties, then |X (u)| < 1+ ⌈ k−1
d

⌉
for every node u. In

that case, we choose v as the first branching node reached by r in T ∗ (or r itself if it
is a branching node).

In G�, S(v) is the star containing the arc (v, t) for all t ∈ X (v). The weight
ω�(S(v)) of S(v) is at most

∑

t∈X (v)

∑

a∈PT∗ (v,t)
ω�(a), where PT ∗(v, t) is the path from

v to t in T ∗. Moreover, for an arc a in T ∗(v), the number of distinct paths PT ∗(v, t)
containing a cannot be more than

⌈ k−1
d

⌉
. Indeed, each successor of v reaches at most⌈ k−1

d

⌉
terminals. So, we have:

ω�(S(v)) ≤
⌈
k − 1

d

⌉
· ω�(T ∗(v)) (1)

We temporarily replace in T ∗ the subtree T ∗(v) by a terminal t (1). The obtained tree
T (1) contains at most k − |X (v)| + 1 ≤ k − ⌈ k−1

d

⌉ ≤ k − k−1
d terminals. We repeat

123

J Comb Optim (2016) 32:1089–1106 1101

this operation and build the trees T ∗(2), T ∗(3), . . . until it remains only one terminal.
As each operation removes at least k−1

d terminals, this operation is repeated at most d
times.

We now expand all the stars in reverse order. The resulting graph is a tree T �
d in

G� containing all the terminals in X and at most d branching nodes (the roots of the
stars). By equation (1), ω�(T �

d) ≤ ⌈ k−1
d

⌉
ω�(T ∗) ≤ ⌈ k−1

d

⌉
ω(T ∗). ��

Remark 4 There is no
⌈
d2
d1

⌉
-approximation ratio between two optimal solutions of

Id1 and Id2 , because the Steiner tree can have less than k − 1 branching nodes. The
only known result is ω(T ∗) = ω�(T ∗

k−1) ≤ · · · ≤ ω�(T ∗
2) ≤ ω�(T ∗

1) ≤ k · ω(T ∗).

Theorem 5 From any α(d, k)-approximation algorithm for DSTLD, one can obtain,
for any d ∈ �1; k − 1�, an approximation algorithm of ratio α(d, k) · ⌈ k−1

d

⌉
for DST.

Proof If we compute our α-approximation algorithm over Id , we get in G� a tree
T �
d satisfying ω�(T �

d) ≤ α(d, k) · ω�(T ∗
d). The tree T = ⋃

(u,v)∈A(T �
d) P(u, v) is a

feasible solution for I with weight at most ω�(T �
d).

By Lemma 4, ω(T) ≤ α(d, k)
⌈ k−1

d

⌉ · ω(T ∗). ��
With this technique, one can either choose a fixed parameter d to get a polynomial

approximation with ratio
⌈ k−1

d

⌉
for DST (to be more specific, this approximation is

XP with respect to d, from Theorem 2), or choose a variable parameter d = f (k)
for some function f (for instance d = �log(k)�), and compute a polynomial approx-
imation with ratio α(d, k) for DSTLD to get a polynomial approximation with ratio

α(f (k), k)
⌈
k−1
f (k)

⌉
for DST.

6.3 Inapproximability result for DSTLD

Using the previous result and the current best known lower bound for the best
approximability ratio for DST, we can prove the following corollary, extending the
inapproximability result given in Watel et al. (2014). The key idea of this corollary is
to use a variable parameter d such that α(d, k)

⌈ k−1
d

⌉
is always smaller than a lower

bound on the best possible approximation ratio for DST.

Corollary 1 Unless N P ⊆ ZT I ME(t), for any ε > 0 and any c > 0, there is no
α(d, k)-approximation algorithm for DSTLD if there is some function f : N → N

satisfying f (k) ∈ �1; k − 1� and α(f (k), k) ·
⌈
k−1
f (k)

⌉
≤ c · log2−ε(k), except for a

finite number of values of k.

Proof Let K be the set of integers k for which α(f (k), k) ·
⌈
k−1
f (k)

⌉
> c · log2−ε(k).

If such an approximation exists, then, by Theorem 5, an α(f (k), k) ·
⌈
k−1
f (k)

⌉
-

approximation for DST would exist. As a consequence, we would be able to design a
c · log2−ε(k)-approximation for DST, except for k ∈ K . Furthermore, c · log2−ε(k) ≤
log2−(ε/2)(k), except for a finite number of values of k. Let K ′ be the finite set of values

123

1102 J Comb Optim (2016) 32:1089–1106

of k for which this inequality does not hold. For all ε > 0, there is no log2−(ε/2)(k)-
approximation algorithm for DST, unless N P ⊆ ZT I ME(t), even if we do not
consider the DST instances such that k ∈ K ∪ K ′ (Halperin and Krauthgamer 2003).

Consequently, there is no α(d, k)-approximation algorithm for DSTLD. ��
Using this corollary, we can now exhibit the following inapproximability result:

Corollary 2 Unless N P ⊆ ZT I ME(t), for any ε > 0 and any c > 0, there is no
α(d, k) = c · ⌈ k−1

d

⌉ · log2−ε(k)-approximation algorithm for DSTLD.

Proof Let f (k) = k−1
2 : we have α(f (k), k) ·

⌈
k−1
f (k)

⌉
= c ·

⌈
k−1
f (k)

⌉2 · log2−ε(k) ≤
4c · log2−ε(k). By Corollary 1, this result is proven. ��

We can similarly prove the following stronger result:

Corollary 3 Unless N P ⊆ ZT I ME(t), for any ε > 0, any c1 > 0 and any c2 > 1,
there is no α(d, k)-approximation algorithm for DSTLD, where α(d, k) = c1� k−1

d � ·
log2−ε(k) if d = � k−1

c2
� and α(d, k) = +∞ otherwise.

Note that Corollary 1 does not prove, for example, that there is no
⌈
k−1
dε′

⌉
-

approximation algorithm for DSTLD if ε′ < 1. Indeed, any function f (k) such that⌈
k−1
f (k)ε′

⌉
·
⌈
k−1
f (k)

⌉
≤ c·log2−ε(k) satisfies f (k) ≤ k for any sufficiently big k. However,

in the corollary, f (k) is lower than k.
It is not clear how should the approximation ratio vary with d. Is it an increasing

function or a deacreasing function? The fact that the problem is XP with d and NP-
Complete with k−d could be an argument showing that the problem is harder to solve
when d increases.

7 Evaluation of performances

We give in this section an evaluation of how the weight of a minimum-weight directed
Steiner tree (with k − 1 allowed diffusing nodes) is affected when we use at most
one, two or three diffusing nodes. We study the algorithm XP with respect to d
described in Theorem 2. For the DST problem, the trivial shortest paths algorithm (a k-
approximation returning the union of the shortest paths from the root to the terminals)
is a very good algorithm in practice (fast and efficient regardless of its approximation
ratio), often used to solve DST. We want to determine whether a similar trivial algo-
rithm is as practical for DSTLD, as it can be used to approximate DSTLD and DST
(as explained in the previous section).

The algorithm was implemented in Java 1.7.0_025 and the experiments were run
on Ubuntu 12.10 with Intel Core 3.10 GHz processors.

7.1 Description of the test set

A test set named SteinLib aggregatesmost of the generatedUndirected Steiner Problem
instances that can be found in the literature (Koch and Martin 2001). Each instance

123

J Comb Optim (2016) 32:1089–1106 1103

Table 1 This table contains, among all the instances built from the given groups and for each relative error
δi , the mean M in percent, the standard deviation SD of δi in percent and the number of instances for which
δi is null

SteinLib groups δ1 δ2 δ3

M SD = 0 M SD = 0 M SD = 0

B and C 108 71 0 78 61 0 62 55 3

I080 and I160 23 20 35 13 14 54 8 11 74

ES10FST to ES100FST 432 196 0 274 129 0 198 99 0

is given with the weight of an optimal solution. To run the experiments on directed
graphs, we transformed the SteinLib instances into bidirected instances where each
edge was replaced by two opposite arcs with the same weight and, without loss of
generality, chose any terminal as the root. Indeed, as the instances are bidirected,
the weight of an optimal solution for DST or DSTLD is the same, regardless of the
terminal we choose to be the root. We then processed each instance to ensure that
each terminal was a leaf and that the root had only one successor. We finally built
the shortest paths instance using the Roy-Warshall-Floyd algorithm to compute the
shortest paths between all pairs of vertices in time O(n3), where n is the number of
vertices (Floyd 1962).

The test sets were generated from parts of the following SteinLib groups: WRP3,
I080 and I160, ES10FST to ES100FST, B and C. Some instances of these groups (c11,
and wrp3-55 to wrp3-99) and of other groups were not considered, because of the time
or the memory needed to compute the associated shortest paths instance. The size of
the test set is 422.

The number of nodes in each instance is, for the most part (350 instances), less than
200. There are only four instances with more than 1000 nodes. The maximum number
of nodes is 1414 for the instance wrp3-45.

7.2 Quality of the returned solutions

Considering an instancewith an optimal weight equal toω∗ when k−1 diffusing nodes
are allowed, we computed the optimal weights ω1, ω2 and ω3 of the instance when
respectively one, two and three diffusing nodes were allowed. The first weight is the
weight of an optimal directed Steiner tree and was given with the SteinLib instance.
The three other weights were obtained by adapting the algorithm of Theorem 2 to those
simple cases: this gives a linear-time algorithm for d = 1, a quadratic-time algorithm
for d = 2 and a cubic-time algorithm for d = 3.

We studied the relative errors δ1 = ω1−ω∗
ω∗ , δ2 = ω2−ω∗

ω∗ and δ3 = ω3−ω∗
ω∗ . To bemore

specific, we computed the mean, the standard deviation and the number of instances
for which the error is null. The results are given in Table 1.

The results for theWRP3 group do not appear in this table, because the relative error
was always less than 10−3 but never null. This may be due to the fact that each arc of

123

1104 J Comb Optim (2016) 32:1089–1106

each instance is weighted with a very large number: the weight of an optimal solution
is high, and the weight of every feasible solution is close to the optimal weight.

We recall that we preprocessed every instance such that the terminals are leaves.
Let I = (G, r, X, ω) be a DST instance with k terminals. Let Δ be the maximum
outdegree of the nodes of G. Finally, let T be a feasible solution of I with b branching
nodes. The number of leaves of T is at most Δ · b− (b− 1) (this can easily be proved
by induction on b). As all the terminals are leaves, k ≤ Δ ·b− (b−1), thus b ≥ k−1

Δ−1 .
Let Id = (G, r, X, ω, d) be a DSTLD instance such that d < b. The b branching
nodes of T (seen as a feasible solution of Id) cannot all be diffusing nodes in Id : some
arcs are necessarily used more than once, and the weight of an optimal solution of Id
is greater than the weight of an optimal solution of I. Intuitively, the greater is the gap
between d and k−1

Δ−1 , the greater is the gap between the two optimal weights.

It appears that for the groups I080 and I160, k−1
Δ−1 ≤ 4. For B, k−1

Δ−1 ≤ 3 except
for four instances (b09, b12, b15 and b18 for which the values are respectively 7 ,
5, 8 and 6). For C , k−1

Δ−1 ≤ 9, except for five instances (c04, c05, c09, c10, c15 for

which the values are respectively 12, 27, 12, 22, 13). Finally, for WRP3, k−1
Δ−1 ≤ 5,

except for five instances (wrp3-29, wrp3-36, wrp3-41, wrp3-43 andwrp3-52 for which
the values are respectively 6, 8, 9, 10, 7). On the contrary, for the groups ES30FST
to ES100FST, the degree is small and the number of terminals is high. k−1

Δ−1 is often
constant for all the instances in the same group. The values vary from 9 (for ES30FST)
to 32 (for ES100FST). Consequently, it appears there is a correlation between k−1

Δ−1
and the results in Table 1. This strengthens our intuition.

Note that, for each group, the mean of δ3 is half the mean of δ1. It appears we can
benefit from looking for solutions with more than one diffusing nodes.

Nevertheless, δ1, δ2 and δ3 are high. This means that the deletion of a large number
of diffusing nodes is costly to a network and that it seems better to allow more than 3
diffusing nodes, even for small networks.

7.3 Evaluation of the computation time

We also registered, for each instance, the time in milliseconds required to compute
each solution. This time does not include the time needed to compute the shortest
paths instance. We grouped the instances in categories depending on their number of
nodes. The results, for each category, are given in Table 2.

The high values of the standard deviations are due to the small number of instances
in each category and the fact that each category depends only on the number of nodes,
whereas the computation time also depends on the number of arcs and terminals.

According to Table 2, and considering a real-time application where a network
has to satisfy an input multicast request, one can only search for a solution with one
diffusing node as only this algorithm takes less than one second to return an optimal
solution. On the contrary, the time needed to compute an optimal solution with at most
3 diffusing nodes remains acceptable for any network provisioning application, where
the purpose is to install 3 or more diffusing nodes in a network, in such a way that the
weight of each multicast request which would be satisfied using at most 3 diffusing
nodes is minimized.

123

J Comb Optim (2016) 32:1089–1106 1105

Table 2 This table contains, in milliseconds, the mean M and the standard deviation SD of the time
required to compute ω1, ω2 and ω3 for each category of instance

Size d = 1 d = 2 d = 3

M SD M SD M SD

n ≤ 100 178 <1 1.36 18 20 483 477

100 < n ≤ 200 172 4 5 264 274 13 × 103 14 × 103

200 < n ≤ 300 32 13 10 1341 727 98 × 103 59 × 03

300 < n ≤ 400 6 13 12 1965 1735 194 × 103 176 × 103

400 < n ≤ 500 23 94 196 8 × 103 8 × 103 1516 × 103 1618 × 103

n > 500 11 61 32 24 × 103 18 × 103 9719 × 103 10916 × 103

The second column gives the number of instances in each category

Considering how the computation time grows with the number of allowed diffusing
nodes, this algorithm seems unlikely to be used when d > 3. Consequently, it seems
necessary to find an approximation algorithm or a heuristic algorithm to compute
feasible solutions allowed to use more than 3 diffusing nodes.

8 Conclusion and perspectives

We have proposed a generalization of the DST in order to model multicast routing in
networks containing at most d diffusing nodes. We have proved that this problem is
XP in d by providing an algorithm to solve it. We have used this algorithm to design
an approximation algorithm for the DST which runs in time XP in d. However, we
have also shown a strong inapproximability result for DSTLD.

Even so, the only polynomial-time approximation algorithm thatwas considered for
DSTLD has a ratio depending only on k. According to the evaluation of performance,
considering the initial application (multicast requests in optical networks), the exact
algorithm XP in d we provide for DSTLD cannot be used in practice with more than
d > 3 diffusing nodes, due to its high computational time, whereas a better algorithm
(providing exact or approximate solutions) would be interesting, as allowing at most
3 diffusing nodes in a network is penalizing. Thus, it seems necessary to build new
approximation algorithms for DSTLD with better ratios, depending on k and d.

References

Charikar M, Chekuri C, Cheung T, Dai Z (1998) Approximation algorithms for directed Steiner problems.
In: Proceedings of SODA, pp 192–200

Cheng X, Du D-Z (2001) Steiner trees in industry, vol 11. Kluwer, Dordrecht
Ding B, Yu JX, Wang S, Qin L (2007) Finding top-k min-cost connected trees in databases. In: ICDE, pp

836–845
DowneyR, FellowsM (1999) Parameterized complexity.Monographs in computer science. Springer, Berlin
Dreyfus SE, Wagner RA (1971) The Steiner problem in graphs. Networks 1(3):195–207
Du H, Jia X, Wang F, Thai MY, Li Y (2005) A note on optical network with nonsplitting nodes. JCO

10:199–202

123

1106 J Comb Optim (2016) 32:1089–1106

Feige U (1998) A threshold of ln n for approximating set cover. JACM 45(4):634–652
Floyd R (1962) Algorithm 97: shortest path. Commun ACM 5(6):345
Gargano L, Hell P, Stacho L, Vaccaro U (2002) Spanning trees with bounded number of branch vertices.

In: Proceedings of ICALP, pp 355–365
Guo L, WuW, Wang F, Thai M (2005) An approximation for minimum multicast route in optical networks

with nonsplitting nodes. J Comb Optim 10(4):391–394
Halperin E, Krauthgamer R (2003) Polylogarithmic inapproximability. In Proceedings of the 35th ACM

symposium on theory of computing (STOC), ACM, New York, pp 585–594
Helvig CS, Robins G, Zelikovsky A (2001) An improved approximation scheme for the group Steiner

problem. Networks 37(1):8–20
Jones M, Lokshtanov D, Ramanujan M, Saurabh S, Suchy O (2013) Parameterized complexity of directed

Steiner tree on sparse graphs. In: Proceedings of ESA, pp 671–682
Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations.

The IBM research symposia series, Springer, New York, pp 85–103
Koch T, Martin A, Voß S (2001) SteinLib: an updated library on Steiner tree problems in graphs. In:

Combinatorial optimization, vol 11, Springer, New York, pp 285–325
Kou L, Markowsky G, Berman L (1981) A fast algorithm for Steiner trees. Acta Inf 15:141–145
Lin H-c, Wang S-w (2005) Splitter placement in all-optical WDM networks. Global telecommunications

conference
Malli R, Zhang X, Qiao C (1998) Benefit of multicasting in all-optical networks. In: Proceedings of the

SPIE conference on all-optical networking
Novak R (2001) A note on distributed multicast routing in point-to-point networks. Comput Oper Res

28(12):1149–1164
Reinhard V, Cohen J, Tomasik J, Barth D,Weisser M-A (2012) Optimal configuration of an optical network

providing predefined multicast transmissions. Comput Netw 56(8):2097–2106
Reinhard V, Tomasik J, Barth D, Weisser M-A (2009) Bandwidth optimization for multicast transmissions

in virtual circuit networks. IFIP networking, pp 859–870
Robins G, Zelikovsky A (2000) Improved Steiner tree approximation in graphs. In Proceedings of the

SODA, pp 770–779
Rugeli J, Novak R (1995) Steiner tree algorithms for multicast protocols. Manuscript
Salazar-González J-J (2003) The Steiner cycle polytope. Eur J Oper Res 147(3):671–679
SteinováM (2010) Approximability of the minimum Steiner cycle problem. Comput Inform 29:1349–1357
Tarjan R (1977) Finding optimum branchings. Networks 7(1):25–35
Voß S (2006) Steiner tree problems in telecommunications. In: Handbook of optimization in telecommuni-

cations, Springer, New York, pp 459–492
Watel D, Weisser M, Bentz C, Barth D (2013) Steiner problems with limited number of branching nodes.

In: Proceedings of SIROCCO, pp 310–321
Watel D, Weisser M, Bentz C, Barth D (2014) Directed Steiner tree with branching constraint. In: Proceed-

ings of COCOON, pp 263–275
Zelikovsky A (1997) A series of approximation algorithms for the acyclic directed Steiner tree problem.

Algorithmica 18(1):99–110

123

	Directed Steiner trees with diffusion costs
	Abstract
	1 Introduction
	1.1 Our results

	2 The optimal solution is not always a tree
	3 Notations
	4 The directed steiner tree with limited number of diffusing nodes
	4.1 Link with DST
	4.2 Application of DSTLD to multicast in an optical network
	4.3 Application of DSTLD to multicast in an optical network where the diffusing nodes are already chosen

	5 Parameterized complexity
	6 Approximability
	6.1 A k-approximation for DSTLD
	6.2 How DST can be approximated by DSTLD
	6.3 Inapproximability result for DSTLD

	7 Evaluation of performances
	7.1 Description of the test set
	7.2 Quality of the returned solutions
	7.3 Evaluation of the computation time

	8 Conclusion and perspectives
	References

