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Abstract In this paper we deal with the single machine scheduling problem with one
non-availability interval to minimize the maximum lateness where jobs have positive
tails. Two cases are considered. In the first one, the non-availability interval is due to
the machine maintenance. In the second case, the non-availability interval is related to
the operator who is organizing the execution of jobs on the machine. The contribution
of this paper consists in an improved fully polynomial time approximation scheme
(FPTAS) for the maintenance non-availability interval case and the elaboration of
the first FPTAS for the operator non-availability interval case. The two FPTASs are
strongly polynomial.

Keywords Approximation schemes · Scheduling · Maximum lateness ·
Single machine · Fixed operator Interval · Machine non-availability interval

1 Introduction

In this paper we deal with the single machine scheduling problem with one non-
availability interval to minimize the maximum lateness where jobs have positive tails.
Two cases are considered. In the first one, the non-availability interval is due to the
machine maintenance. In the second case, the non-availibility interval is related to
the operator who is organizing the execution of jobs on the machine. An operator
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non-availability period is a time interval in which no job can start, and neither can
complete. Themain difference betweenmachine non-availability (MNA) and operator
non-availability (ONA) consists in the fact that a job can be processed but cannot start
neither finish during the ONA period. However, the MNA interval is a completely
forbiddenperiod.Rapine et al. (2012) havedescribed the applications of this problem in
the planning of a chemical experiments as follows: Each experiment is performed by an
automatic system (a robot), during a specified amount of time, but a chemist is required
to control its start and completion. At the beginning, the chemist launches the process
(preparation step). The completion step corresponds to the experimental analysis,
which is to be done in a no-wait mode to stop chemical reactions. Here, the automatic
system is available all the time, where the chemists may be unavailable due to planned
vacations or activities. This induces operator (chemist) non-availability intervals when
experiments (jobs) can be performed by the automatic system (machine), but cannot
neither start nor complete.

TheMNA case of this type of problems has been studied in the literature under var-
ious criteria [a sample of these works includes Lee (1996), Kacem (2009), Kubzin and
Strusevich (2006), Qi (2007), Qi et al. (1999), Schmidt (2000), He et al. (2006)]. How-
ever, few papers studied the problem we consider in this paper. Lee (1996) explored
the Jackson’s sequence J S and proved that its deviation to the optimal makespan
cannot exceed the largest processing time, which is equivalent to state that J S is a
2-approximation. Recently, Yuan et al. developed an interesting PTAS (Polynomial
Approximation Scheme) for the studied problem (Yuan et al. 2008). Kacem (2009)
presented a first fully polynomial time approximation scheme (FPTAS) for the maxi-
mum lateness minimization. That is why this paper is a good attempt to design more
efficient approximation heuristics and approximation schemes to solve the studied
problem.

For the ONA case, fewworks have been published. Brauner et al. (2009) considered
the problem of single machine scheduling with ONA periods. They analyzed this
problem on a single machine with the makespan as a minimization criterion and they
showed that the problem is NP-hard with one ONA period. They also considered
the problem with K ONA periods such that the length of each ONA period is no
more than 1

λ
times the total processing time of all jobs. They introduced a worst-

case ratio smaller than 1 + 2K
λ

for algorithm LS (list scheduling). They presented
an approximation algorithm with a worst-case ratio close to 2 + K−1

λ
. The natural

case of periods where the duration of the periods is smaller than any processing time
of any job, has been considered by Rapine et al. (2012). They proved the problem
can be solved in polynomial time, where there exists only one ONA period and they
showed the problem is NP-hard if one has K ≥ 2 small non-availability periods and
the worst-case ratio of LS is no more than K+1

2 and the problem does not admit an
FPTAS for K ≥ 3 unless P = NP.

Recently, Chen et al. (2013) considered the single machine scheduling with one
ONA period to minimize the total completion time. The problem is NP-hard even if
the length of the ONA period is smaller than the processing time of any job. They have
also presented an algorithm with a tight worst-case ratio of 20

17 . They showed that the
worst-case ratio of SPT is at least 5

3 .
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Table 1 Summary of results

Result Reference

MNA 2-approximation (Jackson’s Rule) Lee (1996)

MNA PTAS: O(n ln(n) + n.21/ε) Yuan et al. (2008)

MNA FPTAS: O(n3/ε2) Kacem (2009)

MNA PTAS: O(n ln(n) + (1/ε) 2O(1/ε)) This work

MNA FPTAS: O(n ln(n) + min{n, 3/ε}3/ε2) This work

ONA PTAS: O(n2/ε + (n/ε2)2O(1/ε)) This work

ONA FPTAS: O((n2/ε) + nmin{n, 3/ε}3/ε3) This work

The contribution of this paper consists in an improved FPTAS for theMNA interval
case and the elaboration of the first FPTAS for theONA interval case. The two FPTASs
are strongly polynomial. These contributions can be summarized in Table 1 for the
two cases. It is worthy to note that the two cases have been addressed together in
this paper for two reasons. The first one is methodological. Indeed, we will show in
this paper that the design of approximation schemes for the MNA case can lead to
derive efficient extended schemes for the other case. The second reason is related to
the common domain of applications (resource non-availability).

The paper is organized as follows. Section 2 describes the exact formulation of
the MNA interval case and the improved FPTAS. Section 3 is devoted to the ONA
interval case and to the presentation of the proposed FPTAS. Finally, Sect. 4 gives
some concluding remarks.

2 Case under MNA interval

Here, the studied problem (P) can be formulated as follows. We have to schedule a set
J of n jobs on a single machine, where every job j has a processing time p j and a tail
q j . The machine can process at most one job at a time and it is unavailable between
T1 and T2 (i.e., (T1, T2) is a forbidden interval). Preemption of jobs is not allowed
(jobs have to be performed under the non-resumable scenario). All jobs are ready to be
performed at time0.With no loss of generality,we consider that all data are integers and
that jobs are indexed according to Jackson’s rule (Carlier 1982) (i.e., jobs are indexed
in nonincreasing order of tails). Therefore, we assume that q1 ≥ q2 ≥ · · · ≥ qn . The
consideration of tails is motivated by the large set of scheduling problems such that
jobs have delivery times after their processing (Dessouky andMargenthaler 1972). Let
C j (S) denote the completion time of job j in a feasible schedule S for the problem
and let ϕS(I) be the maximum lateness yielded by schedule S for instance I of (P):

ϕS(I) = max
1≤ j≤n

(
C j (S) + q j

)
(1)

The aim is to find a feasible schedule S by minimizing the maximum lateness. It is
well-known that the Jackson’s order is optimal for the same problem without non-
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availability constraint. Due to the dominance of Jackson’s order, any optimal schedule
for P is composed of two sequences of jobs scheduled in nondecreasing order of their
indexes.

If all the jobs can be inserted before T1, the instance studied (I) has obviously a
trivial optimal solution obtained by Jackson’s rule. We therefore consider only the
problems in which all the jobs cannot be scheduled before T1. Moreover, we consider
that every job can be inserted before T1 (i.e., p j ≤ T1 for every j ∈ J ).

In the remainder of this paper ϕ∗(I) denotes the minimal maximum lateness for
instance I.

2.1 New simplifications and PTAS

Now, let us describe our FPTAS. It uses a simplification technique based on merging
small jobs Kacem and Kellerer (2014).

1st STEP:
First, we simplify the instance I as follows. Given an arbitrary ε > 0. We assume

that 1/ε is integer. We split the interval [0,max j∈J {q j }] in 1/ε equal lenght intervals
and we round up every tail q j to the next multiple of εqmax (qmax = max j∈J {q j }).
The new instance is denoted as I ′.

Proposition 1 The obtained instance I ′ can be obtained in O(n) time and it can be
done with no (1 + ε)-loss.

Proof The modification can be done by setting q j := �q j/εqmax�εqmax for every j ∈
J . Then, it can be done in O(n) time.Moreover, since �q j/εqmax�εqmax ≤ q j +εqmax
then, ϕ∗(I ′) ≤ ϕ∗(I) + εqmax ≤ (1 + ε)ϕ∗(I) since qmax is a lower bound on the
optimal maximum lateness. 	


2nd STEP:
J is divided into at most 1/ε subsets J (k) (1 ≤ k ≤ 1/ε) where jobs in J (k) have

identical tails of kεqmax. The second modification consists in reducing the number of
small jobs in every subset J (k). Small jobs are those having processing times< εP/2
where P = p1 + p2 + · · · + pn . The others are called large jobs. The reduction is
done by merging the small jobs in each J (k) so that we obtain new greater jobs having
processing times between εP/2 and εP . The small jobs are taken in the order of their
index in this merging procedure. At most, for every subset J (k), a single small job
remains. We re-index jobs according to nondecreasing order of their tails. The new
instance we obtain is denoted as I ′′. Clearly, the number of jobs remaining in the
simplified instance I ′′ is less than 3/ε.

Proposition 2 This reduction in the second step cannot increase the optimal solution
value of I ′ by more than (1 + ε)-factor. It can be done in O(n) time.

Proof The proof is based on the comparison of a lower bound lb for ϕ∗(I ′) and a
feasible solution σ for instance I ′′. We will demonstrate that ϕσ (I ′′) ≤ (1 + ε) lb
which implies that ϕ∗(I ′′) ≤ ϕσ (I ′′) ≤ (1 + ε) lb ≤ (1 + ε) ϕ∗(I ′).
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The lower bound lb is the maximum lateness of the optimal solution σr of a special
preemptive version of problem I ′ where the large jobs are supposed to be assigned
(before or after the non-availability interval) as in the optimal solution of I ′. The
principle of this lower bound is based on the splitting idea presented in Kacem (2009).
Indeed, we split the small jobs so that the obtained pieces have an identical length of 1
and they keep their tails. It can be demonstrated that the pieces associated to the small
jobs must be scheduled in σr according to the Jackson’s order. At most, one piece of
a certain job g will be preempted by the non-availability period. For more details on
this lower bound, we refer to Kacem (2009).
It is easy to transform such a relaxed solution σr to a close feasible solution σ for
I ′′. Indeed, we can remark that the small jobs of every subset J (k) (1 ≤ k ≤ 1/ε ),
except the subset k(g) containing job g, are scheduled contiguously before or after the
non-availibility period. Hence, the associated merged jobs (in I ′′) for these small ones
(in I ′) will take the same order in sequence σ . The large jobs are common in the two
instances and they will keep the same assignments in σ . The only possible difference
between σ and σr will consist in the positions of small jobs (from I ′) belonging to
subset k(g). For these small jobs, we construct the same associated merged jobs as in
I ′′ by scheduling them in σ as close in σr as possible. As a consequence, some small
jobs (from I ′ and belonging to subset k(g)) will be moved after the non-availability
period. Thus, it is easy to deduce that ϕσ (I ′′) ≤ lb+ εP ≤ (1 + ε) lb. 	

Theorem 3 Problem P has a Polynomial Time Approximation Scheme (PTAS) with a
time complexity of O(n ln(n) + (1/ε) 2O(1/ε)).

Proof The proof is based on the two previous propositions. The Jackson’s order can
be obtained in n ln(n). We construct the optimal solution of I ′′ by an exhaustive search
in O((1/ε) 2O(1/ε)). Then, we derive a feasible solution for I , which can be done in
O(n). 	

Remark 4 The new PTAS has a lower time complexity compared to the one proposed
by Yuan et al. (2008) for which the time complexity is O(n ln(n) + n.21/ε).

2.2 Improved FPTAS

The improved FPTAS is similar to the one proposed by Kacem (2009). It uses the
same technique but exploits also the modification of the input (I → I ′′). First, we
use the Jackson’s sequence J S obtained for the modified instance I ′′. Then, we apply
the modified dynamic programming algorithm APS′

ε introduced in Kacem (2009) on
instance I ′′.

The main idea of APS′
ε is to remove a special part of the states generated by a

dynamic programming algorithm. Therefore, the modified algorithm becomes faster
and yields an approximate solution instead of the optimal schedule (see Appendix 1).
First, we define the following parameters:

n = min{n, 3/ε},
ω1 =

⌈
2n

ε

⌉
,
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ω2 =
⌈
n

ε

⌉
,

δ1 = ϕJ S
(
I ′′)

ω1

and

δ2 = T1
ω2

.

We split
[
0, ϕJ S

(
I ′′)) into ω1 equal subintervals I 1m = [(m − 1)δ1,mδ1)1≤m≤ω1

.
We also split [0, T1) into ω2 equal subintervals I 2s = [(s − 1)δ2, sδ2)1≤s≤ω2

of length
δ2. Moreover, we define the two singletons I 1ω1+1 = {

ϕJ S
(
I ′′)} and I 2ω2+1 = {T1}.

Our algorithm APS′
ε generates reduced sets X #

j of states [t, f ] where t is the total
processing time of jobs assigned before T1 in the associated partial schedule and f is
the maximum lateness of the same partial schedule. It can be described as follows:

Algorithm APS′
ε

(i). set X #
1 = {[0, T2 + p1 + q1] , [p1, p1 + q1]} .

(ii). For j ∈ {2, 3, . . . , n},
X #

j =Ø.

For every state [t, f ] in X #
j−1:

(1) Put
[
t,max

{
f, T2 + ∑ j

i=1 pi − t + q j

}]
in X #

j

(2) Put
[
t + p j ,max

{
f, t + p j + q j

}]
in X #

j if t + p j ≤ T1
Remove X #

j−1

Let [t, f ]m,s be the state in X #
j such that f ∈ I 1m and t ∈ I 2s with the smallest

possible t (ties are broken by choosing the state of the smallest f ).
Set X #

j = {
[t, f ]m,s |1 ≤ m ≤ ω1 + 1, 1 ≤ s ≤ ω2 + 1

}
.

(iii). ϕAPS′
ε

(
I ′′) = min[t, f ]∈X #

n
{ f }.

Theorem 5 Given an arbitrary ε > 0, Algorithm APS′
ε yields an output ϕAPS′

ε

(
I ′′)

such that:
ϕAPS′

ε

(
I ′′) − ϕ∗ (

I ′′) ≤ εϕ∗ (
I ′′) . (2)

Proof The proof is similar to Kacem (2009). For self-consistency, a sketch proof is
given in Appendix 1. 	

Lemma 6 Given an arbitrary ε > 0, algorithm APS′

ε can be implemented in
O

(
n log n + n3/ε2

)
time.

Proof See Appendix 2. 	

The schedule obtained by APS′

ε for instance I ′′ can be easily converted into a
feasible one for instance I. This can be done in O (n) time. From the previous lemma
and the proof of Lemma 13, the main result is proved and the following theorem holds.

Theorem 7 Algorithm APS′
ε is an FPTAS and it can be implemented in O(n log n +

min{n, 3/ε}3/ε2) time.
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3 Case under operator non-availability interval

Here, the studied problem (�) can be formulated as follows. An operator has to
schedule a set J of n jobs on a single machine, where every job j has a processing
time p j and a tail q j . The machine can process at most one job at a time if the operator
is available at the starting time and the completion time of such a job. The operator
is unavailable during (T1, T2). Preemption of jobs is not allowed (jobs have to be
performed under the non-resumable scenario). All jobs are ready to be performed at
time 0. With no loss of generality, we consider that all data are integers and that jobs
are indexed according to Jackson’s rule and we assume that q1 ≥ q2 ≥ · · · ≥ qn . Let
C j (S) denote the completion time of job j in a feasible schedule S (C j (S) /∈ (T1, T2)
and C j (S) − p j /∈ (T1, T2)) and let ϕS(I) be the maximum lateness yielded by
schedule S for instance I of (�):

ϕS(I) = max
1≤ j≤n

(
C j (S) + q j

)
(3)

The aim is to find a feasible schedule S by minimizing the maximum lateness.
If all the jobs can be inserted before T1, the instance studied (I) has obviously a

trivial optimal solution obtained by Jackson’s rule. We therefore consider only the
problems in which all the jobs cannot be scheduled before T1. Moreover, we consider
that every job can be inserted before T1 (i.e., p j ≤ T1 for every j ∈ J ).

In the remainder of this paper ϕ∗(I) denotes the minimal maximum lateness for
instance I.

Proposition 8 If p j < T2 − T1 for every j ∈ J , then problem (�) has an FPTAS.

Proof In this case, it is easy to remark that Problem � is equivalent to Problem P for
which we can apply the FPTAS described in the previous section. 	


In the remainder, we consider the hard case where some jobs have processing times
greater than T2 − T1. Let K be the subset of these jobs. In this case, two scenarios are
possible:

• Scenario 1: there exists a job s ∈ K such that in the optimal solution it starts before
T1 and completes after T2 (s is called the stradling job).

• Scenario 2: there is no stradling job in the optimal solution.

It is obvious that Scenario 2 is equivalent to Problem P for which we have an
FPTAS. Thus, the last step necessary to prove the existence of an FPTAS for Problem
� is to construct a special scheme for Scenario 1. Without loss of generality, we
assume that the stradling job s is known (indeed, it can be guessed among jobs of K).
The following proposition determines the time-window of the starting time of job s in
the optimal solution.

Proposition 9 Let t∗s be the starting time of s in the optimal schedule. The following
relation holds: t∗s ∈ [T2 − ps, T1].
Proof Obvious since the stradling job s has to cover the ONA period in the optimal
schedule. 	
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Proposition 10 Senario 1 has an FPTAS.

Proof The stradling job s is assumed to be known. Given an arbitrary ε > 0, we divide

the interval [T2 − ps, T1] in �1/ε� equal-length sub-intervals
�1/ε�⋃

h=1
Dh where

Dh =
[
T2 − ps + (h − 1)

T1 − T2 + ps
�1/ε� , T2 − ps + h

T1 − T2 + ps
�1/ε�

]
.

We consider a set of �1/ε� + 1 instances {I1, I2, ..., I�1/ε�+1} of Problem P where
in Ih the stradling job starts at time

ths = T2 − ps + (h − 1)
T1 − T2 + ps

�1/ε�
which is equivalent to an instance of Problem P with a set of jobs J −{s} and a MNA
period 	h :

	h =
(
T2 − ps + (h − 1)

T1 − T2 + ps
�1/ε� , T2 + (h − 1)

T1 − T2 + ps
�1/ε�

)
.

For every instance from {I1, I2, . . . , I�1/ε�+1}, we apply the FPTAS described in the
previous section for ProblemP and we select the best solution among all the �1/ε�+1
instances. It is easy to see that if t∗s ∈ [ths , th+1

s ) then, delaying s and the next jobs in
the optimal schedule of Ih+1 (h = 1, 2, . . . , �1/ε�) by setting t∗s = th+1

s will not cost
more than

T1 − T2 + ps
�1/ε� ≤ ε (T1 − T2 + ps)

≤ εps

Thus, the solution
h+1 obtained by APS′
ε forIh+1(h = 1, 2, ..., �1/ε�) is sufficiently

close to optimal schedule for Scenario 1 if s is the stradling job and t∗s ∈ [ths , th+1
s ).

As a conclusion, Scenario 1 has an FPTAS. 	

Theorem 11 Problem � admits an FPTAS and this scheme can be implemented in
O

(
n2/ε + nmin{n, 3/ε}3/ε3) time.

Proof The proof is a direct deduction from all the cases mentioned in this section. 	

Remark 12 By applying the same approach, a PTAS can be elaborated for Problem
� and it can be implemented in O(n2/ε + (n/ε2)2O(1/ε)) time.

4 Conclusion

In this paper, we considered the non-resumable case of the single machine scheduling
problemwith a non-availability interval. Our aim is tominimize themaximum lateness
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when every job has a positive tail. Two cases are considered. In the first one, the
non-availability interval is due to the machine maintenance. In the second case, the
non-availibility interval is related to the operator who is organizing the execution of
jobs on the machine. The contribution of this paper consists in an improved FPTAS
for the MNA interval case and the elaboration of the first FPTAS for the operator
non-availability interval case. The two FPTASs are strongly polynomial.

As future perspectives, we aim to consider other criteria for the single-machine
problem as well as the study of multiple operator non-availablility periods.

Acknowledgments The authors would like to thank the referees and the editors for their helpful remarks
and suggestions. This work has been funded by the CONSEIL REGIONAL DE LORRAINE (under the
Programme “Chercheur d’Excellence 2013”).

Appendix 1: Proof of Theorem 5

First, we recall the idea of the dynamic programming algorithm which is necessary
to explain the proof. Indeed, the problem can be optimally solved by applying the
following dynamic programming algorithm APS. This algorithm generates iteratively
some sets of states. At every iteration j , a set X j composed of states is generated
(1 ≤ j ≤ n). Each state [t, f ] in X j can be associated to a feasible schedule for the
first j jobs. Variable t denotes the completion time of the last job scheduled before T1
and f is the maximum lateness of the corresponding schedule. This algorithm can be
described as follows:

Algorithm APS
(i). Set X1 = {[0, T2 + p1 + q1] , [p1, p1 + q1]} .
(ii). For j ∈ {2, 3, . . . , n},

X j = {}.
For every state [t, f ] in X j−1:

(1) Put
[
t,max

{
f, T2 + ∑ j

i=1 pi − t + q j

}]
in X j

(2) Put
[
t + p j ,max

{
f, t + p j + q j

}]
in X j if t + p j ≤ T1

Remove X j−1

(iii). ϕ∗ (P) = min[t, f ]∈Xn { f }.
LetUB be an upper bound on the optimal maximum lateness for problem

(
T ′′). If

we add the restriction that for every state [t, f ] the relation f ≤ UB must hold, then
the running time of APS can be bounded by nT1UB. Indeed, t and f are integers
and at each step j , we have to create at most T1UB states to construct X j . Moreover,
the complexity of APS is proportional to

∑n
k=1 |Xk |. In the remainder of the paper,

Algorithm APS denotes the version of the dynamic programming algorithm by taking
UB = ϕJ S

(
T ′′).

The main idea of the FPTAS is to remove a special part of the states generated by
the algorithm. Therefore, the modified algorithm APS′

ε becomes faster and yields an
approximate solution instead of the optimal schedule. The approach of modifying the
execution of an exact algorithm to design FPTAS, was initially proposed by Ibarra
and Kim for solving the knapsack problem (Ibarra and Kim 1975). It is noteworthy

123



J Comb Optim (2016) 32:970–981 979

that during the last decades numerous combinatorial problems have been addressed
by applying such an approach [for instance, see Sahni (1976) and Gens and Levner
(1981)]. The worst-case analysis of our FPTAS is based on the comparison of the
execution of algorithms APS and APS′

ε as described in the following lemma.

Lemma 13 For every state [t, f ] in X j there exists a state
[
t#, f #

]
in X #

j such that:

t# ≤ t ≤ t# + jδ2 (4)

and
f # ≤ f + j max{δ1, δ2} (5)

Proof By induction on j .
First, for j = 1 we have X #

1 = X1. Therefore, the statement is trivial.
Now, assume that the statement holds true up to level j − 1. Consider an arbitrary
state [t, f ] ∈ X j . Algorithm APS introduces this state into X j when job j is added
to some feasible state for the first j − 1 jobs. Let

[
t ′, f ′] be the above feasible state.

Two cases can be distinguished: either [t, f ] = [
t ′ + p j ,max

{
f ′, t ′ + p j + q j

}]

or [t, f ] =
[
t ′,max

{
f ′, T2 + ∑ j

i=1 pi − t ′ + q j

}]
must hold. We will prove the

statement for level j in the two cases.

1st case: [t, f ] = [
t ′ + p j ,max

{
f ′, t ′ + p j + q j

}]

Since
[
t ′, f ′] ∈ X j−1, there exists

[
t ′#, f ′#] ∈ X #

j−1 such that t ′# ≤ t ′ ≤
t ′# + ( j − 1) δ2 and f ′# ≤ f ′ + ( j − 1)max{δ1, δ2}. Consequently, the state[
t ′# + p j ,max

{
f ′#, t ′# + p j + q j

}]
is generated by Algorithm APS′

ε at iteration j .
However it may be removed when reducing the state subset. Let [λ,μ] be the state in
X #

j that is in the same box as
[
t ′# + p j ,max

{
f ′#, t ′# + p j + q j

}]
. Hence, we have:

λ ≤ t ′# + p j ≤ t ′ + p j = t (6)

Moreover,

λ + δ2 ≥ t ′# + p j ≥ t ′ − ( j − 1) δ2 + p j = t − ( j − 1) δ2

which implies
t ≤ λ + jδ2 (7)

Finally,

μ ≤ max
{
f ′#, t ′# + p j + q j

}
+ δ1

≤ max
{
f ′ + ( j − 1)max{δ1, δ2}, t ′ + p j + q j

} + δ1

≤ max
{
f ′, t ′ + p j + q j

} + ( j − 1)max{δ1, δ2} + δ1

< f + j max{δ1, δ2}. (8)

Consequently, the statement holds for level j in this case.
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2nd case: [t, f ] =
[
t ′,max

{
f ′, T2 + ∑ j

i=1 pi − t ′ + q j

}]

Since
[
t ′, f ′] ∈ X j−1, there exists

[
t ′#, f ′#] ∈ X #

j−1 such that t ′# ≤ t ′ ≤
t ′# + ( j − 1) δ2 and f ′# ≤ f ′ + ( j − 1)max{δ1, δ2}. Consequently, the state[
t ′#,max

{
f ′#, T2 + ∑ j

i=1 pi − t ′# + q j

}]
is generated by algorithm APS′

ε at iter-

ation j . However it may be removed when reducing the state subset. Let
[
λ′, μ′] be

the state in X #
j that is in the same box as [t ′#,max{ f ′#, T2 + ∑ j

i=1 pi −t ′# + q j }].
Hence, we have:

λ′ ≤ t ′# ≤ t ′ = t (9)

Moreover,
λ′ + δ2 ≥ t ′# ≥ t ′ − ( j − 1) δ2 = t − ( j − 1) δ2

which implies
t ≤ λ + jδ2 (10)

and

μ′ ≤ max

⎧
⎨

⎩
f ′#, T2 +

j∑

i=1

pi − t ′# + q j

⎫
⎬

⎭
+ δ1 (11)

≤ max

⎧
⎨

⎩
f ′ + ( j − 1)max{δ1, δ2}, T2 +

j∑

i=1

pi − t ′ + ( j − 1) δ2 + q j

⎫
⎬

⎭
+ δ1

(12)

≤ max

⎧
⎨

⎩
f ′, T2 +

j∑

i=1

pi − t ′ + q j

⎫
⎬

⎭
+ ( j − 1)max{δ1, δ2} + δ1 (13)

≤ f + j max{δ1, δ2}. (14)

In conclusion, the statement holds also for level k in the second case, and this
completes our inductive proof. 	


Now, we give the proof of Eq. (2) in Theorem 5. By definition, the optimal solution
can be associated to a state

[
t∗, f ∗] inXn . FromLemma 13, there exists a state

[
t#, f #

]

in X #
n such that:

f # ≤ f ∗ + nmax{δ1, δ2}

= f ∗ + nmax

{
ϕJ S

(
I ′′)

ω1
,
T1
ω2

}

= f ∗ + nmax{ϕJ S
(
I ′′)

⌈
2n
ε

⌉ ,
T1⌈
n
ε

⌉ }

≤ f ∗ + max

{

ε
ϕJ S

(
I ′′)

2
, εT1

}

= (1 + ε) ϕ∗ (
I ′′) . (15)

Since ϕAPS′
ε

(
I ′′) ≤ f #, we conclude that Equation (5) holds.
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Appendix 2: Proof of Lemma 6

The first step consists in applying heuristic J S, which can be implemented in
O (n ln n) time. In the second step, algorithm APS′

ε generates the state sets X #
j

( j ∈ {1, 2, . . . , n}). Since
∣∣∣X #

j

∣∣∣ ≤ (ω1 + 1) (ω2 + 1), we deduce that

n∑

j=1

∣∣∣X #
j

∣∣∣ ≤ n (ω1 + 1) (ω2 + 1) = n

(⌈
n

ε

⌉
+ 1

) (⌈
2n

ε

⌉
+ 1

)

≤ n

(
n

ε
+ 2

) (
2n

ε
+ 2

)
. (16)

Note that algorithm APS′
ε generates X #

j by associating every new created state to its
corresponding box if and only if such a state has a smaller value of t (in this case, the
last state associated to this box will be removed). Otherwise, the new created state will
be immediately removed. This allows us to generateX #

j in O (ω1ω2) time. Hence, our

method can be implemented in O
(
n ln n + n3/ε2

)
time and this completes the proof.
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