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Abstract In this paper, we determine the maximum sizes of strong digraphs under
the constraint that their some parameters are fixed, such as vertex connectivity, edge-
connectivity, the number of cut vertices. The corresponding extremal digraphs are
also characterized. In addition, we establish Nordhaus–Gaddum type theorem for the
diameter when

−→
Kn decomposing into many parts. We also pose a related conjecture

for Wiener index of digraphs.
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1 Introduction

We follow the terminology and notation (Bang-Jensen and Gutin 2001) for digraphs.
A digraph is simple if it does not contain loops and parallel arcs. For a digraph
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D = (V (D), A(D)), let V (D) and A(D) denote the vertex set and arc set of D,
respectively. Let e(D) denote the size |A(D)| of the digraph D. Two vertices are
called adjacent if they are connected by an arc. If there is an arc from vertex u to
vertex v, we indicate this by writing uv, call u and v the tail and the head of uv,
respectively. For A, B ⊆ V (D), (A, B) denotes all the arcs of D with their tails in
A and with their heads in B, and [A, B] = (A, B) ∪ (B, A). The complete digraph−→
Kn of order n is the simple digraph in which every pair of vertices are joined by two
opposite arcs. A digraph D is strongly connected (or a strong digraph) if for every pair
x, y ∈ V (D), there exists a directed path from x to y and a directed path from y to x .
For a strong digraph D, a set S ⊂ V is a separator (or a separating set) if D− S is not
strongly connected. A digraph D is k-strongly connected if |V | ≥ k + 1 and D has no
separator with less than k vertices. The largest k such that D is k-strongly connected
is the vertex connectivity of D, denoted by κ(D). Similarly, the arc connectivity of D,
denoted by λ(D), is the minimum number of arcs whose deletion make the resulting
new digraph not strongly connected. For a strong digraph D, a vertex u ∈ V (D) is
called a cut vertex if D − u is not strongly connected. The distance from vertex x
to vertex y in D, denoted by d(x, y), is the minimum length of a (x, y)-path. The
eccentricity ecc(v) of a vertex v ∈ V (D) is max{d(v, x)| x ∈ V (G)}. The diameter
of a digraph D, denoted by diam(D), is the maximum eccentricity of a vertex in
G.

For undirected graphs, Vizing (1965) determined the maximum number of edges
in a graph with a given domination number. Dankelmann et al. (2004) determined
the maximum size of graphs with given independence number and total domina-
tion number. The maximum size of undirected graphs with given some parameters
are well treated in the literature, see Sanchis (1991) and Sanchis (2000). For
some recent results on various properties of digraphs, we refer to Bang-Jensen and
Nielsen (2008), Broersma and Li (2002), Dankelmann (2015), Ferneyhough et al.
(2002), Huang and Zhan (2011), Liu et al. (2010) and Severini (2006). Up to now,
there are few articles about the maximum size of digraphs with given parame-
ters.

In Sect. 2, we characterize themaximum size of strong digraphs under the constraint
that the number of cut vertices are fixed, and characterize the extremal digraphs. In
addition, the maximum sizes of strong digraphs are determined when connectivity or
arc connectivity is fixed. In Sect. 3, we establish the Nordhaus–Gaddum type theorem
for diameter of digraphswhen

−→
Kn decomposing intomany parts.We also pose a related

conjecture on Wiener index of digraphs.

2 Maximum size of digraphs with given cut vertices

A strongly connected digraph that has no cut vertices is called a block. A block is
called a complete block if it is a complete digraph. We denote by Tn,k the set of strong
digraphs with n vertices and k cut vertices. So, Tn,0 simply denotes the all strong
digraphs with no cut vertices.

First recall that the following two elementary results (see Bondy andMurty (1976),
p.173) on digraphs.
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Lemma 2.1 If D is a digraph of order n with no directed cycle, then there is an
ordering v1, . . . , vn of V (D) such that, for 1 ≤ i ≤ n, every arc of D with head vi
has its tail in {v1, . . . , vi−1}.

Lemma 2.2 Let D1, . . . , Dm be all strong components of a digraph D. The
condensation W of D is a directed graph with m vertices w1, . . . , wm; there is
an arc in W with tail wi and head w j if and only if there is an arc in D with tail in Di

and head in D j . Then the condensation W of D contains no directed cycle.

Corollary 2.3 Let D be a strongly connected digraph with vertex connectivity k > 0.
Suppose that S is a k-vertex cut of D and D1, . . . , Ds are the strong components of
D− S. Then there exists a permutation p of 1, . . . , s such that, for any v ∈ V (Dp(i)),
every arc with head v has its tail in Dp(1) ∪ · · · ∪ Dp(i).

Proof It is an immediate consequence of Lemmas 2.1 and 2.2. 	


Corollary 2.4 Let D be a digraph and let B1, . . . , Bs be all blocks of D. Then there
exists a permutation p of 1, . . . , s such that, for any v ∈ V (Bp(i)), every arc with
head v has its tail in Bp(1) ∪ · · · ∪ Bp(i).

Proof Let B be a digraph with vertices b1, . . . , bs , in which there is an arc bib j if
and only if either V (Bi ) ∩ V (Bj ) = ∅ and there exists an arc with its tail in V (Bi )
and with its head in V (Bj ), or V (Bi ) ∩ V (Bj ) = ∅, there exists an arc with its tail in
V (Bi ) \ V (Bj ) = ∅ and with its head in V (Bj ) \ V (Bi ). It is easy to see that B does
not contain a directed cycle. By Lemma 2.1, there is a permutation p of 1, . . . , s such
that, every arc of B with head bp(i) has its tail in {bp(1), . . . , bp(i−1)}. This permutation
is the one we desired. 	


Lemma 2.5 Let n be a positive integer and D ∈ Tn,0. If D has the maximum size
among Tn,k , then for any minimum vertex cut S of D, D − S has exactly two strong
components, and both of them are complete.

Proof Let D1, . . . , Ds be a specified ordering of all the strong components of D − S,
with the property as given Corollary 2.3. If s ≥ 3, then adding an arc v jvi with
vi ∈ V (Di ), v j ∈ V (Dj ) and 2 ≤ i < j ≤ s to D results in a new digraph D′, which
has the same connectivity as D does. Hence, s = 2. Moreover, both D1 and D2 are
complete, otherwise, it contradicts the maximality of D. 	


Let D1 and D2 be two vertex-disjoint digraphs. The join D1 � D2 of D1 and D2 is
the digraph with vertex set V (D1) ∪ V (D2) and arc set A(D) = A(D1) ∪ A(D2) ∪
{uv, vu| u ∈ V (D1), v ∈ V (D2)}. Let T t

s,n−t−s denote the digraph Kt � (Ks ∪
Kn−t−s) ∪ E , where E = {xy| x ∈ Ks, y ∈ Kn−t−s}.

Theorem 2.6 Let D be a strongly connected digraph with κ(D) = t for an integer
t ≥ 2. Then e(D) ≤ n2 − 2n + t + 1, equality holds if and only if D ∼= T t

1,n−t−1 or
T t
n−t−1,1.
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Proof Let t ≥ 2 be an integer. Suppose that D is a digraph the maximum size among
all strongly connected graphs with connectivity t . By Lemma 2.5, we have D − S
contains exactly two strongly connected components, say, D1 and D2. Furthermore,
either D ∼= T t

s,n−t−s or D ∼= T t
n−t−s,s ,where 0 < s < n−t .We show that |V (D1)| = 1

or |V (D2)| = 1. To show this, we may assume that D ∼= T t
s,n−t−s and s = |V (D1)| ≥

|V (D2)| = n − t − s ≥ 2.
Let D′ ∼= T t

s+1,n−t−s−1. But

e(D′) = e(D) − (|V (D2)| − 1) + (|V (D2)| − 1)|V (D1)|
= e(D) + (|V (D2)| − 1)(|V (D1)| − 1)

> e(D),

which contradicts the choice of D. So, |V (D1)| = 1 or |V (D2)| = 1, which implies
D ∼= T t

1,n−t−1 or T
t
n−t−1,1. It is routine to check that

e(T t
1,n−t−1) = e(T t

n−t−1,1) = n(n − 1) − (n − t − 1) = n2 − 2n + t + 1.

The proof is completed. 	

Let n and k be two positive integers with n ≥ k + 1. Let n1, . . . , nk+1 be integers

with n1 + · · · + nk+1 = n + k. Define a digraph, denoted by T (n1, . . . , Tk+1), as
follows: it is composed of k + 1 complete blocks B1, . . . , Bk+1 with |V (Bi )| = ni
for each i = 1, . . . , k + 1, and |V (Bi ) ∩ V (Bi+1)| = 1 for each i = 1, . . . , k, in
which there is an arc xy if and only if x, y ∈ V (Bi ) for an integer i ∈ {1, . . . k+1}, or
x ∈ V (Bi ), y ∈ V (Bj ) for 1 ≤ i < j ≤ k+1. It is clear that T (n1, . . . , nk+1) ∈ Tn,k .

Lemma 2.7 Let n and k be two integers with n > k > 0. If D ∈ Tn,k is a digraph
with maximum size in Tn,k , then

(1) each block is complete,
(2) each cut vertex is contained in exactly two blocks of D, and
(3) each block contains at most two cut vertices.

Proof (1) is trivial, since if there is a block B which is not complete, adding those
missing arcs to B results in a new digraph D′ ∈ Tn,k , a contradiction.

To prove (2), let v be a cut vertex, and let B1, . . . , Bt be all blocks of D, containing
v, where t ≥ 3. Since each Bi is strongly connected, By Corollary 2.4, without loss
of generality, we may assume that B1, . . . , Bt be an ordering such that for any arc
xy ∈ A(D), if x ∈ V (Bi ), y ∈ V (Bj ) then i ≤ j . Let D′ be a digraph obtained from
D by replacing D[V (B2)∪· · · V (Bt )]with the complete block on V (B2)∪· · ·∪V (Bt ).
It is clear that D′ ∈ Tn,k . It contradicts the maximality of D.

Now we prove (3). Since D ∈ Tn,k , it follows from (2) that there are exactly k + 1
blocks in D. Let B1, . . . , Bk+1 be the ordering of all blocks of D, as specified in
Corollary 2.4, and let ni = |V (Bi )| for any i ∈ {1, . . . , k + 1}. By contradiction,
suppose that Bp is a block of D contains three cut vertices, say ur , us, ut , and let
ur = V (Bp)∩V (Br ), us = V (Bp)∩V (Bs), ur = V (Bp)∩V (Bt ), where r < s < t .
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One can see that either (V (Br ), B(Bs)) = ∅ or (V (Bs), B(Bt )) = ∅, otherwise, us
will not be a cut vertex. However, e(T (n1, . . . , nk+1)) > e(D), which contradicts the
choice of D. 	


Theorem 2.8 If D ∈ Tn,k , then e(D) ≤ n2 − (k + 1)n + k(k+3)
2 , with equality if and

only if D ∼= T (n1, . . . , nk+1)), where n1 + · · · + nk+1 = n + k, and n j = 2 for all
j = i for some i ∈ {1, . . . , k + 1}.

Proof Let D be a digraph in Tn,k with the maximum size. The proof of (3) of Theorem
3.7 indicates that D ∼= T (n1, . . . , nk+1)), where n1, . . . , nk+1 are k + 1 integers at
least two with n1 + · · · + nk+1 = n.

We claim that n j = 2 for all j = i for some i ∈ {1, . . . , k + 1}. Otherwise, let
nr ≥ 3 and ns ≥ 3 for some 1 ≤ r < s ≤ k + 1. Without loss of generality, we
may further assume that nr ≤ ns . Let D′ = T (m1, . . . ,mk+1) with mr = nr − 1,
ms = ns + 1, and m j = n j for all j ∈ {1, . . . , k + 1} \ {r, s}.

Obviously, e(D′) = e(D) + 2(ns − nr + 1) > e(D). This is a contradiction. It
follows that at most one of D1, . . . , Dk+1 has order greater than 2, and thus D ∼=
T (n1, . . . , nk+1), where n1 + · · · + nk+1 = n + k, and n j = 2 for all j = i for some
i ∈ {1, . . . , k + 1}. For such a digraph D, one can easily obtain

e(D) = n(n − 1) −
k+1∑

t=2

(n − t) = n2 − (k + 1)n + k(k + 3)

2
.

The proof is completed. 	


Theorem 2.9 Let D be a strongly connected digraph with η(D) = t for an integer
t ≥ 2. Then e(D) ≤ n2 − 2n + t + 1, equality holds if and only if D ∼= T t

1,n−t−1 or
T t
n−t−1,1.

Proof Suppose that D is a digraph with the maximum size among all strong digraphs
with arc connectivity t . Let S be an arc cut of D with |S| = t , and let D1, D2 be the
two strong components of D − S. The maximality of D assures that exactly one of
the following holds:

(1) for every u ∈ V (D1) and v ∈ V (D2), uv ∈ A(D);
(2) for every u ∈ V (D1) and v ∈ V (D2), vu ∈ A(D).

Without loss of generality, (1) holds. Therefore

e(D) = n(n − 1) − (n1n2 − t) = n(n − 1) − n1(n − n1) + t,

where ni = |Vi | for i = 1, 2. It is easy to see that n1 = 1 or n1 = n − 1 since e(D)

has the maximum size. If n1 = 1, then D ∼= T t
1,n−t−1, and if n1 = n − t − 1, then

D ∼= T t
n−t−1,1. 	
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3 Decomposition, diameter and Wiener index

For a positive integer k, a k-decomposition (G1, . . . ,Gk) of a graph G is a partition
of its edge set to form k spanning subgraphs G1, . . . ,Gk . That is, each Gi has the
same vertices as G, and every edge of G belongs to exactly one of G1, . . . ,Gk . For
a graph parameter p, a positive integer k, and a graph G, to determine the extremal
(maximum or minimum) values of

{
k∑

i=1

p(Gi ) : (G1,G2, . . . ,Gk) is a decomposition of G

}

is a fundamental problem in graph theory. The particular case when G = Kn attracts
many attentions on various graph parameters (Füredi et al. 2005; Goddard et al. 1992;
Zhang andWu 2005). Nordhaus andGaddum (1956) first initiate such kind of research
on chromatic number of graphs for the case when k = 2 andG = Kn , and proved that

2
√
n ≤ χ(H) + χ(H̄) ≤ n + 1

for any graph H of order n.
Assume a graph G is connected. The distance dG(u, v) of two vertices u and v is

the length of a shortest path connecting them in G. The diameter diam(G) of G is
max{dG(u, v) : u, v ∈ V (G)}. Xu (1991) proved that for a connected graph G with
the connected complement Ḡ,

4 ≤ diam(G) + diam(Ḡ) ≤ n + 1,

when the order n of G is at least five. Xu’s result is recently extended in An et al.
(2011) as follows.

Theorem 3.1 (An et al. 2011) Let Kn be the complete graph of order n and k ≥ 2 for
any fixed integer. Assume (G1,G2, . . . ,Gk) is a k-decomposition of Kn such that Gi

is connected for each i = 1, . . . , k. Then any sufficiently large n (with respect to k),

2k ≤
k∑

i=1

diam(Gi ) ≤ (k − 1)(n − 1) + 2.

We establish the directed analogue of Theorem 4.1. A k-decomposition of
(D1, D2, . . . , Dk) of a digraph of D is a partition of its arc set to form k spanning
subdigraphs D1, . . . , Dk . That is, each Di has the same vertices as D, and every arc
of D belongs to exactly one of D1, . . . , Dk . Recall that the complete digraph

−→
Kn is

the digraph of order n, in which every pair of vertices are joined by two arcs with
opposite directions.

Theorem 3.2 Let
−→
Kn be the complete graph of order n and k ≥ 2 for any fixed

integer. Assume (D1, D2, . . . , Dk) is a k-decomposition of
−→
Kn such that Di is strongly

connected for each i = 1, . . . , k. Then for any sufficiently large n (with respect to k),
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2k ≤
k∑

i=1

diam(Di ) ≤ (n − 1)k.

Note that a strongly connected non-complete digraph has diameter at least 2. Then
the lower bound of the above theorem is derived from the following theorem.

Theorem 3.3 Let k ≥ 2 be any fixed integer. For any sufficiently large n (with respect

to k), there is a k-decomposition (D1, D2, . . . , Dk) of
−→
Kn with diam(Di ) = 2 for

each i = 1, . . . , k.

Proof We prove it by the probabilistic argument, which is similar to the proof of
Theorem 1.2 of An et al. (2011). Color each arc of

−→
Kn by colors 1, 2, . . . , k, randomly

and independently, with the equal probability p = 1
k . For each i , 1 ≤ i ≤ m, Di

denotes the spanning subgraph of
−→
Kn with the arc set Ai , the set of arcs with the

color i . Hence (D1, D2, . . . , Dk) is a decomposition of
−→
Kn . Let Ei be the event that

diam(Di ) ≤ 2.Then∩k
i=1Ei is the event thatdiam(Di ) = 2 for every i = 1, 2, . . . , k.

For any ordered pair of distinct vertices (u, v) of V (
−→
Kn), let Bi (u, v) be the event that

dDi (u, v) > 2. So,

Ei = ∩(u,v)Bi (u, v).

Since Pr(Bi (u, v)) = (1 − p)(1 − p2)n−2, we have

Pr(Ei ) = Pr(∩(u,v)Bi (u, v))

= 1 − Pr(∪(u,v)Bi (u, v))

≥ 1 −
∑

(u,v)

Pr(Bi (u, v))

= 1 − n(n − 1)(1 − p)(1 − p2)n−2

Since p = 1
k < 1, n(n − 1)(1 − p)(1 − p2)n−2 → 0 as n → ∞, and Pr(Ei ) → 1

as n → ∞. It follows that Pr(Ei ∪ E j ) → 1, Pr(Ei ∪ E j ∪ El) → 1, . . . , Pr(E1 ∪
E2 ∪ · · · ∪ Ek) → 1 as n → ∞. By the principle of inclusion-exclusion,

Pr(∩k
i=1Ei ) =

k∑

i=1

Pr(Ei ) −
∑

i< j

Pr(Ei ∪ E j ) + · · · + (−1)k−1Pr(∪k
i=1Ei )

→ k − (k
2

) + · · · + (−1)k−1(k
k

) = 1 > 0.

It follows that there is a k-decomposition (D1, D2, . . . , Dk)of
−→
Kn withdiam(Di ) =

2 for each i = 1, . . . , k. 	

The upper bound of Theorem 3.2 is the consequence of the following Lemma 3.4.

To prove it, recall a well-known result for the decomposition of complete graphs. If
n is even, then Kn can be decomposed into n − 1 perfect matchings. If n is odd, then
Kn can be decomposed into n−1

2 hamiltonian cycles.
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Lemma 3.4 Let
−→
Kn be the complete graph of order n. For any fixed integer k with 2 ≤

k ≤ 2� n
2 � there is a k-decomposition (D1, D2, . . . , Dk) of

−→
K n such that diam(Di ) =

n − 1 for each i = 1, . . . , k.

Proof LetC1,C2, . . . ,Ck−1 be k−1 edge-disjoint hamiltonian cycles of Kn . Without
loss of generality, we may assume that E(Ck−1) = {v1v2, v2v3, . . . , vn−1vn, vnv1}
by abusing our notation. Let

−→
Ci be a directed cycle of

−→
Kn as an orientation of Ci for

each i = 1, . . . , k − 2, and let
−→
C k−1 be the orientation of Ck−1 with arcs vivi+1 for

each i = 1, . . . n−1 and vnv1, and
−→
Ck be the directed cycle obtained from

−→
C k−1 with

all arcs reversed. Let A′ = A(
−→
K n) − ⋃k

i=1 A(Ci ) and let A′
1, A

′
2 be the partition of

A′ such that A′
1 = {viv j |i > j} and A′

2 = {viv j |i < j}. Set Di = −→
Ci if i ≤ k − 2,

and Dk−1 = −→
C k−1 ∪ A′

1 and Dk = −→
Ck ∪ A′

2. It is trivial to see that (D1, D2, . . . , Dk)

be a k-decomposition of
−→
Kn with diam(Di ) = n − 1 for all i . 	


The Wiener index W (G) of a connected graph G is the sum of distance of all pairs
of vertices in G, that is,

W (G) =
∑

u,v∈V (G)

dG(u, v).

It is one of most widely studied topological indices in mathematical chemistry, see a
survey (Dobrynin et al. 2001) and some recent works (Balakrishnan et al. 2008; Bereg
and Wang 2007; Eliasi and Taeri 2009; Li et al. 2011; Wagner et al. 2009). Zhang and
Wu (2005) showed that for any n ≥ 5 and 2-decomposition (G1,G2) of Kn , if G1
and G2 are connected, then

3

2
n(n − 1) ≤ W (G1) + W (G2) ≤ n3 − n

6
+ (n

2

) + n − 1.

Motivated from the aboe result, the authors Li et al. (2011) posed the following
conjecture and verified its validity for k = 3.

Conjecture 1 (Li et al. 2011) Let Kn be the complete graph of order n and k ≥ 2 any
fixed integer. Assume that (G1,G2, . . . ,Gk) is a k-decomposition of Kn such that Gi

is connected for each i = 1, 2, . . . , k. Then for any sufficiently large n with respect
to k,

(2k − 1)
(n
2

) ≤
k∑

i=1

W (Gi ) ≤ (k − 1)
n3 − n

6
+ (n

2

) + (k − 1)(n − 1).

The lower bound is trivial and is attained by any k-decomposition (G1,G2, . . . ,Gk)

of Kn with diam(Gi ) = 2 for each i = 1, 2, . . . , k. In this decomposition,

W (Gi ) = e(Gi ) + 2
((n

2

) − e(Gi )
) = 2

(n
2

) − e(Gi ), and
k∑

i=1

e(Gi ) = (n
2

)
,
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thus
∑k

i=1 W (Gi ) = (2k−1)
(
n
2

)
. If the conjecture is true, the upper bound is attained

by a decomposition (G1,G2, . . . ,Gk) of Kn with Gi ∼= Pn for k − 1 i ′s. Without
loss of generality, let Gi ∼= Pn for i = 1, 2, . . . , k − 1. Then diam(Gk) = 2 for any
sufficiently large n, and thus

∑k
i=1 W (Gi ) = (k − 1) n

3−n
6 + (

n
2

) + (k − 1)(n − 1).

Now we pose the directed version of Conjecture 1 as follows.

Conjecture 2 Let k ≥ 2 be a fixed integer and assume that (D1, D2, . . . , Dk) is a
k-decomposition of

−→
Kn such that Di is strongly connected for each i = 1, 2, . . . , k.

Then for any sufficiently large n with respect to k,

(2k − 1)n(n − 1) ≤
k∑

i=1

W (Di ) ≤ (k − 1)
n3 − n2

2
+ n(n + k − 2).

Indeed, the lower bound of the above conjecture is true, which is attained by any k-
decomposition (D1, D2, . . . , Dk) of

−→
Kn with diam(Di ) = 2 for each i = 1, 2, . . . , k.

Since

W (Di ) = a(Di ) + 2 (n(n − 1) − a(Di ))

= 2n(n − 1) − a(Di ), and
k∑

i=1

a(Di ) = n(n − 1),

thus
∑k

i=1 W (Di ) = (2k − 1)
(
n
2

)
. If the upper bound is true, it is attained by a

decomposition (D1, . . . , Dk) of
−→
Kn , in which Di = −→

Ci for all i ∈ {1, . . . , k − 1}.
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