
J Comb Optim (2016) 32:885–905
DOI 10.1007/s10878-015-9910-x

Scheduling arc shut downs in a network to maximize
flow over time with a bounded number of jobs per time
period

Natashia Boland1,2 · Thomas Kalinowski1 ·
Simranjit Kaur1

Published online: 29 May 2015
© Springer Science+Business Media New York 2015

Abstract We study the problem of scheduling maintenance on arcs of a capacitated
network so as to maximize the total flow from a source node to a sink node over a
set of time periods. Maintenance on an arc shuts down the arc for the duration of the
period in which its maintenance is scheduled, making its capacity zero for that period.
A set of arcs is designated to have maintenance during the planning period, which
will require each to be shut down for exactly one time period. In general this problem
is known to be NP-hard, and several special instance classes have been studied. Here
we propose an additional constraint which limits the number of maintenance jobs per
time period, and we study the impact of this on the complexity.

Keywords Network models · Complexity theory · Maintenance scheduling · Mixed
integer programming

Mathematics Subject Classification 90C10 · 90B10 · 68Q25

1 Introduction

We consider the problem of scheduling maintenance jobs on the arcs of a flow network
with the objective of maximizing the throughput over a given time horizon. This
problem combines the diverse fields of scheduling [see for instance Pinedo (2008)]
and network flow optimization, in particular dynamic network flows, which have been

B Thomas Kalinowski
thomas.kalinowski@newcastle.edu.au

1 University of Newcastle, Newcastle, Australia

2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9910-x&domain=pdf

886 J Comb Optim (2016) 32:885–905

the subject of intense study in recent years; see, for example, Koch et al. (2011),
Kotnyek (2003), and Skutella (2009).

The combination of scheduling andnetwork optimization represents a natural exten-
sion to existing network models, and admits many interesting variants. For example,
Tawamalarmi and Li (2011), motivated by a problem in highway maintenance, con-
sider a multicommodity flow variant, providing complexity results, combinatorial
algorithms, and integer programming models. Network optimization problems and
scheduling have also been combined in the context of restoring infrastructure net-
works after major disruptions (Nurre 2013; Nurre and Sharkey 2014; Nurre et al.
2012) and in network design over time (Baxter et al. 2014; Kalinowski et al. 2015).

The optimization problem studied in the present paper was originally motivated by
annual maintenance planning for a coal export supply chain (Boland and Savelsbergh
2011b), in which maximizing the annual throughput is a key concern (see Lidén
2014 for a comprehensive survey of mathematical models in railway maintenance
scheduling). Boland et al. (2013a, 2014b) introduced a general network optimization
problem in which arc maintenance jobs need to be scheduled so as to maximize the
total flow in the network over time. A simplified version of the problem in which all
jobs have unit processing timewas studied in Boland et al. (2014a), and the complexity
was determined taking into account certain instance characteristics, such as special
network structures and restrictions on the set of jobs.

In the present paper we extend this model by adding the constraint that the number
of jobs scheduled in any time period is bounded by a number K which is given as
part of the input. The problem is defined over a network N = (V, A, s, t, u) with
node set V , arc set A (we admit parallel arcs having the same start and end nodes),
source s ∈ V , sink t ∈ V and nonnegative integral capacity vector u = (ua)a∈A.
By δ−(v) and δ+(v) we denote the set of incoming and outgoing arcs of node v,
respectively. We consider this network over a set of T time periods indexed by the set
[T] := {1, 2, . . . , T }, and our objective is to maximize the total flow from s to t . We
are also given a subset J ⊆ A of arcs that have to be shut down for exactly one time
period in the time horizon. In other words, there is a set of maintenance jobs, one for
each arc in J , each with unit processing time. In addition, there is a parameter K such
that the number of maintenance jobs scheduled in any time period must not exceed K .

From a practical point of view, this is a natural variation of the model. In many
real world network maintenance scheduling problems, there are resource and budget
constraints that do not allow too many jobs to be performed at the same time. For
example, the number of crews available to work at night may be limited, or the main-
tenance operation may require the use of specialized machines, of which very few
are available. In the coal supply chain situation that motivated this research, some
types of rail maintenance require the use of such machines: the machines were shared
across the whole state, with at most two available in the region at any one time. Of
course, in practice there can be complicated rules about the combinations of jobs that
are allowed. Disregarding these complications, we propose to study a very simple ver-
sion of the model as an abstract combinatorial optimization problem. We also make
the simplifying assumptions that flow is instantaneous, i.e., there are no transit times
associated with the arcs, and that there is always enough flow available to exhaust the
network capacity. These are both valid assumptions in the case of the coal supply chain

123

J Comb Optim (2016) 32:885–905 887

application that motivated this work (Boland et al. 2011a, 2013a, b). For example, it
can be shown that all transit times can be set to zero if all job start times are expressed
in a standardized time, in which each job’s start time is delayed by the travel time from
its location to the port terminal.

The optimization problem is to choose the outage time periods in such a way that
the total flow from s to t is maximized. We call this problem Maximum Flow Arc
Shutdown Scheduling (MFASS), and more formally, it can be written as a mixed
binary program as follows:

maximize z =
T∑

i=1

∑

a∈δ+(s)

xai subject to

xai � ua yai a ∈ J, i ∈ [T], (1)

xai � ua a ∈ A \ J, i ∈ [T], (2)
T∑

i=1

yai = T − 1 a ∈ J, (3)

∑

a∈δ−(v)

xai =
∑

a∈δ+(v)

xai v ∈ V \ {s, t}, i ∈ [T], (4)

∑

a∈J

yai � |J | − K i ∈ [T], (5)

xai � 0 a ∈ A, i ∈ [T], (6)

yai ∈ {0, 1} a ∈ A, i ∈ [T], (7)

where xai for a ∈ A and i ∈ [T] denotes the flow on arc a in time period i , and
yai ∈ {0, 1} for a ∈ A and i ∈ [T] indicates when the arc a is available in time period
i , i.e., yai = 0 in the period i in which the outage for arc a is scheduled. The problem
is to schedule the maintenance jobs so that the total flow of the network over the time
horizon T is maximized.

In the present work, our focus is not primarily on the real-world application in the
background, but on the abstract optimization problem MFASS and on the properties
that make a class of instances hard or easy. These instance classes may or may not
correspond to properties that occur in the coal supply chain application. For instance,
the reduction from 3- Partition in Boland et al. (2014b) shows that the general
problem is strongly NP-complete for the class of instances with K = 3, and this
raises the question about the hardness of the case K = 2. Nevertheless, the original
supply chain application did motivate some features studied. For example, the real-
life network is series-parallel, (Boland et al. 2013a), some types of maintenance,
(especially on the rail network), require the use of scarce equipment, motivating the
study of small values of K , and the sum of arc capacities entering any node is equal,
or nearly equal, to the sum of arc capacities leaving any node, for almost all network
nodes (Boland et al. 2014a). In Boland et al. (2014a) several instance classes for the
problem without the job limit per time period were analyzed.

In order to classify instances we introduce the following notation. Let C be the class
of all MFASS instances. With an upper index K we denote the class of all instances

123

888 J Comb Optim (2016) 32:885–905

Table 1 Complexity results

Instance class Complexity

C3sp ∩ C3bal ∩ C3aa Strongly NP-complete (Proposition 3)

C|J |−1
sp ∩ C|J |−1

bal ∩ C|J |−1
aa NP-complete (Proposition 4)

Cuc NP-complete (Proposition 5)

C2 O(|J |3) (Proposition 1)

with an upper bound of K on the number of jobs scheduled per time period, and a
lower index indicates additional restrictions as introduced in Boland et al. (2014a).

• Let Csp be the class of instances where the underlying network is series-parallel.
• Let Cbal be the class of instances where the underlying network is balanced, i.e.,
for each transshipment node v ∈ V \ {s, t} the capacity into this node equals the
capacity out of this node.

• Let Cuc be the class of unit capacity instances, i.e., the capacities are ua = 1 for
all arcs a ∈ A.

• Let Caa be the class of instances where all arcs have a job associated, i.e., J = A.

For instance
(
C3sp ∩ C3aa

)
\C3bal is the set of all instances with a series-parallel network

which is not balanced, a job associated with every arc, and the constraint that at most
3 jobs can be scheduled per time period. In general, K is not constant, and we also
consider instance classes with varying K , but imposing some restrictions on how K
can vary relative to other instance parameters. For instance,C|J |

sp is the class of instances
with a series-parallel network and no limit on the number of jobs per time period, and
C|J |/3 contains the instances in which at most one third of all jobs can be scheduled
per time period. As proved in Boland et al. (2014a), the classes C|J |

aa and C|J |
sp ∩ C|J |

bal
are trivial: it is always optimal to schedule all jobs at the same time. In contrast, the
restriction of the problem to C|J |

bal is still strongly NP-hard, and the restriction to C|J |
sp

is NP-hard, but for fixed T it can be solved in pseudopolynomial time using dynamic
programming. Our new complexity results are summarized in Table 1.

Note that the classes Csp, Cbal and Cuc are interesting from the coal chain point
of view: the actual network underlying the work in Boland et al. (2013a, 2014b) is
series-parallel, almost balanced, and has the property that a large proportion of the
arcs have the same capacity.

Note that the problem is solvable in polynomial time if both T and K are bounded,
say T � T0 and K � K0 for some absolute constants T0 and K0. Then |J | � K0T0
for any feasible instance, and we can enumerate all partitions of J into at most T sets
of size at most K of which there are at most

C =
T0∏

i=0

(
K0(T0 − i)

K0

)
.

123

J Comb Optim (2016) 32:885–905 889

For each of these partitions we have to solve T maximum flow problems, hence the
run-time is bounded by CT0nm, since the maximum flow problem can be solved in
O(mn) time (King et al. 1994; Orlin 2013). Consequently, for the asymptotic analysis
we are interested in instance classes where at least one of the parameters T and K is
unbounded.

The paper is organized as follows. In Sect. 2 we show that the case K = 2 can be
solved in polynomial time. In addition we provide an explicit description of an optimal
solution for K = 2 and a network with a single transshipment node which leads to
a significantly better run-time bound for this case. The hardness results are proved
in Sect. 3. In Sect. 4 we present a fully polynomial time approximation scheme for
series-parallel networks with fixed time horizon. We also provide a polynomial time
approximation scheme for series parallel networks in general when K = |J |.

2 The case K = 2

In this section we consider the case K = 2. In Sect. 2.1 we show that this case can be
reduced to a maximumweighted matching problem and thus is solvable in polynomial
time, and in Sect. 2.2 we give an explicit description of an optimal solution for the
case that the network has only a single transshipment node.

2.1 General networks

We reduce the problem to amaximumweight perfectmatching problem. Let F0 denote
the maximum flow value in the whole network, for a ∈ J let Fa denote the maximum
flow when arc a is shut, and for distinct a, b ∈ J let Fab be the maximum flow when
arcs a and b are shut. We set p = max{0, |J | − T } and define an auxiliary graph
whose vertex set contains two vertices for every arc a ∈ J and two sets W and W ′
of dummy vertices with |W | = 2p and |W ′| = 2(�|J |/2� − p). The two vertices for
a ∈ J are denoted by a and a′, and the weighted edge set of the auxiliary graph is
defined as follows:

• For distinct arcs a, b ∈ J there is an edge {a, b} with weight Fab + F0.
• For a ∈ J there is an edge {a, a′} of weight Fa .
• There are all edges of the form {a′, w} for a ∈ J andw ∈ W ∪W ′. All these edges
have zero weight.

• The vertex set W ′ induces a matching consisting of zero weight edges.

There is a correspondence between perfectmatchings in the auxiliary graph and outage
schedules. Let M be a perfect matching in the auxiliary digraph. The corresponding
schedule has

• For every edge {a, b} ∈ M with a, b ∈ J one time period with arcs a and b shut,
• For every edge {a, a′} ∈ M with a ∈ J one time period with only arc a shut,
• All other time periods without shut arcs.

This construction is illustrated in Fig. 1 for J = {a, b, . . . , h} and T = 6. The bold
edges form a perfect matching corresponding to scheduling the following outage of

123

890 J Comb Optim (2016) 32:885–905

Fig. 1 A perfect matching in
the auxiliary graph

a

b

c

d

e

f

g

h

J J

W

W

schedule: period 1: {a, d}, period 2: {c, f }, period 3: {g, h}, period 4: {b}, period 5:
{e}, period 6: ∅.

For a perfect matching M we define subsets M1 ⊆ M and M2 ⊆ M by

M1 = {{a, b} ∈ M : a, b ∈ J }, M2 = {{a, a′} ∈ M : a ∈ J }.

Note that the 2p nodes in W must be matched to nodes a′, hence

|M2| � |J | − 2p � |J | − 2(|J | − T) = 2T − |J |,

and with |M1| = 1
2 (|J | − |M2|) this implies

|M1| + |M2| = 1

2
(|J | − |M2|) + |M2| = 1

2
(|J | + |M2|) � T .

The total throughput for the schedule corresponding to the matching M is

∑

{a,b}∈M1

Fab +
∑

{a,a′}∈M2

Fa + (T − |M1| − |M2|)F0

=
∑

{a,b}∈M1

(Fab + F0) +
∑

{a,a′}∈M2

Fa + (T − 2|M1| − |M2|)F0

= ω(M) + (T − |J |)F0,

where ω(M) is the weight of M . Thus the original problem is equivalent to finding
a maximum weighted perfect matching in the auxiliary graph, and with an efficient
implementation (Gabow 1990) of the blossom algorithm (Edmonds 1965) we have
proved the following proposition.

Proposition 1 For K = 2 the problem MFASS can be solved in O(|J |3) time.

123

J Comb Optim (2016) 32:885–905 891

2.2 The single node case

Consider a network with a single transshipment node v, a job set J , a time horizon T
and K = 2. We use the notation J− = δ−(v) ∩ J and J+ = δ+(v) ∩ J and assume
without loss of generality that |J−| � |J+|. We order the arcs in J− and J+ such
that the capacities are non-increasing, i.e. J− = {a1, . . . , ar } and J+ = {b1, . . . , bs}
(s � r) with

ua1 � ua2 � · · · � uar , ub1 � ub2 � · · · � ubs .

Note that it is necessary for feasibility that r + s � 2T , and in particular r � T . We
will show that an optimal solution can be obtained as follows.

Proposition 2 An optimal solution for the single node problem with K = 2 is given
by the following schedule.

• For i = 1, 2, . . . , r take arcs ai and bi out in time period i .
• For i = r + 1, r + 2, . . . ,min{T, 2T − s} take arc bi out in time period i .
• If s > T then for i = 2T − s + 1, 2T − s + 2, . . . , T take arcs bi and b2T+1−i

out in time period i .

For the proof of Proposition 2 we will need the following notation for the inbound
and outbound capacities under various outage scenarios.

X =
∑

a∈δ−(v)

ua, Y =
∑

a∈δ+(v)

ua,

Xi = X − uai for 1 � i � r, Yi = Y − ubi for 1 � i � s,

Xi j = X − uai − ua j for 1 � i < j � r, Yi j = Y − ubi − ub j for 1 � i < j � s.

We need the following inequality.

Lemma 1 For any real numbers x1, . . . , x6 satisfying x3, x4 ∈ [x1, x2], x3 + x4 =
x1 + x2 and x5 � x6, we have

min{x3, x6} + min{x4, x5} � min{x1, x6} + min{x2, x5}.

Proof The LHS is min{x3 + x4, x3 + x5, x6 + x4, x6 + x5}, and we have

x3 + x4 = x1 + x2 � min{x1, x6} + min{x2, x5},
x3 + x5 � x1 + x5 � min{x1, x6} + min{x2, x5},
x4 + x6 � x1 + x5 � min{x1, x6} + min{x2, x5}, and

x6 + x5 � min{x1, x6} + min{x2, x5}.

	

123

892 J Comb Optim (2016) 32:885–905

Proof of Proposition 2 Let S be the schedule described in the proposition, and let Si
be the set of arcs that are scheduled to be shut in period i (i = 1, . . . , T). For the sake
of contradiction, suppose that S is not optimal. Among all optimal schedules we can
choose one, say S′, that differs from S as late as possible, i.e., such that the smallest
index i with S′

i �= Si is maximal, where S′
i is the set of arcs that are shut down in

period i according to schedule S′.
Case 1 i � r . There are indices p, q � i with ai ∈ S′

p, and bi ∈ S′
q . Without loss of

generality, we may assume p = i , since otherwise S′
i could be swapped with S′

p to
yield a schedule with the same objective value. Furthermore, q > i since otherwise
S′
i = Si . Replacing S′

i with {ai , bi } and S′
q with S′

i ∪ S′
q \ {ai , bi } we obtain another

schedule S′′ which agrees with S for one time period more than S′. In order to arrive
at the required contradiction we have to check that schedule S′′ is not worse than
schedule S′. Note that the schedules S′ and S′′ differ only in periods i and q. We
distinguish several cases for the sets S′

i and S′
q . For each case we write down the total

flows in periods i and q for the schedules S′ and S′′, and then we apply Lemma 1 to
verify that S′′ is at least as good as S′.

Case 1.1 S′
i = {ai , bk} and S′

q = {a j , bi } for some j ∈ {i + 1, . . . , r} and
k ∈ {i + 1, . . . , s}.

S′ : min{Xi , Yk} + min{X j , Yi }, S′′ : min{Xi , Yi } + min{X j , Yk}.
The claim follows from Lemma 1 with (x1, . . . , x6) = (Xi , X j , X j , Xi ,

Yi , Yk).
Case 1.2 S′

i = {ai , bk} for some k ∈ {i + 1, . . . , s}, and S′
q = {bi }.

S′ : min{Xi , Yk} + min{X, Yi }, S′′ : min{Xi , Yi } + min{X, Yk}.
Theclaim follows fromLemma1with (x1, . . . , x6) = (Xi , X, X, Xi , Yi , Yk).
Case 1.3 S′

i ={ai } and S′
q = {a j , bi } for some j ∈ {i + 1, . . . , r}.

S′ : min{Xi , Y } + min{X j , Yi }, S′′ : min{Xi , Yi } + min{X j , Y }.
The claim follows from Lemma 1 with (x1, . . . , x6) = (Xi , X j , X j , Xi ,

Yi , Y).
Case 1.4 S′

i = {ai } and S′
q = {bi }.

S′ : min{Xi , Y } + min{X, Yi }, S′′ : min{Xi , Yi } + min{X, Y }.
Theclaim follows fromLemma1with (x1, . . . , x6) = (Xi , X, X, Xi , Yi , Y).
Case 1.5 S′

i = {ai , a j } and S′
q = {bi , bk}.

S′ : min{Xi j , Y } + min{X, Yik}, S′′ : min{Xi , Yi } + min{X j , Yk}.
The claim follows from Lemma 1 applied twice, first with (x1, . . . , x6) =
(Xi j , X, X j , Xi , Yi , Yk) and then with (x1, . . . , x6) = (Yik, Y, Yi , Yk,
Xi j , X):

123

J Comb Optim (2016) 32:885–905 893

min{X j , Yk} + min{Xi , Yi } � min{Xi j , Yk} + min{X, Yi }
� min{Xi j , Y } + min{X, Yik}.

Case 1.6 S′
i = {ai , a j } for some j ∈ {i + 1, . . . , r}, and S′

q = {bi }.

S′ : min{Xi j , Y } + min{X, Yi }, S′′ : min{Xi , Yi } + min{X j , Y }.

The claim follows from Lemma 1 with (x1, . . . , x6) = (Xi j , X, X j , Xi ,

Yi , Y).
Case 1.7 S′

i = {ai } and, S′
q = {bi , bk} for some k ∈ {i + 1, . . . , s}.

S′ : min{Xi , Y } + min{X, Yik}, S′′ : min{Xi , Yi } + min{X, Yk}.

Theclaim follows fromLemma1with (x1, . . . , x6)=(Yik, Y, Yk, Yi , Xi , X).
Case 1.8 S′

i = {ai , a j } and S′
q = {ak, bi } for some j, k ∈ {i + 1, . . . , r}.

S′ : min{Xi j , Y } + min{Xk, Yi }, S′′ : min{Xi , Yi } + min{X jk, Y }.

The claim follows from Lemma 1 with (x1, . . . , x6) = (Xi j , Xk, X jk, Xi ,

Yi , Y).
Case 1.9 S′

i = {ai , b j } and S′
q = {bk, bi } for some j, k ∈ {i + 1, . . . , s}.

S′ : min{Xi , Y j } + min{X, Yik}, S′′ : min{Xi , Yi } + min{X, Y jk}.

The claim follows from Lemma 1 with (x1, . . . , x6) = (Yik, Y j , Y jk, Yi ,
Xi , X).

Case 2 i > r and Si = {bi }. Without loss of generality, we assume that bi ∈ S′
i ,

and then S′
i �= Si implies S′

i = {bi , b j } for some j ∈ {i + 1, . . . , s}. Furthermore,
S′
i ∪ S′

i+1 ∪· · ·∪ S′
T = Si ∪ Si+1 ∪· · ·∪ ST , and from |Si | = 1 and |S′

i | = 2 it follows
that |S′

q | � 1 for some q ∈ {i + 1, . . . , T }. Consequently, S′
q = ∅ or S′

q = {bk} for
some k ∈ {i + 1, . . . , s}. Replacing S′

i with {bi } and S′
q with {b j } ∪ S′

q we obtain
another schedule S′′ which agrees with S for one time period more than S′, and we
claim that S′′ is not worse than S′. If S′

q = {bk} then the total flows in periods i and
q are

S′ : min{X, Yi j } + min{X, Yk}, S′′ : min{X, Yi } + min{X, Y jk},

and the claim follows from Lemma 1 with (x1, . . . , x6)= (Yi j , Yk, Y jk, Yi , X, X).
If S′

q = ∅ then the total flows in periods i and q are

S′ : min{X, Yi j } + min{X, Y }, S′′ : min{X, Yi } + min{X, Y j },

and the claim follows from Lemma 1 with (x1, . . . , x6)=(Yi j , Y, Y j , Yi , X, X).

123

894 J Comb Optim (2016) 32:885–905

s t
v1

a

b

c

d

S

P P

a b c d

Fig. 2 A series-parallel network and the corresponding SP-tree

Case 3 i > r and Si = {bi , b2T+1−i }. We have S′
i ∪ · · · ∪ S′

T = Si ∪ · · · ∪ ST =
{bi , bi+1, . . . , b2T+1−i }. This implies |Sp| = 2 for all p ∈ {i, . . . , T }. Without loss
of generality, we assume S′

i = {bi , b j } for some j ∈ {i + 1, . . . , 2T − i}, and
there exists q ∈ {i + 1, . . . , T } with S′

q = {bk, b�} for � = 2T + 1 − i and some
k ∈ {i + 1, . . . , 2T − i}. Replacing S′

i with {bi , b�} and S′
q with {b j , bk} we obtain

another schedule S′′ which agrees with S for one time period more than S′. The total
flows in periods i and q are

S′ : min{X, Yi j } + min{X, Yk�}, S′′ : min{X, Yi�} + min{X, Y jk}.

From Lemma 1 with (x1, . . . , x6) = (Yi j , Yk�, Yi�, Y jk, X, X) it follows that S′′ is
at least as good as S′ and this is the required contradiction.

	

Since sorting the arcs dominates the run-time of the algorithm to find the solution

described in Proposition 2 we obtain the following stronger run-time bound for the
single-node case.

Corollary 1 For K = 2 and a single transshipment node MFASS can be solved in
time O(|J | log|J |).

3 Hardness results

Before proving the hardness results we make precise the definition of series-parallel
network. In the present paper this term refers to a two-terminal series-parallel network:
a network that has a single source and single sink and is constructed by a sequence of
series and parallel compositions starting from single arcs. For two networks N1 and
N2 the parallel composition of N1 and N2 is obtained by identifying the source node
s1 and sink node t1 of N1 with the source node s2 and sink node t2 of N2, respectively.
The series composition of N1 and N2 is obtained by identifying the sink node t1 of
N1 with the source node s2 of N2. The construction of a series parallel network can
be encoded into a tree, the so-called SP-tree, whose leaves are the arcs of the network.
This is illustrated in Fig. 2.

123

J Comb Optim (2016) 32:885–905 895

s t

v

u1

u2

ur

−ur+1

−ur+2

u3n

Fig. 3 The network for C3sp ∩ C3bal ∩ C3aa

Proposition 3 The restriction of MFASS to the instance class C3sp ∩ C3bal ∩ C3aa is
strongly NP-complete.

Proof We use reduction from 3- Partition. Let a 3- Partition instance be given by
an integer B and a set {u1, . . . , u3n} of integers with B/4 < u j < B/2 for all j and∑3n

j=1 u j = nB. The problem is to decide if there is a partition of the set {u1, . . . , u3n}
into n triples such that the sum of each triple equals B. We define new numbers u′

i for
i = 1, . . . , 3n by u′

i = 3ui − B. Note that

3n∑

i=1

u′
i =

3n∑

i=1

(3ui − B) = 3
3n∑

i=1

ui − 3nB = 3nB − 3nB = 0, (8)

and for every triple (i, j, k) we have

u′
i + u′

j + u′
k = 0 ⇐⇒ (3ui − B) + (

3u j − B
) + (3uk − B) = 0

⇐⇒ 3(ui + u j + uk) − 3B = 0 ⇐⇒ ui + u j + uk = B.

Without loss of generality we assume that for some integer r , we have u′
i � 0 for

i � r and u′
i < 0 for i > r . We define an instance of our problem with K = 3, T = n,

a single transshipment node v and the following arcs:

• For i = 1, 2, . . . , r there is an arc ai into v having capacity u′
i , and• for i = r + 1, . . . , 3n there is an arc ai that goes out of v and has capacity −u′

i .

This is illustrated in Fig. 3, where the arc labels represent capacities and all arcs have
an associated job, i.e., J = A. Obviously the network is series-parallel. From K = 3,
T = n and |J | = 3n it follows that we need to shut down exactly 3 arcs in every period.
It follows from (8) that the network is balanced. Let X = u1+ . . .+ur be the capacity
of the network. Clearly, (n − 1)X is an upper bound for the total throughput, and we
claim that this bound can be achieved if and only if the set {u′

i : i = 1, . . . , 3n} can be
partitioned into triples that sumup to zero, or equivalently, the set {ui : i = 1, . . . , 3n}
can be partitioned into triples that sum up to B. First assume that

{1, . . . , 3n} = {i1, j1, k1} ∪ · · · ∪ {in, jn, kn}

is a partition with u′
i p

+ u′
jp

+ u′
kp

= 0 for all p ∈ {1, . . . , n}. Consider the schedule
that shuts down the arcs aip , a jp and akp in period r . It follows from u′

i p
+u′

jp
+u′

kp
= 0

123

896 J Comb Optim (2016) 32:885–905

s t

v

u1

u2

un

B

B

Fig. 4 The network for C|J |−1
sp ∩ C|J |−1

bal ∩ C|J |−1
aa

that the network with arc set Ap = A \ {
aip , a jp , akp

}
is balanced, and therefore we

get a feasible flow in which every arc in Ap is at capacity. Therefore, every arc is at
capacity in n − 1 periods and the total throughput equals

r∑

i=1

(n − 1)ui = (n − 1)X.

Conversely, if there is a schedule with a total throughput of (n − 1)X then every arc
must be at capacity in every period in which it is not shut down. This implies that in
every period p ∈ {1, . . . , n} the network with arc set Ap = A \ {

aip , a jp , akp
}
, is

balanced, where i p, jp and kp are the indices of the arcs that are shut down in period
p. Consequently u′

i p
+ u′

jp
+ u′

kp
= 0 for every p ∈ {1, . . . , n}, and this yields a

solution for the 3- Partition instance. 	

Proposition 4 The restriction of MFASS to the instance class C|J |−1
sp ∩C|J |−1

bal ∩C|J |−1
aa

is NP-complete.

Proof We use reduction from Partition. Let a Partition instance be given by an
integer B and a set {u1, . . . , un} of integers with ∑n

j=1 u j = 2B. The problem is to
decide if there is a partition of the set {u1, . . . , un} into two parts such that the sum
of each part equals B. The network used for the reduction is shown in Fig. 4, where
the arc labels represent capacities and all arcs have an associated job, i.e., J = A.
Consider this network for the time horizon T = 2 and with K = n + 1 = |J | − 1.
Each of the two arcs of capacity B can carry at most B units of flow over the whole
time horizon, because it needs to be shut down for one period. Therefor 2B is an upper
bound for the total throughput. It is not possible to have a flow of 2B in a single period,
since otherwise all n + 2 arcs would need to be shut in the other period. Therefore, in
order to achieve the bound of 2B we must have a flow of value B in each time period.
This is possible if and only if the total capacity of the arcs between s and v that are
shut down in period 1 is B, i.e., the Partition instance is a YES instance. 	

Note that the algorithm from Boland et al. (2014a) for series-parallel networks
and K = |J | which is pseudopolynomial for fixed T can be adapted to the case
K = |J | − 1. This algorithm computes a list of T -dimensional vectors for each node
of the SP-tree. The vectors at a node v of the SP-tree represent the possible throughputs
for the corresponding subnetwork: (z1, . . . , zT) is in the list at node v if and only if the
jobs for arcs in the subnetwork can be scheduled such that the maximum flow value

123

J Comb Optim (2016) 32:885–905 897

u1 arcs

u2 arcs

u3n−1 arcs

u3n arcs

3(n− 1) arcs

s t
v

Fig. 5 Instance for the reduction in the proof of Proposition 5. The dashed arcs indicate the set J of arcs
with an associated job

for the subnetwork in time period i is zi (i = 1, . . . , T). In each node of the tree we
flag a vector that can only be achieved by scheduling all jobs at the same time (which
is at most one per node in the tree). Finally, when we scan the list at the root node in
order to determine the optimal solution, we exclude the flagged vector.

In Boland et al. (2014a), the class Cuc of instances where every arc has unit capacity
was shown to be tractable when there is no limit for the number of jobs per time period.
We finish this section with a proof that this class becomes NP-complete when such a
limit is introduced.

Proposition 5 The restriction of MFASS to the instance class Cuc is NP-complete.
Proof We use reduction from 3- Partition. Let a 3- Partition instance be given by
an integer B and a set {u1, . . . , u3n} of integers with B/4 < u j < B/2 for all j and∑3n

j=1 u j = nB. This can be reduced to the instance presented in Fig. 5, where every
arc has unit capacity and the set J is represented by dashed arcs. Since 3- Partition
is strongly NP-hard we may assume that the numbers ui are bounded by a polynomial
in the input size, and this ensures that the network size is polynomial in the size of the
3- Partition instance. We consider this network with a time horizon T = n and a
bound of K = B jobs per time period. The total throughput is bounded by 3n(n − 1)
since the total capacity of the arcs entering node t is 3(n − 1) and there are n time
periods. From |J | = nB it follows that exactly B jobs have to be scheduled in each
time period. We claim that the bound of 3n(n − 1) on the total throughput can be
achieved if and only if the 3- Partition instance is a YES instance. First suppose the
3- Partition instance is a YES instance, and let

{1, . . . , 3n} = {i1, j1, k1} ∪ · · · ∪ {in, jn, kn}

be a partition with uip + u jp + ukp = B for all p ∈ {1, . . . , n}. We obtain a schedule
that achieves the upper bound as follows. In time period p we shut down the arcs on
the paths number i p, jp and kp, where the paths between s and v are numbered from
top to bottom in Fig. 5, i.e., the i-th path contains exactly ui dashed arcs. Conversely,
suppose that there is a schedule that achieves a total throughput of 3n(n − 1). For
p ∈ {1, . . . , n} let Ip be the set of paths on which at least one arc is shut down in
period p. In order to achieve a total throughput of 3n(n − 1) we must have a flow of

123

898 J Comb Optim (2016) 32:885–905

value 3(n − 1) in each time period. Therefore, in each period we can shut down arcs
on at most 3 paths from s to v, i.e., |Ip| � 3 for all p ∈ {1, . . . , n}. Since all dashed
arcs have to be shut down in some time period we have I1 ∪ · · · ∪ In = {1, . . . , 3n},
and consequently, |Ip| = 3 for all p and Ip ∩ Ip′ = ∅ for all p �= p′. This implies that
in every time period all arcs on exactly 3 paths are shut down, hence

∑
i∈Ip ui = B

for every p ∈ {1, . . . , n} and the 3-sets I1, . . . , In form a solution of the 3- Partition
instance. 	

4 An FPTAS for series-parallel networks with fixed T

In this section we restrict our attention to series-parallel networks. We modify the
algorithm from Boland et al. (2014a) such that the bound K can be taken into account.
For fixed time horizon T , this algorithm runs in pseudopolynomial time, and we use
it together with scaling and rounding (Williamson and Shmoys 2011) to design an
FPTAS.

The algorithm presented in Boland et al. (2014a) starts at the leaves of the SP-tree
and computes a list of vectors z = (z1, . . . , zT) for each node of the SP-tree, where the
list at a node v in the SP-tree contains exactly the vectors z such that there exists some
schedule for which the subnetwork corresponding to v can carry flow zi in time period
i for i = 1, . . . , T . In the problem variant studied in Boland et al. (2014a) there is no
restriction on the number of arcs that can be shut in a period, so it is sufficient to keep
track of the possible flow vectors at the nodes of the SP-tree. But the same capacity
vector can be realised through different schedules. For instance, for the network shown
in in Fig. 6, there are three possibilities to get the flow vector (7, 0), i.e. 7 units in the
first time period and zero flow in the second period:

• Shut 2 arcs in period 1 (arcs with capacities 1 and 2), and 2 arcs in period 2 (arcs
with capacities 8 and 7); or

• Shut 1 arc in period 1 (arc with capacity 1 or 2), and 3 arcs in period 2 (arcs with
capacities 8, 7 and (2 or 1)); or

• Shut no arc in period 1, and all four arcs in period 2.

Thus with a limit K for the number of shut arcs per time period it becomes important to
keep track of the number of arcs shut in each period along with maximumflow that can
be sent in that period.Let ji represent the number of arcs shut in the i th period.Wedeter-
mine lists of job-capacity vectors of the form z = ((j1, z1), (j2, z2), . . . , (jT , zT)) at
each node of the SP-tree. The interpretation of such a vector z in the list of node N
is that there is a solution in which, for i = 1, . . . , T , in time period i exactly ji arcs
from the subnetwork corresponding to N are shut, and this subnetwork has capacity
zi . Due to the symmetry with respect to the time periods it is no loss of generality to
require the job-capacity vectors to be ordered. Hence we consider only vectors that
satisfy, for i = 1, . . . , T − 1, either zi > zi+1 or zi = zi+1 and ji � ji+1. We
say that a vector with this property is in standard form, and we note that for every
job-capacity vector there is a unique vector in standard form which can be obtained by
a permutation of the entries. The list at a leaf node of the tree, corresponding to an arc
a of the network, consists of the unique vector ((0, ua), (0, ua), . . . , (0, ua), (1, 0)) if

123

J Comb Optim (2016) 32:885–905 899

a ∈ J or ((0, ua), (0, ua), . . . , (0, ua), (0, ua)) if a /∈ J . As in Boland et al. (2014a),
let L and W denote the sets of leaves and internal nodes of the SP-tree, and let Wi

(i = 0, . . . , d) be the set of internal nodes at distance i from the root. The lists of
job-capacity vectors are computed as described in Algorithm 1.

Algorithm 1Maximizing total throughput for series-parallel networks under uniform
maintenance limit K

for v ∈ L do
Let a ∈ A be the arc corresponding to v

if a ∈ J then Lv ← [((0, ua), (0, ua), . . . , (0, ua), (1, 0))]
else Lv ← [((0, ua), (0, ua), . . . , (0, ua), (0, ua))]

for i = d, d − 1, . . . , 0 do
for v ∈ Wi do

Lv ← [] {initialize empty list}
Let u and w be the child nodes of v

for (z, z′) ∈ Lu × Lw and π permutation of {1, 2 . . . , T } do
for i ∈ [T] do j ′′i = ji + j ′

π(i)
if j ′′i � K for all i ∈ [T] then

if v is a parallel composition node then
for i ∈ [T] do z′′i = zi + z′

π(i)
else

for i ∈ [T] do z′′i = min{zi , z′π(i)}
sort z′′ to get the corresponding canonical vector
if z′′ /∈ Lv then add z′′ to Lv

Let v be the root node

return max
z∈Lv

T∑
i=1

zi

Example 1 Consider the series-parallel graph in Fig. 6where arc labels indicate capac-
ities, all arcs need maintenance for a period over a time horizon of 2 periods. Suppose
that K = 3. In Fig. 7, we show how job-capacity vectors are computed in the SP-tree.

Proposition 6 Let m be the number of arcs, B be an upper bound for the capacities
andK be the limit on the number of arcs that can be shut in a period. For series-parallel
networks MFASS can be solved in time O(T log T (KmB)2T T !m).

Proof The first and second component of an entry of a vector in the list at an internal
node are bounded by K andmB respectively, hence each entry can take KmB possible

s t

v

8

2

1

7

Fig. 6 Example network

123

900 J Comb Optim (2016) 32:885–905

S

P

P

[((0, 8), (1, 0))] [((0, 1), (1, 0))]

[((0, 2), (1, 0)]

[((0, 7), (1, 0)]

[((0, 9), (2, 0)), ((1, 8), (1, 1))]

[((0, 11), (3, 0)), ((1, 10), (2, 1)),
((1, 9), (2, 2)), ((2, 8), (1, 3))]

[((2, 7), (2, 0)), ((1, 7), (3, 0)), ((1, 3), (3, 0)),
((2, 2), (2, 0)), ((2, 1), (2, 0)), ((3, 0), (1, 0))]

Fig. 7 Computation of job-capacity vectors

values. Therefore every list can contain at most (KmB)T elements. Thus, the loop
over (z, z′) ∈ Lu × Lw and permutations π is over at most T !(KmB)2T elements. If
hash tables are used for the check of z′′ ∈ Lv then the bound of O(T log T) for sorting
z′′ dominates the run-time of the loop. In total there are m − 1 internal nodes, thus the
run-time of the complete algorithm is O(T log T (KmB)2T T !m). 	

From Proposition 6, it follows that for fixed T MFASS on series-parallel networks
can be solved in O(m2T+1B2T K 2T) time where B is the maximum capacity of an
arc in the network. Now we use a scaling approach to derive a fully polynomial
approximation scheme (FPTAS), that is a family (Aε) of algorithms, parameterized
by a positive real number ε, such that algorithmAε produces a solution with objective
value at least (1 − ε)z∗, where z∗ is the optimal value, and the run-time of algorithm
Aε is polynomially bounded in the input size and 1/ε.

Our approximation scheme is based on scaling the problem such that the maximum
capacity becomes bounded. In order to ensure that the solution of the scaled problem
is sufficiently close to the optimum we need a lower bound for the optimal objective
value. If |J | � K (T − 1) there is a feasible solution having one time period without
any outage, and the flow value for such a time period will be sufficient as lower bound
for our purpose. For |J | > K (T − 1) the situation is more complicated, and we need
a preprocessing step to transform a given instance into an equivalent one with some
control on the maximum capacity. Let ρ = max{0, |J | − K (T − 1)} ∈ {0, 1, . . . , K },
and let M be the maximum flow value with ρ arcs closed. For ρ = 0, M is the capacity
of a minimum cut and can be computed by solving a max flow problem. For ρ > 0,
the computation of M is described in Algorithm 2. Here, for a node v in the SP-tree
and a number j ∈ {0, 1, . . . , ρ}, z jv is the capacity of the subnetwork corresponding
to node v when j arcs in the intersection of J and this subnetwork are closed. If j is
larger than the size of this intersection, we put z jv = −∞. Algorithm 2 shows that M
can be computed efficiently.

Lemma 2 The maximum flow value M subject to the constraint that ρ arcs from J
carry zero flow can be determined in time O(mK 2) = O(m3). 	

123

J Comb Optim (2016) 32:885–905 901

Algorithm 2 Computing the maximum flow M with ρ outages

for v ∈ L do
Let a ∈ A be the arc corresponding to v

z0v ← ua
if a ∈ J then z1v ← 0 else z1v ← −∞
for j = 2, . . . , ρ do z jv ← −∞

for i = d, d − 1, . . . , 0 do
for v ∈ Wi do

for j = 0, 1, . . . , ρ do z jv ← −∞
Let u and w be the child nodes of v

for j = 0, 1, . . . , ρ do
for j ′ = 0, 1, . . . , ρ − j do

if v is a parallel composition node then

z j+ j ′
v ← max{z j+ j ′

v , z ju + z j
′

w }
else {v is a series composition node}

z j+ j ′
v ← max{z j+ j ′

v ,min{z ju , z j
′

w }}
Let v be the root node
return M = zρv

No arc can carry more than M units of flow in any time period, hence we may
assume w.l.o.g. that B � M . We also know that the optimal objective value is at least
M because, we can schedule ρ jobs allowing a flow of value M in time period 1, and
then continue arbitrarily. Let L = max{1, εB/(mT)} and consider the scaled problem
with the capacities ua replaced by u′

a = �ua/L�. The scaled instance can be solved
in time

O
(
m2T+1(B/L)2T K 2T

)
= O

(
m4T+1K 2T /ε2T

)
.

For any feasible vector y = (yai)a∈A,i∈[T] ∈ {0, 1}|J | T , let F(y) and F ′(y) denote the
objective values for the problem on the original network and for the scaled version,
respectively. Let y∗ = (y∗

ai)a∈A,i∈[T] and ỹ = (ỹai)a∈A,i∈[T] denote optimal solutions
of the problem on the original network and of the scaled version, respectively. In the
following lemma, we study the the behaviour of the objective values for these solutions
under the scaling.

Lemma 3 We have the following estimates:

L · F ′(y∗) � (1 − ε)F(y∗), (9)

F(ỹ) � L · F ′(ỹ). (10)

Proof Both inequalities are obvious for L = 1, because in this case the original and
the scaled problem coincide. So we assume L > 1. For i = 1, . . . , T let Ci be a
minimum cut in the network (V, A∗

i , s, t, u
′) where A∗

i = {a ∈ A : y∗
ai = 1}. Then,

using B � M � F(y∗), we obtain

123

902 J Comb Optim (2016) 32:885–905

L · F ′(y∗) = L
T∑

i=1

∑

a∈Ci

u′
a � L

T∑

i=1

⎛

⎝
∑

a∈Ci

ua
L

− |Ci |
⎞

⎠ �
T∑

i=1

∑

a∈Ci

ua − LmT

=
T∑

i=1

∑

a∈Ci

ua − εB � (1 − ε)F(y∗).

Similarly, let C ′
i be a minimum cut in the network (V, Ãi , s, t, u) where Ãi = {a ∈

A : ỹai = 1}. Then

F(ỹ) =
T∑

i=1

∑

a∈C ′
i

uai � L
T∑

i=1

∑

a∈C ′
i

u′
ai � LF ′(ỹ).

	

Proposition 7 For fixed T , the class Csp of instances with a series-parallel network
has an FPTAS with run-time O(m2T+1(B/L)2T K 2T) = O(m4T+1K 2T /ε2T) =
O(m6T+1/ε2T).

Proof The run-time bound for the scaled problem is a consequence of Proposition 6,
and the approximation guarantee follows from (9) and (10): F(ỹ) � LF ′(ỹ) �
LF ′(y∗) � (1 − ε)F(y∗). 	

Remark 1 The problem can be generalized by allowing the bound on the number
of jobs to vary over time. In other words, the parameter K is replaced by a vector
(K1, . . . , KT) and constraints (5) are replaced by

∑

a∈J

yai � |J | − Ki for all i ∈ [T].

Algorithm 1 can be modified to solve this more general problem, and with

ρ = max

{
0, |J | −

T∑

i=1

Ki + min
i∈[T] Ki

}

we obtain an FPTAS of runtime O(m6T+1/ε2T) for this problem.

For K = |J |, it was shown in Boland et al. (2014a) that the method corresponding
to Algorithm 1 runs in time O(m2T−1B2T−2), and using the same argument as above,
we obtain the following approximation result.

Proposition 8 For fixed T , K = |J | and series-parallel networks, MFASS has an
FPTAS with run-time O(m2T−1(B/L)2T−2) = O(m4T−3/ε2T−2).

If T is not fixed we still get a PTAS using the fact that for K = |J | shutting all arcs
in the job set J at the same time gives an approximation ratio of (1− 1/T). The basic

123

J Comb Optim (2016) 32:885–905 903

idea is that in order to get a (1− ε)-approximation for an instance with arbitrary T we
can distinguish two cases: if 1/T � ε we schedule all jobs at time 1 and otherwise
we run the (1 − ε)-approximation algorithm from Proposition 8.

Corollary 2 For K = |J | and series-parallel networks, MFASS has a PTAS with
run-time

O
(
f (1/ε)m4/ε−3

)

where f (x) = x5x−5/2ex log x.

Proof Let ε > 0 be fixed. If 1/T � ε we schedule all jobs at time 1. Otherwise
T < 1/ε and we run the (1 − ε)-approximation algorithm for T . By Proposition 7
in Boland et al. (2014a), the run-time is bounded by

O
(
T log(T)T !(mB/L + 1)2(T−1)m

)

= O

(
T log(T)T !

(
m2T

ε
+ 1

)2(T−1)

m

)

= O

(
(mT)4T−3 log(T)T !

(
1

εT
+ 1

(mT)2

)2(T−1)
)

. (11)

We have

(
1

εT
+ 1

(mT)2

)2(T−1)

=
(
m2T + ε

ε(mT)2

)2(T−1)

=
(
1 + m2T + ε − ε(mT)2

ε(mT)2

)2(T−1)

With α = m2T + ε − ε(mT)2 and β = ε(mT)2 we obtain

(
1

εT
+ 1

(mT)2

)2(T−1)

=
[(

1 + α

β

)β/α
]2(T−1)α/β

� e2(T−1)α/β .

Now

2(T − 1)
α

β
� 2T · m

2T + ε − ε(mT)2

ε(mT)2
= 2 · m

2T (1 − εT) + ε

εm2T
� 2/ε + 1,

and this implies

(
1

εT
+ 1

(mT)2

)2(T−1)

= O(e2/ε).

Substituting into (11) yields a run-time bound of

O
(
(mT)4T−3 log(T)T !e2/ε

)
,

123

904 J Comb Optim (2016) 32:885–905

and since all terms are increasing in T , we get with T < 1/ε and using Stirling’s
formula to bound the factorial, that the run-time is bounded by

O
(
(1/ε)4/ε−3 log(1/ε)�1/ε�!e2/εm4/ε−3

)

= O
(
(1/ε)4/ε−3 log(1/ε)(1/ε)1/εe−1/ε

√
1/εe2/εm4/ε−3

)

= O
(
(1/ε)5/ε−5/2 log(1/ε)e1/εm4/ε−3

)
.

	

Acknowledgments We would like to thank two anonymous referees for valuable comments that signifi-
cantly improved the presentation of our results, in particular the proof of Proposition 2. This research was
supported by the ARC Linkage Grants Nos. LP0990739 and LP1102000524 and HVCCC P/L.

References

Baxter M, Elgindy T, Ernst AT, Kalinowski T, Savelsbergh MWP (2014) Incremental network design with
shortest paths. Eur J Oper Res 238(3):675–684

BolandN,Kalinowski T, Kapoor R,Kaur S (2014) Scheduling unit time arc shutdowns tomaximize network
flow over time: complexity results. Networks 63(2):196–202

Boland N, Kalinowski T, Waterer H, Zheng L (2011) An optimisation approach to maintenance scheduling
for capacity alignment in the Hunter Valley coal chain. In: Baafi EY, Kininmonth RJ, Porter I (eds)
Proceedings of the 35th APCOM symposium: applications of computers and operations research in
the minerals industry, The Australasian Institute of Mining and Metallurgy Publication Series, pp
887–897

Boland N, Kalinowski T, Waterer H, Zheng L (2013) Mixed integer programming based maintenance
scheduling for the Hunter Valley coal chain. J Sched 16(6):649–659

Boland N, Kalinowski T, Waterer H, Zheng L (2014) Scheduling arc maintenance jobs in a network to
maximize total flow over time. Discret Appl Math 163(1):34–52

Boland N, McGowan B, Mendes A, Rigterink F (2013) Modelling the capacity of the Hunter Valley
coal chain to support capacity alignment of maintenance activities. In: Piantadosi J, Anderssen RS,
Boland J (eds) MODSIM2013, 20th international congress on modelling and simulation, Modelling
and Simulation Society of Australia and New Zealand, pp 3302–3308

Boland N, Savelsbergh MWP (2011) Optimizing the Hunter Valley coal chain. In: Gurnani H, Mehrotra A,
Ray S (eds) Supply chain disruptions: theory and practice of managing risk. Springer-Verlag, London
Ltd., London

Edmonds J (1965) Paths, trees, and flowers. Can J Math 17(3):449–467
Gabow HN (1990) Data structures for weighted matching and nearest common ancestors with linking. In:

Proceedings of the 1st ACM-SIAM symposium on discrete algorithms, SODA 1990, pp 434–443
Kalinowski T, Matsypura D, Savelsbergh MWP (2015) Incremental network design with maximum flows.

Eur J Oper Res 242(1):51–62
King V, Rao S, Tarjan R (1994) A faster deterministic maximum flow algorithm. J Algorithms 17(3):447–

474
Koch R, Nasrabadi E, Skutella M (2011) Continuous and discrete flows over time. Math Methods Oper Res

73:301–337
Kotnyek B (2003) An annotated overview of dynamic network flows. Technical Report 4936, INRIA
Lidén T (2014) Survey of railway maintenance activities from a planning perspective and literature review

concerning the use of mathematical algorithms for solving such planning and scheduling problems.
Technical report, Linköpings universitet

Nurre SG (2013) Integrated network design and scheduling problems: Optimization algorithms and appli-
cations. PhD thesis, Rensselaer Polytechnic Institute. online: http://search.proquest.com/docview/
1466024106

123

http://search.proquest.com/docview/1466024106
http://search.proquest.com/docview/1466024106

J Comb Optim (2016) 32:885–905 905

Nurre SG, Cavdaroglu B, Mitchell JE, Sharkey TC, Wallace WA (2012) Restoring infrastructure systems:
an integrated network design and scheduling (INDS) problem. Eur J Oper Res 223(3):794–806

Nurre SG, Sharkey TC (2014) Integrated network design and scheduling problems with parallel identical
machines: complexity results and dispatching rules. Networks 63:306–326

Orlin JB (2013) Max flows in O(nm) time, or better. In: Proceedings of the 45th ACM symposium on
theory of computing (STOC 2013), ACM, pp 765–774

Pinedo M (2008) Scheduling: theory, algorithms, and systems. Springer, New York
Skutella M (2009) An introduction to network flows over time. In: Cook W, Lovasz L, Vygen J (eds)

Research trends in combinatorial optimization. Springer, Berlin, pp 451–482
Tawarmalani M, Li Y (2011) Multi-period maintenance scheduling of tree networks with minimum flow

disruption. Nav Res Logist 58(5):507–530
Williamson DP, Shmoys DB (2011) The design of approximation algorithms. Cambridge University Press,

New York

123

	Scheduling arc shut downs in a network to maximize flow over time with a bounded number of jobs per time period
	Abstract
	1 Introduction
	2 The case K=2
	2.1 General networks
	2.2 The single node case

	3 Hardness results
	4 An FPTAS for series-parallel networks with fixed T
	Acknowledgments
	References

