
J Comb Optim (2016) 32:51–66
DOI 10.1007/s10878-015-9891-9

Performances of pure random walk algorithms on
constraint satisfaction problems with growing domains

Wei Xu1 · Fuzhou Gong2

Published online: 7 May 2015
© Springer Science+Business Media New York 2015

Abstract The performances of two types of pure random walk (PRW) algorithms for
a model of constraint satisfaction problem with growing domains (called Model RB)
are investigated. Threshold phenomenons appear for both algorithms. In particular,
when the constraint density r is smaller than a threshold value rd , PRW algorithms
can solve instances of Model RB efficiently, but when r is bigger than the rd , they fail.
Using a physical method, we find out the threshold values for both algorithms. When
the number of variables N is large, the threshold values tend to zero, so generally
speaking PRW does not work on Model RB. By performing experiments, we show
that PRW strategy cannot do better than other fundamental strategies.

Keywords Constraint satisfaction problems · Model RB · Random walk ·
Local search algorithms

1 Introduction

Constraint satisfaction problems (CSPs) arise in a large spectrum of scientific disci-
plines, such as computer science, information theory, and statistical physics (Rossi
et al. 2006; Lecoutre 2009). A typical CSP instance involves a set of variables and a
collection of constraints. Variables take values in a finite domain. Constraints contain

B Wei Xu
wxu@buaa.edu.cn

Fuzhou Gong
fzgong@amt.ac.cn

1 School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

2 Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9891-9&domain=pdf

52 J Comb Optim (2016) 32:51–66

a few variables and forbid some of their joint values. A solution is an assignment
satisfying all the constraints simultaneously. Given a CSP instance, two fundamental
scientific questions are to decide the existence of solutions and to find out a solution if
it exists. Examples of CSPs are Boolean formula satisfiability (SAT), graph coloring,
variants of SAT such as XORSAT, error correction codes, etc.

Random models of CSPs play a significant role in computer science. As instance
generators, they provide instances for benchmarking algorithms, help to inform the
design of algorithms and heuristics, and provide insight into problem hardness. Clas-
sical random CSP models were proposed and denoted by A, B, C and D respectively
(Smith andDyer 1996;Gent et al. 2001), andmany alternatives also appeared (Achliop-
tas et al. 1997; Xu and Li 2000; Smith 2001; Gao and Culberson 2007; Fan and Shen
2011; Fan et al. 2012; Shen and Ren 2014; Zhou et al. 2014).

Model RB is a typical CSP model with growing domains. It was proposed by Xu
and Li (2000) to overcome the trivial insolubility of the classical model B, and was
proved to have exact satisfiability phase transitions. The instances generated in the
phase transition region of Model RB are hard to solve (Xu and Li 2006; Xu et al.
2007) and have been widely used in various kinds of algorithm competitions (see
http://www.nlsde.buaa.edu.cn/kexu/ formore information).Model RB develops a new
way to study CSPs, especially CSPs with large domains, thus has gotten considerable
attention (e.g., Lecoutre 2009; Zhao et al. 2012; Liu et al. 2011; Zhao and Zheng 2011;
Richter et al. 2007; Alphonse and Osmani 2008; Jiang et al. 2011; Wang et al. 2011;
Liu et al. 2014; Huang and Yin 2014).

Algorithmanalysis is a notoriously difficult task. The current rigorous resultsmostly
deal with algorithms that are extremely simple, such as Backtrack-Free algorithms,
which assign variables one by one without backtracking (Chao and Franco 1986;
Broder et al. 1993). Pure random walk (PRW) algorithm is a process that consists of
a succession of random moves. It is relatively simple and has been intensively studied
on the k-SAT problem (Alekhnovich and Ben-Sasson 2006; Semerjian and Monasson
2003, 2004; Coja-Oghlan and Frieze 2012; Coja-Oghlan et al. 2009; Schöning 2002,
1999). On k-SAT, A frequently studied PRW algorithm (PRW 2 in the following) is
called Walksat. Another reason for PRW algorithm being studied is that random walk
is a part of many local search algorithms (Rossi et al. 2006).

In this paper, we study two types of PRWalgorithms onModel RB. By experimental
methods, threshold phenomenons on performance of these two PRW algorithms are
found, just like that of Walksat on k-SAT. Moreover, by a physical method we locate
the thresholds for both algorithms, which are 1−p

p
1

k ln N , with N being the total number
of variables, k the number of variables per constraint, p the portion of forbidden joint
values per constraint.

This paper is organized as follows. We first give the definition of Model RB and
its main properties in Sect. 2. In Sect. 3, we show the threshold behaviors of PRW
algorithms by experiments. In Sect. 4, we use a physical method to calculate the
thresholds for both algorithms. In Sect. 5, we compare PRW algorithms with other
simple algorithms. In Sect. 6, we study the performance of a local search algorithm
with random walk. We finally give some concluding remarks in Sect. 7.

123

http://www.nlsde.buaa.edu.cn/kexu/

J Comb Optim (2016) 32:51–66 53

2 Model RB

Both classical and revised models of CSPs can be found in (Lecoutre 2009). Here we
give the definition ofModel RB. Let k ≥ 2 be an integer. Let r > 0, α > 0, 0 < p < 1
be real numbers. Let N be the number of variables and V = {σ1, σ2, . . . , σN } the set
of variables. Each variable takes values from a domain D = {1, 2, . . . , Nα}. Each
constraint involves k variables and an associated incompatible-set, which is a subset
of the Cartesian product Dk . Elements in incompatible-set are called incompatible
(forbidden) joint values. Model RB(N , k, r, α, p) is a probability space defined by the
folowing steps to generate its instances.

1. We select with repetition r N ln N constraints independently at random. Each con-
straint is formed by selecting without repetition k out of N variables independently
at random.

2. For each constraint, we form an incompatible-set by selecting without repetition
pNαk elements from the Cartesian product Dk independently at random.

A solution is an assignment which satisfies all the constraints. That is to say, the
joint values in a solution does not belong to any incompatible-sets of the constraints.
The set of all solutions, denoted by S, is a subset of DN . Let X be the number of
solutions, X = |S|. It is easy to see that in Model RB, the expectation of X is

E(X) = NαN (1 − p)r N ln N .

Let

rcr = − α

ln(1 − p)
.

If α > 1
k and 0 < p < 1 are two constants, and k and p satisfy the inequality k ≥ 1

1−p ,
then

lim
n→∞Pr(X > 0) =

{
1, r < rcr ,
0, r > rcr .

Thus, Model RB has exact satisfiability phase transitions, see (Xu and Li 2000; Zhao
and Zheng 2011).

3 Threshold behavior of pure random walk on Model RB

In this section, we study the performances of PRW algorithms on Model RB. By
experiments, we find that PRW algorithms exhibit threshold phenomenons, and have
different performances before and after the thresholds.

We concentrate on two types of PRW algorithms, called PRW 1 and PRW 2 respec-
tively. In PRW 1, after an initial assignment (to all variables) was given, in each step
we randomly reassign a variable from conflict set, where the Conflict set is the set of
all variables that appear in a constraint that is unsatisfied under the current assignment.

123

54 J Comb Optim (2016) 32:51–66

But in PRW 2, we randomly select an unsat-constraint (unsatisfied constraint), then
randomly select one of its variables to reassign it.

Algorithm PRW 1

1. Pick up a random assignment. Set up a maximum number of steps.
2. (a) If the conflict set is empty, output the current assignment, terminate the algo-

rithm.
(b) Otherwise, randomly select a variable in the conflict set, reassign it a value.

3. Repeat step 2, until the repeating time exceeds the maximum step number, then
output fail.

Algorithm PRW 2

1. Pick up a random assignment. Set up a maximum number of steps.
2. (a) If the current assignment satisfies all constraints, output the current assignment,

terminate the algorithm.
(b) Otherwise, randomly select an unsat-constraint, and randomly select a variable

in the constraint, reassign it a value.
3. Repeat step 2, until the repeating time exceeds the maximum step number, output

fail.

Both algorithms PRW1 and PRW2 exhibit threshold phenomenons. The probabili-
ties of getting a solution by algorithmPRW1 and PRW2drop from 1 to 0 dramatically,
as shown in Fig. 1. The same threshold phenomenon has been found for Walksat on k-
SAT problem (referring to Coja-Oghlan and Frieze 2012), with a conjectured threshold
value α = 2k/k.

When r < rd (rd is the threshold value) and r is small, the algorithms can find
a solution in a short time. Similarly to the description in articles (Semerjian and
Monasson 2003, 2004), when r is very small, the hypergraphs (where nodes are
variables, and hyperedges are variable sets that form constraints) are mainly composed
of isolated trees with very low order. And the average number of solving steps can be
obtained by adding up the average number of solving steps on all isolated subgraphs.
On a tree with very low order, the average number of solving steps is linear with
respect to its order, or to say the number of its nodes. So when r is small, the average
number of solving steps is O(N ln N), as shown in Fig. 2.

When r > rd , variables will be reassigned values again and again, the numbers of
unsat-constraints will fluctuate around some plateau value for a long time, as shown
in Fig. 3. (Experiments on PRW 1 are similar.) The numbers of unsatisfied clauses
exhibits a distribution, as shown in Fig. 4. This is the same as Walksat on k-SAT. Two
simple but not rigorous interpretations are as follows. First, the chosen constraint is
optimized to be satisfied, but when variables contained in the constraint are reassigned
values again for other chosen constraints, the optimization was destroyed. Second, the
value of the reassigned variable is optimized, but when variables connected to the this
variable are reassigned values, the optimization was destroyed. So when r is big, for

123

J Comb Optim (2016) 32:51–66 55

Fig. 1 Probabilities of getting a solution by algorithms PRW 1, PRW 2, BTF 1, BTF 2, andMCH onModel
RB. Each point is averaged over 30 runs. The maximum numbers of repeating steps of PRW 1, PRW 2, and
MCH are all 40N

Fig. 2 Average numbers of running steps divided by Nlog(N). Each point is averaged over 100 runs

example r > rd , optimization (or effect of each reassignment) cannot be retained, and
algorithms fail.

4 Analysis based on an approximation

The main method used in this section is from theoretical physics, which has been used
on k-SATandother problemsbySemerjian et al (Semerjian andMonasson 2003, 2004;

123

56 J Comb Optim (2016) 32:51–66

Fig. 3 Numbers of unsat-constraints, PRW 2

Fig. 4 Histogram of the number of unsat-constraints, where data at the first 500 steps was omitted

Barthel et al. 2003). It is not a rigorous method, since an approximation is utilized,
but remarkable results have been gotten on k-SAT problem and XORSAT problem
with this method. For more background of this method, we refer to Semerjian and
Monasson (2003).

123

J Comb Optim (2016) 32:51–66 57

Approximation At each step, before a reassignment, we treat the situation at that
time as a typical situation, featured by the number of its unsat-constraints. A typical
situation featured by M0 means that, M = r N ln N constraints are randomly selected
(as the step 1 ofModel RB definition), then M0 unsat-constraints are randomly chosen
from the M constraints. When we reassign a variable a random value from its domain,
all constraints connected to it become unsatisfied with probability p, satisfied with
probability 1 − p. Then the solving process becomes a Markov chain using numbers
of unsat-constraints as its state space, and the transition probability from M0 to M ′

0
is the probability that the typical situation featured by M0 have M ′

0 unsat-constraints
after a step (a reassignment).

First, we study the transition probability from M0 to M ′
0. We will choose a variable

to reassign from typical situation featured by M0. Let p(Z1) be the probability that a
variable with Z1 unsat-constraints will be chosen, p(Z1) depends on algorithms and
will be discussed below.

The probability that Z2 constraints become satisfied from being unsatisfied after
reassignment is

M0∑
Z1=0

p(Z1)

(
Z1

Z2

)
(1 − p)Z2 (p)Z1−Z2 � p(Z2).

This is because that Z2 obeys binomial distribution when Z1 is fixed.
When M0 > 0, the probability that Z3 constraints become unsatisfied from being

satisfied is (
M − M0

Z3

) (
pk

N

)Z3
(
1 − pk

N

)M−M0−Z3

� p(Z3). (1)

This is because that each of the M − M0 feasible satisfied constraints connects to
the reassignment variable with probability k

N , and each of the connecting constraints
becomes unsatisfied from being satisfied with probability p.

When M0 = 0, we have that Z3 = 0 with probability 1, this is because when
M0 = 0, algorithms end.

For a fixed M0, random variable M ′
0 − M0 is the sum of two independent random

variables Z3 and −Z2, M ′
0 − M0 = Z3 − Z2,

E(M ′
0 − M0) = E(Z3) − E(Z2). (2)

As Z3 ranges from 0 to M0, Z2 ranges from 0 to M − M0, we have that M ′
0 − M0

ranges from −M0 to M − M0, M ′
0 ranges from 0 to M , and

M∑
M ′

0=0

p(M ′
0 − M0) = 1. (3)

Specifically, the transition probability from M0 to M ′
0, denoted by AM0,M ′

0
, equals to

the probability p(M ′
0 − M0),

123

58 J Comb Optim (2016) 32:51–66

AM0,M ′
0

≡ p(M ′
0 − M0) =

M0∑
Z2=0

M−M0∑
Z3=0

p(Z2)p(Z3)1M ′
0−M0+Z2−Z3

,

where

1X =
{
1, if X = 0,
0, otherwise.

The initial distribution, i.e. the probability that at time 0 the typical situation is
featured by M0, is

Pr[M0, 0] =
(
M

M0

)
pM0(1 − p)M−M0 . (4)

Iteratively, the probability that at time T + 1 the typical situation is featured by M ′
0 is

Pr[M ′
0, T + 1] =

M∑
M0=0

AM0M ′
0
Pr[M0, T].

Criterion If Pr[0, T] is 0 (almost) in a long time, it is in the phase after the threshold;
if Pr[0, T] becomes positive from 0 in polynomial time, it is in the phase before the
threshold. Denote the average fraction of unsat-constraints at time T = tM by ϕ(t),

ϕ(t) = 1

M

M∑
M0=0

M0 Pr[M0, T = tM].

In the beginning, Pr[0, T] = 0 (almost), but if ϕ(t) becomes 0 in polynomial time,
then Pr[0, T] will become positive from 0; if ϕ(t) is always positive, then the number
of unsat-constraints will fluctuate around some plateau value, and Pr[0, T]will always
be 0 (almost). The criterion is whether ϕ(t) becomes 0 in polynomial time, when we
suppose

Pr[0, T] = 0,
M∑

M0=1

Pr[M0, T] = 1. (5)

4.1 Analysis on PRW 1

When N is large, we might as well say

dϕ

dt
=

(
ϕ
(
t + 1

M

)
− ϕ(t)

)
/(1/M),

then

123

J Comb Optim (2016) 32:51–66 59

dϕ

dt
=

M∑
M ′

0=0

M ′
0 Pr[M ′

0, tM + 1] −
M∑

M0=0

M0 Pr[M0, T = tM]

=
M∑

M ′
0=0

M ′
0

⎛
⎝ M∑

M0=0

p(M ′
0 − M0)Pr[M0, T]

⎞
⎠ −

M∑
M0=0

M0 Pr[M0, T]

=
M∑

M0=0

Pr[M0, T]
⎛
⎝ M∑

M ′
0=0

p(M ′
0 − M0)(M

′
0 − M0)

⎞
⎠

=
M∑

M0=0

Pr[M0, T] (
E(M ′

0 − M0)
)

=
M∑

M0=0

Pr[M0, T] (E(Z3) − E(Z2)), (6)

where the third equality is because of (3), the last equality is because of (2).
E(Z3) is the average number of constraints becoming unsatisfied from being satis-

fied, referring to formula (1) when M0 > 0,

E(Z3) =
M−M0∑
Z3=0

p(Z3)Z3 = k

N
(M − M0)p. (7)

E(Z2) is the average number of constraints becoming satisfied from being unsatisfied,

E(Z2) =
M0∑

Z2=0

p(Z2)Z2 = E(Z1)(1 − p). (8)

For PRW1, we randomly select a variable to reassign from the conflict set. So when
M0 > 0,

E(Z1) = E

(M0k

N X

)
,

where X is the fraction of not empty variables (connecting to at least an unsat-
constraint), when we throw M0 unsat-constraints to N variables. This is because
that in the sub-situation “X”, N X is the cardinal number of the conflict set, and M0k
is the total number of connections between variables and unsat-constraints. We have
E(Z1) ≥ 1.

E(X) = 1 − (1 − k/N)M0 .

123

60 J Comb Optim (2016) 32:51–66

When M0 = βN , β → 0, we have E(X)/β → k. Considering of tail bounds theory
for occupancy problem (Kamath et al. 1995), it’s easy to prove

E(Z1) → M0k

Nβk
= 1, as β → 0. (9)

From (5) to (8), we have

dϕ

dt
=

M∑
M0=1

Pr[M0, T] k
N

(M − M0)p −
M∑

M0=1

Pr[M0, T]E(Z2)

= kr N ln N

N
(1 − ϕ)p −

M∑
M0=1

Pr[M0, T]E(Z1)(1 − p)

= −(1 − p) + kr ln N (1 − ϕ)p −
M∑

M0=1

Pr[M0, T](E(Z1) − 1)(1 − p). (10)

Let

rd = 1 − p

p

1

k ln N
.

For r < c · rd , where c < 1 is a constant, from (10) we have

dϕ

dt
< −(1 − c)(1 − p).

From (4), we have ϕ(t = 0) = p. So when r < c · rd , ϕ becomes 0 before t =
p

(1−c)(1−p) . For r > c ·rd , where c > 1 is a constant, we extra suppose that the last term
of (10) is dominated byM0 around its average.Whenβ = M0/N = ϕM/N = ϕr ln N
is near 0, by (9) we can see the last term of (10) is near 0, then dϕ

dt > 0. Then ϕ is
always positive.

According to the criterion, the threshold value of PRW 1 is rd = 1−p
p

1
k ln N .

4.2 Analysis on PRW 2

For PRW 2, when M0 > 0, the probability that a variable with Z1 unsat-constraints
are chosen is

p(Z1) =
(
M0 − 1

Z1 − 1

) (
k

N

)Z1−1 (
1 − k

N

)M0−Z1

.

This is because that in algorithmwe randomly select an unsat-constraint, and a variable
in the constraint, so each of other M0 − 1 unsat-constraints connects to the variable
with probability k

N . Therefore when M0 > 0,

123

J Comb Optim (2016) 32:51–66 61

E(Z1) = 1 + (M0 − 1)k/N . (11)

Similarly, for PRW 2, from (5) to (11) we know

dϕ

dt
=

M∑
M0=1

Pr[M0, T]
(
k

N
(M − M0)p − (1 − p)(1 + (M0 − 1)

k

N
)

)

= −(1 − p) + krp ln N + k

N
(1 − p) − kϕrlnN .

Solving this first-order linear differential equation with the initial condition ϕ(t =
0) = p, we get

ϕ(t) = p + 1 − p − k(1 − p)/N

rk ln N
(e−rkt ln N − 1).

Solving equation limt→∞ ϕ(t) = 0 of variable r , we have

p − 1 − p − k(1 − p)/N

rk ln N
= 0,

we have

r =
(
1 − k

N

)1 − p

p

1

k ln N
� r ′

d .

For r < cr ′
d , where c < 1 is a constant, limt→∞ ϕ(t) < 0. Function ϕ(t) decreases

and becomes 0 before t = p
(1−c)(1−p)(1−k/N)

. For r > cr ′
d , where c > 1 is a constant,

limt→∞ ϕ(t) > 0.
Thus, the threshold value on PRW 2 is

r ′
d ≈ rd = 1 − p

p

1

k ln N
.

4.3 A note

The estimates of threshold values from numerical simulations are always larger than
the calculated one. Taking RB(k = 2, N = 350, p = 0.2, α = 0.5) as an example,
the calculated value is rd = r ′

d = 0.34, but the simulated value is 0.43 for PRW 1, and
0.51 for PRW2. However, the simulated values always fall into the region (rd , 2rd), so
the theoretically calculated values rd and r ′

d reveal the positions of the real threshold
values successfully.

123

62 J Comb Optim (2016) 32:51–66

5 Compare with other simple algorithms

In this part we compare PRW 1, PRW 2 with other simple algorithms, including
Backtrack-Free 1 (BTF 1), Backtrack-Free 2 (BTF 2), and Min-Conflicts Heuristic
(MCH).

Algorithm BTF 1

1. Assign σ1 a random value.
2. For each σ2, ..., σN successively do step 3.
3. (a) Assign the current variable a random value.

(b) If the current variable violates some constraints with already assigned vari-
ables, record the value, reassign the current variable an unrecorded value; else
skip (c).

(c) Repeat (b) until all values in domain are recorded, output fail, terminate the
algorithm.

4. Output the assignment we obtained.

Algorithm BTF 1 assigns variables from σ1 to σN one by one without backtracking.
This algorithm performs badly on k-SAT. But when parameter r satisfies

r + 2/3 + √
4/9 + 8rk

2k
<

1
kα

− ln(1 − p)
, (12)

the successful probability of BTF 1 on Model RA (almost equivalent to Model RB)
goes to 1 as N grows (Xu 2014). When N is large, the range of r satisfying (12) is
much wider than the range (0, rd), so BTF 1 is much better than PRW on Model RA
and RB.

Algorithm BTF 2

1. Let j = N . For i = 0 : 1 : N , do step 2.
2. (a) If there is a variable which belongs to no more than i constraints, let σπ(j) be

this variable, j = j − 1. If j = 0, go to step 3.
(b) Repeat (a) until no such variable exists.

3. According to the new order σπ(1), ..., σπ(N), run Algorithm BTF 1.

Algorithm BTF 2 does a permutation step on variables, then according to the new
order assigns variables one by one without backtracking. The new order increases
the successful probability, and BTF 2 is better than BTF 1. Taking advantage of the
discussion in literature (Smith 2001), it can be shown that when parameter r satisfies

r <

1
kα

− ln(1 − p)
,

the successful probability of BTF 2 on Model RA goes to 1, as N grows.

123

J Comb Optim (2016) 32:51–66 63

Algorithm MCH

1. Pick up a random assignment. Set up a maximum number of steps.
2. (a) If the conflict set is empty, output the current assignment, terminate the algo-

rithm; else randomly select a variable from the conflict set.
(b) Reassign the selected variable a value from its domain which minimizes the

number of unsat-constraints. If there are more than one such values, randomly
select one from them.

3. Repeat step 2, until the maximum number of steps, then output fail.

AlgorithmMCH is a simple local search algorithm, it begins with an initial assign-
ment, then does local search steps. In each local search step the selected variable is
assigned to a value which minimizes the number of unsat-constraints, and this algo-
rithm has backtracks, so it should perform better than BTF 1, BTF 2.

We compare these algorithms with PRWonModel RB, as shown in Fig. 1. BTF and
MCH are suitable for more values of parameter r . This result supports the proposed
conclusion that PRW is not a suitable strategy for Model RB.

6 Different random walk steps in WMCH on Model RB

Algorithm Min-Conflicts Heuristic with Random Walk (WMCH) is a local search
algorithm, which combines Random Walk and MCH. In each search step, for prob-
ability probability of p (0 < p < 1), WMCH runs a random walk step, and for
probability probability of 1 − p, WMCH runs a min-conflicts heuristic step.

Step 2 of PRW 1, step 2 of PRW 2, and step Blind Local Search will be adopted as
the random walk step in WMCH respectively.

Step blind local search Randomly select a variable from the set {σ1, ..., σN }, and
randomly reassign it a value from its domain. If the current assignment satisfies all
constraints, output the current assignment, terminate the algorithm.

Blind Local Search searches the feasible solution space blindly, which is a bad
strategy. The expected number of steps to find a solution (after an initial assignment is
randomly given) is (1 − p)−r N ln N , which is a very big number even when r = rd =
1−p
p

1
k ln N .

Algorithm WMCH 1,2,3

1. Pick up a random assignment. Set up a maximum number of steps, and a number
p (0 < p < 1).

2. (a) With probability p, do a random walk step (For WMCH 1, it’s step 2 of
algorithm PRW 1. For WMCH 2, it’s step 2 of algorithm PRW 2. For WMCH
3, it’s step Blind Local Search.).

(b) With probability 1 − p, do step 2 of algorithm MCH.
3. Repeat step 2, until the maximum number of steps, then output fail.

Experimental result indicates that WMCH 1,2 have the same effect as WMCH 3,
and without doubt they are better than MCH, as shown in Fig. 5. Being random walk

123

64 J Comb Optim (2016) 32:51–66

Fig. 5 Probabilities of getting a solution by WMCH and MCH algorithms on Model RB. Each point is
averaged over 30 runs, and the maximum number of repeating step is set to 60N . The parameter p in
WMCH 1, WMCH 2, and WMCH 3 are all set to 0.05

steps, step 2 of PRW 1 and step 2 of PRW 2 make no more contributions than step
Blind Local Search. So the effect of PRW should be similar to Blind Local Search on
Model RB, and PRW hardly works on Model RB.

7 Conclusion

We have studied performances of pure random walk (PRW) algorithms on a model of
random constraint satisfaction problem with growing domains called Model RB. The
same threshold behaviors of PRW are shown on Model RB, just like that of Walksat
on k-SAT.

From our results, we find that PRW algorithms are more suitable for k-SAT than
for Model RB. Taking 3-SAT as an example, Walksat can solve 3-SAT until clause
density 2.7, which is not small relative to its satisfiability threshold value of 4.26.
But for Model RB, PRW can work until 1−p

p
1

k ln N , which is very small (tending to
0) relative to its satisfiability threshold value of − α

ln(1−p) (a constant). This may be
due to the fact that the instances of Model RB have large domain size, and a large
domain size leads to more constraints and more unsat-constraints (for a given random
assignment), while PRW algorithms cannot deal with such a situation.

Backtrack-Free algorithm can solveModel RA (almost the same asModel RB) until
a positive constant proportion of− α

ln(1−p) , while it can barely solve k-SAT. Therefore,
CSPs with large domain size (such as Model RB) and CSPs with small domain size

123

J Comb Optim (2016) 32:51–66 65

(such as k-SAT) may have different properties, and different strategies (such as PRW
and BTF) may have different effects on them.

Acknowledgments Partially supported by NSFC 61370052 and 61370156.

References

Achlioptas D, Kirousis L, Kranakis E, Krizanc D, Molloy M, Stamatiou Y (1997) Random constraint
satisfaction: a more accurate picture. In: Proceedings of CP. pp 107–120

Alekhnovich M, Ben-Sasson E (2006) Linear upper bounds for random walk on small density random
3-cnfs. SIAM J Comput 36(5):1248–1263

Alphonse E, Osmani A (2008) A model to study phase transition and plateaus in relational learning. In:
Proceedings of of ILP. pp 6–23

Barthel W, Hartmann AK, Weigt M (2003) Solving satisfiability problems by fluctuations: the dynamics of
stochastic local search algorithms. Phys Rev E 67:066104

Broder AZ, Frieze AM, Upfal E (1993) On the satisfiability and maximum satisfiability of random 3-CNF
formulas. In: Proceedings of SODA. pp 322–330

Chao M, Franco J (1986) Probabilistic analysis of two heuristics for the 3-satisfiability problem. SIAM J
Comput 15(4):1106–1118

Coja-Oghlan A, Frieze A (2012) Analyzing Walksat on random formulas. In: Proceedings of ANALCO.
pp 48–55

Coja-Oghlan A, Feige U, Frieze A, Krivelevich M, Vilenchik D (2009) On smoothed k-CNF formulas and
the Walksat algorithm. In: Proceedings of SODA. pp 451–460

Fan Y, Shen J (2011) On the phase transitions of random k-constraint satisfaction problems. Artif Intell
175:914–927

Fan Y, Shen J, Xu K (2012) A general model and thresholds for random constraint satisfaction problems.
Artif Intell 193:1–17

Gao Y, Culberson J (2007) Consistency and random constraint satisfaction problems. J Artif Intell Res
28:517–557

Gent I,MacintypeE, Prosser P, SmithB,Walsh T (2001)Randomconstraint satisfaction: flaws and structure.
Constraints 6(4):345–372

Huang P, Yin MH (2014) An upper (lower) bound for Max (Min) CSP. Sci China Inf Sci 57:072109
Jiang W, Liu T, Ren T, Xu K (2011) Two hardness results on feedback vertex sets. In: Proceedings of

FAW-AAIM. pp 233–243
KamathA,Motwani R, PalemK, Spirakis P (1995) Tail bounds for occupancy and the satisfiability threshold

conjecture. Random Struct Algorithm 7:59–80
Lecoutre C (2009) Constraint networks: techniques and algorithms. Wiley, Hoboken
Liu T, Lin X,Wang C, SuK, XuK (2011) Large hinge width on sparse random hypergraphs. In: Proceedings

of IJCAI. pp 611–616
Liu T, Wang C, Xu K (2014) Large hypertree width for sparse random hypergraphs. J Comb Optim. doi:10.

1007/s10878-013-9704-y
Richter S, Helmert M, Gretton C (2007) A stochastic local search approach to vertex cover. In: Proceedings

of KI. pp 412–426
Rossi F, Van Beek P, Walsh T (eds) (2006) Handbook of constraint programming. Elsevier, Amsterdam
Schöning U (2002) A probabilistic algorithm for k-SAT based on limited local search and restart. Algorith-

mica 32:615–623
SchöningU (1999)Aprobabilistic algorithm for k-SATand constraint satisfaction problems. In: Proceedings

of FOCS. pp 410–414
Semerjian G, Monasson R (2004) A study of pure random walk on random satisfiability problems with

physical methods. In: Proceedings of SAT. pp 120–134
Semerjian G, Monasson R (2003) Relaxation and metastability in the random walk SAT search procedure.

Phys Rev E 67:066103
Shen J, Ren Y (2014) Bounding the scaling window of random constraint satisfaction problems. J Comb

Optim. doi:10.1007/s10878-014-9789-y

123

http://dx.doi.org/10.1007/s10878-013-9704-y
http://dx.doi.org/10.1007/s10878-013-9704-y
http://dx.doi.org/10.1007/s10878-014-9789-y

66 J Comb Optim (2016) 32:51–66

Smith BM (2001) Constructing an asymptotic phase transition in random binary constraint satisfaction
problems. Theor Comput Sci 265:265–283

Smith BM, Dyer ME (1996) Locating the phase transition in binary constraint satisfaction problems. Artif
Intell 81:155–181

Wang C, Liu T, Cui P, Xu K (2011) A note on treewidth in random graphs. In: Proceedings of COCOA. pp
491–499

Xu K, Li W (2000) Exact phase transitions in random constraint satisfaction problems. J Artif Intell Res
12:93–103

Xu K, Li W (2006) Many hard examples in exact phase transitions. Theor Comput Sci 355:291–302
Xu K, Boussemart F, Hemery F, Lecoutre C (2007) Random constraint satisfaction: easy generation of hard

(satisfiable) instances. Artif Intell 171:514–534
Xu W (2014) An analysis of backtrack-free algorithm on a constraint satisfaction problem with growing

domains (in Chineses). Acta Math Appl Sin (Chin Ser) 37(3):385–392
Zhao C, Zheng Z (2011) Threshold behaviors of a random constraint satisfaction problem with exact phase

transitions. Inf Process Lett 111:985–988
Zhao C, Zhang P, Zheng Z, Xu K (2012) Analytical and belief-propagation studies of random constraint

satisfaction problems with growing domains. Phys Rev E 85:016106
Zhou G, Gao Z, Liu J (2014) On the constraint length of random k-CSP. J Comb Optim. doi:10.1007/

s10878-014-9731-3

123

http://dx.doi.org/10.1007/s10878-014-9731-3
http://dx.doi.org/10.1007/s10878-014-9731-3

	Performances of pure random walk algorithms on constraint satisfaction problems with growing domains
	Abstract
	1 Introduction
	2 Model RB
	3 Threshold behavior of pure random walk on Model RB
	Algorithm PRW 1
	Algorithm PRW 2

	4 Analysis based on an approximation
	4.1 Analysis on PRW 1
	4.2 Analysis on PRW 2
	4.3 A note

	5 Compare with other simple algorithms
	Algorithm BTF 1
	Algorithm BTF 2
	Algorithm MCH

	6 Different random walk steps in WMCH on Model RB
	Algorithm WMCH 1,2,3

	7 Conclusion
	Acknowledgments
	References

