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Abstract Let G be a graph with edge set E(G) that admits a perfect matching M .
A forcing set of M is a subset of M contained in no other perfect matching of G. A
complete forcing setofG, recently introducedbyXuet al. (JCombinOptim29(4):803–
814, 2015c), is a subset of E(G) to which the restriction of any perfect matching is a
forcing set of the perfect matching. The minimum possible cardinality of a complete
forcing set of G is the complete forcing number of G. Previously, Xu et al. (J Combin
Optim 29(4):803–814, 2015c) gave an expression for the complete forcing number
of a hexagonal chain and a recurrence relation for complete forcing numbers of cat-
acondensed hexagonal systems. In this article, by the constructive proof, we give an
explicit analytical expression for the complete forcing number of a primitive coronoid,
a circular single chain consisting of congruent regular hexagons (i.e., Theorem 3.9).
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1 Introduction

A perfect matching of a graph is a set of disjoint edges that covers all vertices of
the graph. Perfect matchings arose in the dimer problem of statistical physics, as
Kekulé structures of organic chemistry and in the personnel assignment problem of
operations research (Lovász and Plummer 1986). The number of Kekulé structures
(i.e., perfect matchings) of a benzenoid hydrocarbon can be used to measure its sta-
bility (Cyvin and Gutman 1988). The idea of “forcing” has long been used in many
research fields in graph theory and combinatorics (Gray 1990; Mahmoodian et al.
1997), and its application to a perfect matching M of a graph first appeared in Harary
et al. (1991), that is, a subset S of M forces exactly one perfect matching of G,
namely, M . In other words, if S occurs simultaneously in no other perfect match-
ing, such an S is called a forcing set of M . The minimum possible cardinality of S
is called the forcing number of M . The forcing number can traceits origin back to
the papers (Klein and Randić 1987; Randić and Klein 1985) by Randić and Klein
in the chemical literature, where the forcing number was introduced under the name
of “innate degree of freedom” of a Kekulé structure, which plays an important role
in the resonance theory in chemistry. For more results on the forcing number, we
refer the reader to Adams et al. (2004), Afshani et al. (2004), Kleinerman (2006),
Lam and Pachter (2003), Pachter and Kim (1998), Riddle (2002), and Zhang et al.
(2010).

Forcing sets and forcing numbers of perfect matchings of a graph G with edge set
E(G) are defined by the “local” approach, i.e., defined with respect to a particular
perfect matching of G. Vukičević and Došlić (2007), Vukičević and Sedlar (2004)
introduced the concept of global (or total) forcing set from the “global” point of view,
i.e., concerning all perfect matchings instead of a particular perfect matching, which
is defined as a subset S of E(G) on which there are no two distinct perfect matchings
coinciding, i.e., the restriction of the characteristic function of perfect matchings to
S is an injection. On the other hand, Klein and Randić (1987) proposed the degree
of freedom of a graph from the “global” point of view, defined as the sum of forcing
numbers over all perfect matchings of a graph. Again, combining the “forcing” and
“global” ideas, Xu et al. (2015c) first proposed studying a structure concerning all per-
fect matchings instead of a particular perfect matching, namely a subset S of E(G) to
which the restriction of every perfect matching is a forcing set of the perfect matching.
Such an S is called a complete forcing set of G. The minimum possible cardinality
of a complete forcing set is called the complete forcing number of G. To a certain
extent, the complete forcing number of a graph gives some sort of identification of the
minimal amount of “information” required to specify forcing sets of perfect match-
ings of the graph. Also, they established some initial results about complete forcing
sets and the complete forcing number of a graph, including a necessary and sufficient
condition for an edge set to be a complete forcing set of a graph, and proving that a
complete forcing set of a graph is also a global forcing set and the converse is not true
by a counterexample. For further results on the field, see Chan et al. (2015), Xu et al.
(2015a, b, c).

In this article, we discuss complete forcing sets and complete forcing numbers
of another class of graphs: primitive coronoids, circular single chains consisting of
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congruent regular hexagons (see Fig. 3 for an example), and give an explicit analytical
expression for the complete forcing set of a primitive coronoid.

The present paper is organized as follows. In the next section, we formally define
complete forcing sets, the complete forcing number of a graph and primitive coronoids,
along with other graph-theoretic terms relevant to our subject. In addition, we give a
necessary and sufficient condition for a set to be a complete forcing set of a general
graph given in Xu et al. (2015c). In Sect. 3, we prove an explicit formula for the
complete forcing number of a primitive coronoid. In Sect. 4, we explore whether
a special necessary and sufficient condition for a set to be a complete forcing set of
catacondensed hexagonal systems is applicable for primitive coronoids.Unfortunately,
it will be shown to be negative by giving a counterexample.

2 Mathematical preliminaries

All graphs in this paper are simple and connected and have perfect matchings. For
all terms and notation used but not defined here we refer the reader to the textbook
(Diestel 2000).

A hexagonal system (or benzenoid system, polyhex graph) is a connected graph
without cut vertices embedded into the regular hexagonal lattice in the plane, and
in which all internal faces are regular hexagons. Note that hexagonal systems are
bipartite. A hexagonal system is catacondensed if there are no three hexagons sharing
one common vertex, i.e., all vertices lie on the boundary of the non-hexagonal external
face. A hexagonal chain is a catacondensed hexagonal system in which no hexagon
is adjacent to three hexagons.

A coronoid (or coronoid system) G can be obtained from a hexagonal system B by
deleting at least one interior vertex together with the incident edges, and/or at least one
internal edge such that each remained edge belongs to at least one hexagon of G and a
unique non-hexagonal interior face emerges. A coronoid consisting of a circular single
chain will presently be referred to as primitive, i.e., a primitive coronoid is a coronoid
in which each hexagon shares exactly two non-adjacent edges with its neighbouring
hexagons (see Fig. 3 for an example).

Let G be a hexagonal chain or primitive coronoid. A hexagon r of G has one or
two neighbouring hexagons. If r has exactly one neighbouring hexagon, then it is said
to be terminal. A hexagon r being adjacent to exactly two other hexagons is a kink if
r possesses two adjacent vertices of degree 2, and r is linear otherwise. Note that the
number (�6) of kinks in a primitive coronoid is even. A hexagonal chain with no kinks
is said to be linear. A segment is a maximal linear chain in G, including kinks and/or
terminal hexagons at its end. A kink segment in G is defined as a maximal subgraph
in G consisting completely of kinks. Note that in the case of a primitive coronoid G
with all hexagons being kinks, G itself is a kink segment; in the other cases, a kink
segment can be defined as a maximal hexagonal chain consisting completely of kinks
in G. The length of a segment or kink segment S is the number of hexagons in S.

Let G be a primitive coronoid. We call the boundary of the non-hexagonal internal
(resp. external) face internal boundary (resp. external boundary), denoted by C0(G)
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Fig. 1 A complete forcing set
{e1, e2, e3} of minimum
cardinality in K4 is indicated by
bold edges

e2

e4e5

e6

K4

e3

e1

(resp. C1(G)), of G. An edge e of G is internal if e is on C0(G), is external if e is on
C1(G), is shared otherwise.

A primitive coronoid G is called convex, if G contains exactly six segments (or,
equivalently, six kinks). If we denote by l1, l2, . . . , l6 the length of these segments in
turn, then, for 1 � i � 6,

li + li+1 = li+3 + li+4. (1)

Here subscripts are treated as modulo 6.
For subsets S1, S2 of a set S, symmetric difference S1 ⊕ S2 of S1 and S2 is defined

as the set consisting of elements belonging to exactly one of S1 and S2.
Let G be a connected graph with a perfect matching. A subgraph H of G is nice if

G−V (H) has a perfect matching. Obviously, an even cycle C of G is nice if and only
if C is exactly the symmetric difference of some two perfect matchings M1 and M2 of
G, i.e., C = M1 ⊕ M2; we call M1 ∩C and M2 ∩C two type-sets of the nice cycle C .
Alternatively, each type-set of a nice cycle C is a perfect matching of C . Let G be a
primitive coronoid with a hexagon r (r is necessarily nice, see Lemma 3.1 in the next
theorem). If r is a kink, then two shared edges of r belong to one common type-set of
r , while two shared edges of a linear hexagon r belong to two distinct type-sets of r ,
respectively.

LetG be a connected graphwith edge set E(G) and a perfectmatchingM . A forcing
set of M is a subset of M contained in no other perfect matching of G. It follows from
the definition that the empty set is a forcing set of M if and only if M is the unique
perfect matching of G. A complete forcing set of G is a subset of E(G) to which, for
any perfect matching M , the restriction of M is a forcing set of M . Obviously, E(G)

is a trivial complete forcing set of G. The minimum possible cardinality of a complete
forcing set of G is the complete forcing number of G, denoted by c f (G).

As an illustrative example,we consider K4 shown inFig. 1. It contains three different
perfect matchings: M1 = {e1, e4}, M2 = {e2, e5}, M3 = {e3, e6}. It is easy to see that
the restriction of every perfect matching M on S = {e1, e2, e3} is a forcing set of M .
Hence S is a complete forcing set of K4. Since every complete forcing set contains
at least one edge of every perfect matching of K4 and {M1, M2, M3} is a partition
of the edge set of K4, S is a complete forcing set of minimum cardinality. Hence,
c f (K4) = 3.

We end this section with a necessary and sufficient condition for set S to be a
complete forcing set of a graph with a perfect matching, given in Xu et al. (2015c).
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Fig. 2 Illustration for the proof
of Lemma 3.1

1L

2L

h

Theorem 2.1 Xu et al. (2015c) Let G be a graph with edge set E(G) and a perfect
matching. S ⊆ E(G) is a complete forcing set of G if and only if, for any nice cycle
C in G, the intersection of S and each type-set of C is non-empty.

3 Complete forcing numbers of primitive coronoids

In this section we discuss the calculation of the complete forcing number of a primitive
coronoidG and give an explicit analytical expression for the complete forcing number
of a primitive coronoid (i.e., Theorem 3.9). First, we give some results relating to nice
cycles in G.

3.1 Some results relating to nice cycles in primitive coronoids

Lemma 3.1 Let G be a primitive coronoid. Then every hexagon is nice.

Proof Let h be a hexagon of G. If h is a kink and let L1 and L2 be the two segments
containing h. We can match the remained vertices on L1 and L2 (except vertices on
two shared edges with other hexagons) as Fig. 2. Since the subgraph of G obtained
from G by deleting matched vertices and vertices of h is exactly a hexagonal chain,
G − V (h) has a perfect matching. Hence h is a nice hexagon. If h is linear, then we
can prove it in a similar way.

Corollary 3.2 Cyvin et al. (1991) Every primitive coronoid has a perfect matching.

Lemma 3.3 Let G be a primitive coronoid with the internal boundary C0(G) and the
external boundary C1(G), let H be a hexagonal chain in G. We denote by l, k the
number of linear hexagons, kinks of G in H, respectively and by k′ kinks with two
adjacent 2-degree vertices on C0(G) (resp. C1(G)) of G in H. Then the intersection
of H and C0(G) (resp. C1(G)) is a path of length 2l + 2k′ + k.

Proof Obviously, the intersection of H and C0(G) (resp. C1(G)) is a path, say P . It
is sufficient to prove that there are 2l + 2k′ + k + 1 vertices on P . We now count
vertices on P . There are l + 2k′ 2-degree vertices of G with one for each linear
hexagon and two for each kink with two adjacent 2-degree vertices on C0(G) (resp.
C1(G)), (l + k − 1) + 2 = l + k + 1 3-degree vertices of G with one for each
pair of adjacent hexagons in H and two for endpoints of P . So there are totally
(l + 2k′) + (l + k + 1) = 2l + 2k′ + k + 1 vertices on P . ��
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Corollary 3.4 Let G be a primitive coronoid with the internal boundary C0(G) and
the external boundary C1(G), H a hexagonal chain in G. The length of the path
P = H ∩ C0(G) (resp. H ∩ C1(G)) has the same parity as the number of kinks of G
in H.

Corollary 3.5 Let G be a primitive coronoid with the internal boundary C0(G) and
the external boundary C1(G), H a hexagonal chain between two successive kinks
inclusive in G. Then the length of the path P = H ∩ C0(G) (resp. H ∩ C1(G)) is
even.

In what follows, we give a necessary and sufficient condition for cycles of a special
type in a primitive coronoid to be nice.

Theorem 3.6 Let G be a primitive coronoid, C a cycle containing the non-hexagonal
internal face of G. Then C is nice if and only if C is either (i) the internal boundary
C0(G) or the external boundary C1(G) or (ii) a cycle such that every hexagonal chain
in G divided by the shared edges of C contain an odd number of kinks of G.

Proof Necessity: Let C be a nice cycle containing the non-hexagonal internal face of
G. Then G − V (C) consists of either one even cycle or the disjoint union of paths
of odd length. For the former case C corresponds to C0(G) or C1(G), while for the
latter case C corresponds to a cycle such that every hexagonal chain in G divided by
the shared edges of C contains an odd number of kinks of G by Corollary 3.4.

Sufficiency: If C is C0(G) or C1(G), then G − V (C) is an even cycle and further
has a perfect matching. Hence C is nice. If C is a cycle satisfying the condition (ii),
then G − V (C) consists of the disjoint union of paths of odd length by Corollary 3.4,
each of which has a perfect matching. So C is nice. ��
Corollary 3.7 Let G be a primitive coronoid, C a nice cycle of G containing the
non-hexagonal internal face.

(1) Then shared edges in C belong to the same type-set of C;
(2) Let e1, e2 two internal (resp. external) edges in C. If e1, e2 are in two successive

kinks, say K1 and K2, respectively and the type set of Ki containing ei does not
contain any shared edge in G for i = 1, 2, then e1, e2 belong to two distinct
type-sets of C, respectively.

Proof (1) It is sufficient to prove that two successive shared edges, say e1 and e2, inC
belong to one common type-set of C and we can prove (1) by the transitivity. Let
P be a path in C between e1 and e2 inclusive containing no other shared edges.
By Theorem 3.6 (ii) and Corollary 3.4, P has odd length. Hence e1, e2 belong to
one common type-set of C .

(2) It is sufficient to prove that the path, say P , between e1 and e2 inclusive in C
containing no edges of the other kinks has even length, which can be easily
proven by Corollay 3.5.

��
We give a theorem shown by Zhang and Zhang: Corollary 3.4 in Zhang and Zhang

(2000), which is applicable to a wider range therein than we list below.
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Theorem 3.8 Zhang and Zhang (2000) Let G be a primitive coronoid, C a nice cycle
containing no non-hexagonal internal face. For any type-set M(C) of C, there exists
a hexagon, say h, contained in C such that M(C) ∩ E(h) is one type-set of h.

3.2 Calculating complete forcing numbers of primitive coronoids

For the sake of simplicity, we denote by ki (G) (ki for short, if there is no confusion)
the number of kink segments of length i in a primitive coronoidG with edge set E(G),
i = 1, 2, . . .. We give some conventions: Let S, E ′ ⊆ E(G) with an edge e ∈ E ′. If
e is not in S, then we say E ′ contributes 0 to |S| in terms of e; if e is in S and shared,
then we say E ′ contributes 1

2 to |S| in terms of e; if e is in S and not shared, then
we say E ′ contributes 1 to |S| in terms of e. The contribution of E ′ to |S| is defined
as the sum of contributions in terms of e over all edges e in E ′. In the following the
contribution of a hexagon h to |S| means the contribution of its edge set E(h) to |S|.
Hence the contribution of all hexagons to |S| is exactly |S|. We now give our main
result: an explicit formula for the complete forcing number of a primitive coronoid G
with n hexagons in terms of n and all ki (G).

Theorem 3.9 Let G be a primitive coronoid with n hexagons (n must be even), ki the
number of kink segments in G of length i for 1 � i . Then c f (G) = n + ∑

i�1 ki	 i
2
.

Proof Wefirst prove c f (G) � n+∑
i�1 ki	 i

2
. Thenwe construct a complete forcing

set of size n + ∑
i�1 ki	 i

2
.
Let S be a complete forcing set ofG with |S| = c f (G). ByTheorem2.1 andLemma

3.1, S must contain one edge e from each type-set C(r) of each linear hexagon r . If
e is not shared, then we exchange e and the shared edge of C(r). Hence we obtain
a new edge subset S′ such that |S| � |S′| and S′ contains two shared edges of every
linear hexagon. Note that S′ is not necessarily a complete forcing set. In what follows
we give the lower bound on c f (G) by counting |S′|.

By the construction of S′, every linear hexagon contributes at least 12 + 1
2 = 1 to |S′|.

Therefore, all linear hexagons in G have total contributions at least (n − n∗) to |S′|,
where n∗ is the number of kinks in G. Let K be any kink segment with i hexagons.
We denote all hexagons in K by h1, h2, . . . , hi in turn. Each h j (1 � j � i) has
exactly one type-set, say M(h j ), in which no edges are shared, so M(h j ) contributes
at least 1 to |S| (therefore to |S′| too, since S and S′ have the same construction on
kink segments except ended shared edges) by Theorem 2.1; while the other type-set
of h j contributes at least 1

2 to |S| (further to |S′|). Hence the hexagon h j contributes
at least 3

2 to |S′|. If i is odd (in this case i �= n), by the choice of S′, then the shared
edges of h1 and hi with linear hexagons are contained in S′. Hence, there exists some
hexagon, say h, in K with at least two shared edges in S′, which belong to the common
type-set of h, and so h contributes at least 2 to |S′|. Then all hexagons in K contribute
at least (i + 	 i

2
) in total to |S′|. Therefore

c f (G) = |S| � |S′| � (n − n∗) +
∑

i�1

ki (i + 	 i
2

)
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Fig. 3 Illustration for the
construction of edges in S in the
proof of Theorem 3.9. Bold solid
edges represent non-shared
edges in S, while bold dotted
edges represent shared edges in
S; hexagons with letter ‘K ’ at
their centers are kinks; the
dotted straight line represents
the start position P mentioned in
the proof
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∑
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2



= n +
∑

i�1

ki	 i
2

. (by n∗ = ∑

i�1 ki i)

In what follows we construct a complete forcing set of size n + ∑
i�1 ki	 i

2
. First
we construct a set S of cardinality n+∑

i�1 ki	 i
2
. Then we prove that S is a complete

forcing set of G by Theorem 2.1.
First, we construct edges in the type-set of each hexagon containing a shared edge

(Note that two type-sets of a linear hexagon are such ones). IfG itself is a kink segment,
i.e., all hexagons in it are kinks, then we alternately choose shared edges of G into
S. Otherwise, we first choose both shared edges of each linear hexagon into S. Then
for every kink segment K with i kinks (1 � i < n), say h1, h2, . . . , hi in clockwise
order, we select the shared edge of h2 j and h2 j+1 into S for 1 � j � 	 i

2
 − 1.
Secondly, we collectively construct edges in the type-set of all kinks containing no
shared edges into S in clockwise order such that, beginning from any start position P
in G except in Subsubcase 2.2.1 (see below), we choose two respective internal edges,
say e1 and e2, of two successive kinks into S, then two respective external edges,
say e3 and e4, of two subsequent successive kinks into S, we proceed the process
until no kinks will be assigned (see Fig. 3 for an example). Hence we obtain an edge
subset {e1, e2, . . . , eh∗} ⊆ S. Note that eh∗−1, eh∗ , e1, e2 are maybe the unique four
successive internal edges in S and any edge in S has a 3-degree vertex as an endpoint.

Secondly, we count edges in S, i.e., compute |S|. If G itself is a kink segment, then
|S| = n

2 + n = 3n
2 = n + ∑

i�1 ki	 i
2
, because in this case, ki equals 1 if i = n, and

equals 0 otherwise. Otherwise, since the total number of shared edges in G is n and
the number of shared edges of G not in S is equal to

∑
i�1 ki (i − 1 − (	 i

2
 − 1)) =
∑

i�1 ki (i − 	 i
2
), the number of shared edges in S is equal to n − ∑

i�1 ki (i − 	 i
2
).

From the construction of S, the number of non-shared edges is obviously equal to
the number of kinks, i.e.,

∑
i�1 iki . So |S| = n − ∑

i�1 ki (i − 	 i
2
) + ∑

i�1 iki =
n + ∑

i�1 ki	 i
2
.

Finally, we prove S is a complete forcing set of G. By Theorem 2.1, it is sufficient
to prove that the intersection of S and any type-set of any nice cycle is non-empty. By
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Fig. 4 Illustration for Subcase 1.2 in Theorem 3.9. The dotted curve represents a part of C ; bold dotted or
solid edges represent edges in S

the construction of S, we know the intersection of S and any type-set of any (nice)
hexagon in G is non-empty. Further, the intersection of S and any type-set of any nice
cycle containing no non-hexagonal internal face is non-empty by Theorem 3.8. So in
what follows it is sufficient to prove that the intersection of S and any type-set of any
nice cycle, say C , containing the non-hexagonal internal face of G is non-empty, i.e.,
S contains at least one edge in each type-set of C .

If C = C0(G), then by Corollary 3.7 (2) two internal edges e1 and e2 in S belong
to two type-sets of C , respectively. Similarly, if C = C1(G), then two external edges
e3 and e4 in S belong to two type-sets of C , respectively. In what follows we assume
that C is neither C0(G) nor C1(G).

Case 1 C contains a shared edge in S.
Let e be a shared edge in S ofC , K1 and K2 two kinks closely next to e. By Theorem

3.6, one of them, say K1, is in C and the other K2 is out of C (see Fig. 4).
Subcase 1.1 Either an external edge e′

1 of K1 or an internal edge e′
2 of K2 is in S.

The edge e and any of e′
1 and e′

2 belong to two type-sets of C by Corollary 3.4.
Subcase 1.2 Both an internal edge e∗

1 of K1 and an external edge e∗
2 of K2 are in S

(see Fig. 4).
Let K3 be the kink next to K2 other than K1. Then an external edge e∗

3 of K3 is
in S by the construction of S. If K3 is in C , then e∗

3 is in C . So e∗
3, e belong to two

type-sets of C respectively by Corollaries 3.7 (1) and 3.4. Otherwise, if we denote by
K4 the kink next to K3 other than K2, then K4 is also out of C by Theorem 3.6 and
an internal edge e∗

4 of K4 is in S by the construction of S (see Fig. 4). Hence e and e∗
4

belong to two type-sets of C respectively by Corollary 3.4.
Case 2 C does not contain shared edges in S.
In this case shared edges on C are contained in kinks. Note that each hexagonal

chain in G divided by shared edges of C contains at least 3 kinks in G. If there exists
such a hexagonal chain containing exactly one kink, then C contains a shared edge in
S by the construction of S, which contradicts the assumption.

Subcase 2.1 There exists a hexagonal chain in G divided by shared edges of C out
of C containing at least five successive kinks.

In this case, S contains internal edges of at least two successive kinks among the
five kinks, then these two internal edges belong to two type-sets of C respectively by
the construction of S and Corollary 3.7 (2).
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Fig. 5 Illustration for Subsubcase 2.2.1 in Theorem 3.9. C is indicated by the dotted cycle. Bold edges
represent non-shared edges in S

Subcase 2.2 Every hexagon chain in G divided by shared edges of C out of C
contains exactly three kinks.

Subsubcase 2.2.1 G is convex.
In this case, there are at least two kink segments in G and exactly two hexagonal

chains, say A, B, in G divided by shared edges of C , each of which contains three
kinks. We denote by K1, K2, . . . , K6 all kinks in clockwise order and assume the first
three ones belong to A (see Fig. 5). By the construction of S about shared edges,
we know K6 and K1 are adjacent, K3 and K4 are adjacent. Hence by Eq. (1), G has
either two kink segments of length 3 (see Fig. 5a) or four kink segments of length 1,
2, 1, 2 (see Fig. 5b), respectively. In each case there are exactly two shared edges not
in S. Hence a nice cycle containing the non-hexagonal internal face in G other than
C0(G) and C1(G) is either C or C ′ = C ⊕ (C0(G) ∪ C1(G)). We assign internal
edges of K2, K3, K4, K5, external edges of K6, K1 into S by choosing an appropriate
start position P as Fig. 5. Then internal edges of K2, K3 (resp. K4, K5) belong to two
type-sets of C (resp. C ′) respectively by Corollary 3.7 (2).

Subsubcase 2.2.2 G is not convex.
We take any hexagonal chain, say A, in G divided by shared edges of C out of

C with three kinks, say K4, K5, K6 in clockwise order, let K1, K2, K3 be the three
successive kinks to the left of A, K7, K8, K9 be the three successive kinks to the right
of A (see Fig. 6).

If there are two internal edges of two successive kinks among K4, K5 and K6 in
S, then these two internal edges belong to two type-sets of C by Corollary 3.7 (2).
Otherwise, without loss of generation we assume the intersections of C and K5, K6
are external edges (see Fig. 6). Then the intersection, say e, of C and K4 is an internal
edge. If e does not belong to the unique four successive internal edges in S, then the
intersections of S and K1, K2 are external, which belong to two type-sets of C by
Corollary 3.7 (2). Then we assume e belongs to the unique four successive internal
edges in S. If the length of the hexagonal chain, say B, in G divided by shared edges
of C to the right of A does not less than four, then B contains two successive external
edges in S, which belong to two type-sets of C by Corollary 3.7 (2). So we assume
B contains exactly three successive kinks K4, K5 and K6. Note that in this case there
are at least four hexagonal chains in G divided by shared edges of C because there are
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B
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Fig. 6 Illustration for Subsubcase 2.2.2 in Theorem 3.9. Bold edges represent non-shared edges in S; the
dotted cycle represents the nice cycle C

Fig. 7 A primitive coronoid G
with its kinks indicated by
placing letters ‘K’ at centers of
them. Bold edges represent
edges in a minimum complete
forcing set

G

KK

K

K

K

K K

K

K K

KK

K K

at least eight kinks and each hexagonal chain has an odd number (�3) of kinks. Let
K10, K11, K12 be three successive kinks in the hexagonal chain next to B other than
A, which does not contain K1. Since the intersections of S and K7, K8 are internal
edges and the intersection of S and K9 is an external edge, the intersections of S and
K11, K12 are two successive internal edges, which belong to two type-sets of C by
Corollary 3.7 (2). ��
Example Let G be a primitive coronoid as in Fig. 7. In G, there are 18 hexagons, 4
kink segments of length 1, 2, 5, 6, respectively. So ki = 1 for i = 1, 2, 5, 6, ki = 0
for other integers i . By Theorem 3.9,

c f (G) = 18 + 1 ×
⌈1

2

⌉
+ 1 ×

⌈2

2

⌉
+ 1 ×

⌈5

2

⌉
+ 1 ×

⌈6

2

⌉

= 18 + 1 + 1 + 3 + 3

= 26.

4 Conclusion

In this paper we discuss complete forcing numbers of primitive coronoids and give an
explicit analytical expression for the complete forcing number of a primitive coronoid
in terms of the number of hexagons and lengths of kink segments in it, similar to
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Fig. 8 A counterexample for
primitive coronoids relating to
Theorem 4.1. Bold edges
represent a subset S of the edge
set which has non-empty
intersection with either of
type-sets of any hexagon. The
dotted cycle represents a nice
cycle of which there exists a
type-set not intersecting with S,
i.e., consisting of edges from
black vertex to white vertex in
clockwise order

K K

K K

K

K K

K

K

K

expressions for complete forcing numbers of hexagonal chains shown in Xu et al.
(2015c). But the proof is more complicated, partially because of non-trivial nice cycles
containing the non-hexagonal internal face.

For a catacondensed hexagonal system G, the necessary and sufficient condition
for set S to be a complete forcing set of G is given in Xu et al. (2015c).

Theorem 4.1 Xu et al. (2015c) Let G be a catacondensed hexagonal systemwith edge
set E(G). A subset S of edge set E(G) is a complete forcing set if and only if S has a
non-empty intersection with each type-set of any hexagon.

Whether is the above theorem true for primitive coronoids? Unfortunately, it is not
true, a counterexample is shown in Fig. 8.
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Harary F, Klein DJ, Živković TP (1991) Graphical properties of polyhexes: perfect matching vector and

forcing. J Math Chem 6:295–306
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Vukičević D, Došlić T (2007) Global forcing number of grid graphs. Aust J Combin 38:47–62
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