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Abstract We present an approximation algorithm for wireless link scheduling under
the physical SINR interference model. In the link scheduling problem, it is given a set
of n links in a metric space, each of which is a sender–receiver pair, and the objective
is to schedule the links using the minimum amount of time. We focus on a variant of
this fundamental problem where the power is fixed, i.e., the power assignment of links
is given as part of the input. Specifically, we consider an important category of power
assignments called length-monotone sublinear power assignment, which includes the
widely studied uniform, mean and linear power assignments. We present a distributed
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algorithm that can schedule all links in O(logΔ(Imax + log3 n)) rounds with high
probability, where Δ is the ratio between the longest link and the shortest link and
Imax is the maximum nearly-equilength class affectance of the link set. It is shown
that the proposed algorithm is O(logΔ) approximate to the optimal schedule in dense
networks with Imax ∈ Ω(log3 n). To the best of our knowledge, our algorithm is the
first distributed one whose approximation ratio is independent of the network size n.
Our result also shows that theΩ(log n) lower bound (Halldórsson andMitra in: ICALP,
2011) on the approximation ratio does not hold for link sets with logΔ ∈ o(log n).

Keywords Wireless link scheduling · SINR model · Distributed algorithm

1 Introduction

In wireless networks, concurrent transmissions may easily collide when they are
within one another’s interference range. An efficientMACprotocol that can coordinate
wireless transmissions in the face of interference is critically needed. Theoretically,
designing an efficient MAC protocol boils down to finding a solution to the wireless
link scheduling problem. Specifically, given a set L of n links in a wireless network,
where a link represents a transmission request from one node (sender) to another
(receiver), the link scheduling problem is to schedule the links using the minimum
amount of time.

The complexity of link scheduling is dependent on the adopted interference model.
In this paper, we study the link scheduling problem under the physical SINR interfer-
ence model. The SINR model captures the fading feature and the cumulative effects
of actual radio signals. Compared with oversimplified graph-based models, the SINR
model represents the physical reality in wireless networks more precisely.

Wireless link scheduling under the SINR model has been extensively studied in
centralized settings (Andrews and Dinitz 2009; Fanghänel et al. 2009, 2011; Gous-
sevskaia et al. 2007; Halldórsson 2012; Halldórsson and Mitra 2011; Kesselheim
2011). But a distributed solution is more desirable, since in many real networks, e.g.,
wireless ad hoc and sensor networks, it is hard or impossible to provide a centralized
controller or make individual nodes be aware of the overall network situation. Because
of the ‘global-ness’ of the SINRmodel, practical distributed algorithms are difficult to
derive, and so far only a few works (Kesselheim and Vöcking 2010; Halldórsson and
Mitra 2011; Halldórsson et al. 2013) have existed offering distributed solutions. Under
different settings, these works presented O(log n)-like approximation algorithms for
length-monotone sublinear power assignments or more restricted power assignments.
For our work presented here, instead of the network size n, we use the special para-
meter Δ, which is the length ratio between the longest link and the shortest link, to
express the efficiency of our algorithm.Δ is widely adopted in link scheduling studies
in centralized settings (e.g., Andrews and Dinitz 2009; Fanghänel et al. 2011; Gous-
sevskaia et al. 2007; Halldórsson 2012). In fact, approximation algorithms with a ratio
dependent on Δ and not on the network size n may be more attractive, since large link
sets often have only a constant Δ (Goussevskaia et al. 2007).
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We consider the wireless link scheduling in networks whose nodes are limited in
their functionalities. These nodes do not know their geometry coordinates, and cannot
perform collision detection or physical carrier sensing. Furthermore, we assume the so
called ack-only model (Halldórsson and Mitra 2011), which requires the receivers to
send back the acknowledgements over the same channel as the message and there are
no side-channels for control messages. Under such a harsh model, we focus on the link
scheduling with fixed power assignment, i.e., the transmission power of each link is
given as input, and present a randomized algorithm whose performance is guaranteed
with high probability (with probability 1−n−c for some constant c). In our algorithm,
the receiver transmits the acknowledgement using the same assigned power as its
sender. In contrast, in previous work, the receiver of a link transmits with dual power
(Kesselheim and Vöcking 2010; Halldórsson and Mitra 2011). The dual power of a

link lv is defined as P∗(lv) = P(lmax )
2

lαmax
· lαv
P(lv)

, where lmax is the length of the longest
link, P is the given power assignment and α is the constant path-loss exponent defined
in the SINRmodel (refer to Sect. 3). Not only the dual power needs the information of
the longest link (including the length and the assigned power of the longest link) to be
defined, but also it can be very large in some power assignments, which is a great waste
or even unaffordable for short links. For example, in a linear power assignment, where
P(lv) = γ lαv for some constant γ > 0, the dual power of link lv can be as large as
the maximum power assigned to links, which may be Δα times of the assigned power
P(lv). Clearly, an algorithm in which the sender and the receiver transmit with the
same power is more desirable and is more suitable for implementing in a distributed
environment, since links may not have exact knowledge on the link set.

Our result We focus on a category of power assignments that are called
length-monotone sublinear power assignment. The length-monotone sublinear power
assignment is a natural and important one, which covers the extensively studied uni-
form (Goussevskaia et al. 2007), mean (Fanghänel et al. 2009) and linear (Fanghänel
et al. 2011) power assignments. All previous work on distributed link scheduling tried
to work with this important category of power assignments. We present a distrib-
uted algorithm that generates a schedule longer than the optimal one by at most an
O(logΔ) factor in dense networks. The performance of the proposed algorithm is
guaranteed with high probability. Our understanding is that this is the first distributed
algorithm whose approximation ratio is dependent on Δ, rather than n. The proposed
algorithm also demonstrates that the general lower bound Ω(log n) (Halldórsson and
Mitra 2011) for the approximation ratio of distributed link scheduling algorithms does
not hold for link sets with logΔ ∈ o(log n).

2 Related work

The scheduling complexity of arbitrary links in centralized settings has been exten-
sively studied. The wireless scheduling problem is closely related to the capacity
problem, also known as single slot scheduling problem, which is to find the maxi-
mum number of links that can communicate simultaneously. The capacity problem
has been well studied in Andrews and Dinitz (2009), Asgeirsson and Mitra (2011),
Chafekar et al. (2007), Dinitz (2010), Goussevskaia et al. (2009), Goussevskaia
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et al. (2007), Halldórsson and Mitra (2011), Kesselheim (2011). Approximation
algorithms for the capacity problem can be adapted to solving the scheduling prob-
lem with an extra O(log n) factor in approximation ratio. Recently, there are many
results in the literature that achieve O(logΔ)-like approximation. Goussevskaia et al.
(2007) gave an O(logΔ)-approximation algorithm for both the scheduling and the
capacity problem assuming the uniform power assignment. But the approximation
ratio is obtained under the uniform power setting. Using an extra small step to
relate the algorithm (Goussevskaia et al. 2007) to the optimal solution with power
control, an O(logΔ)-approximation algorithm can be obtained for the capacity prob-
lem, as given in Andrews and Dinitz (2009). Fanghänel et al. (2011) proposed the
maximum affectance I as a measure of interference, and proposed a randomized
algorithm with linear power assignment that schedules an arbitrary set of links in
O(OPT logΔ + log2 n) rounds. Thus, their results achieve an O(logΔ) approxi-
mation ratio for dense networks. Fanghänel et al. (2009) showed that any schedule
based on oblivious power assignment can be a factor of Ω(n) from the optimal. The
lower bound comes from the asymmetry of the communication links. They intro-
duced a bi-directional version of the wireless link scheduling problem, where the
endpoints of each link are both sender and receiver. Under this symmetric model and
using the mean power assignment, they gave an algorithm with approximation ratio
O(log3.5+α n) in general metrics. This result was improved to an O(log n)-factor for
doubling metrics in Halldórsson (2012). In terms of Δ, the lower bound is shown to
be O(log logΔ) in Halldórsson (2012) for any oblivious power assignment. Using
the mean power assignment, Halldórsson (2012) also gave an O(log logΔ · log n)-
approximation scheduling algorithm without the bi-directional setting in doubling
metrics.

For the fixed given power case, Goussevskaia et al. (2009) gave an O(log n)-
approximation algorithm based on a constant approximation algorithm for the capacity
problem when uniform power and Euclidean space are assumed. Both problems have
been shown to be NP-complete in Goussevskaia et al. (2007). In terms of linear power
assignment, a constant approximation algorithm was given in Fanghänel et al. (2011)
for dense networks. For length-monotone sublinear power assignments, in a recent
work, Halldórsson and Mitra (2011) gave an O(log n)-approximation algorithm in
general metrics.

There are only a few works considering distributed solutions for scheduling an
arbitrary set of links in wireless networks. In Kesselheim and Vöcking (2010), assum-
ing length-monotone sublinear power assignments, Kesselheim and Vöking gave the
first known distributed wireless link scheduling algorithm with approximation ratio
O(log2 n). Under the same category of power assignments, the result was improved to
O(log n) in Halldórsson and Mitra (2011), Halldórsson et al. (2013). In Halldórsson
and Mitra (2011), it was also shown that Ω(log n) is a lower bound in general.

3 Network model and preliminaries

Given a set of links L = {l1, . . . , ln} in a metric space (X, d) where each link lv =
(sv, rv) represents a communication request from a sender sv to a receiver rv , the link
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scheduling problem is to find a partition of L of minimum size such that links of each
subset in the partition can be scheduled together. The size of the partition is equal to
the minimum number of slots required to schedule all links. A subset S ⊆ L is called
a feasible set if all links in S can be scheduled together. Without confusion, we also
use lv to denote the length of link lv . For the link set L , let Δ(L) be the ratio between
the longest link and the shortest link in L . A nearly-equilength class is a set R of links
with Δ(R) ≤ 2. Any set L of links can be divided into �logΔ(L)� nearly-equilength
classes. To ease the algorithm description and the analysis, without loss of generality,
we set the minimum length of links to 1. Then Δ is simply the length of the longest
link in L . For two links lv and lw, we use d(v,w) or simply dvw to denote the distance
d(sv, rw) from the sender sv of lv to the receiver rw of lw.

We model the interference using the physical SINR (Signal-to-Interference-plus-
Noise-Ratio) model. Let Pv denote the power assigned to link lv , or, in other words,
sv transmits with power Pv . A node rv successfully receives a message from a sender
sv if and only if the following condition holds:

Pv/ lαv
N + ∑

lw∈V \{lv} Pw/d(w, v)α
≥ β, (1)

where α > 0 is the path-loss exponent, N is the constant ambient noise, S is the set
of concurrently scheduled links in the same slot and β is a constant threshold set by
the hardware. Here we assume that β > 2α .

We focus on an important power assignment that is called length-monotone sub-
linear power assignment (Kesselheim and Vöcking 2010). A power assignment P is
length-monotone if for any two links lu ≤ lv , Pu ≤ Pv , and P is sub-linear if Pu

lαu
≥ Pv

lαv
for any two links lu ≤ lv . Two widely used power assignments in this class are the
uniform power assignment, where every link transmits with the same power; and the
linear power assignment, where Pv is proportional to lαv .

All communications occur on a shared channel. Algorithms operate in synchro-
nous rounds with the senders either transmitting or listening in each round. When the
transmission is successful, the sender stops transmitting. This necessitates an acknowl-
edgment from the receiver, so that the sender knows when his message has been heard.
These acknowledgments are sent over the same channel as the message; thus, there
are no side-channels for control messages. Furthermore, we restrict that the sender
and the receiver of a link use the same transmission power assigned to the link.

Initially, nodes (senders and receivers) do not know their geometric coordinates,
and knownothing about other links in their close proximity. The only initial knowledge
to nodes are estimates of Δ(L) and n. As shown in the analysis, polynomial estimates
are enough, which will only affect the final result by a constant factor.

We will use the notion of affectance, introduced in Goussevskaia et al. (2009),
Halldórsson and Wattenhofer (2009) and refined in Kesselheim and Vöcking (2010)
as the thresholded form here. The affectance on a link lv caused by link lw under a
power assignment P is defined as

aw(v) = min

{

1, cv

Pw/dα
wv

Pv/ lαv

}

= min

{

1, cv

Pw

Pv

·
(

lv
dwv

)α}

, (2)
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where cv = β/(1− βNlαv /Pv). The affectance on link lv caused by a set of links S is
denoted by aS(v) = ∑

lw∈S aw(v). For a set R ⊆ L , the maximum affectance of R is
defined as IR = maxlv∈R aR(v). Denote byR the set of the �logΔ� nearly-equilength
link classes of L , where links in the i-th nearly-equilength class have length in the
range [2i−1, 2i ). Then we define the maximum nearly-equilength class affectance
Imax = maxR∈R IR .

With the definition of affectance, note that the SINR model prescribes that a link lv
can be successfully scheduled if aR(v) ≤ 1, where R is the set of links simultaneously
scheduled.

At the end of this section, we present two Chernoff bounds, as in the following
Lemma1andLemma2.TheChernoff bound inLemma1canbe found inDubhashi and
Ranjan (1998), and the weighted Chernoff bound in Lemma 2 is proved in Fanghänel
et al. (2011).

Lemma 1 For a parameter a > 0, let X1, . . . , Xn be independent or negatively
associated non-negative randomvariableswith Xi ≤ a.Further, let X = X1+· · ·+Xn

and μ = E[X ]. For 0 < ε < 1, it holds that

Pr [X ≤ (1 − ε)μ] ≤ e−ε2μ/2a . (3)

Lemma 2 Let X1, . . . , Xn be0/1 randomvariables forwhich there is a p ∈ [0, 1] such
that for all k ∈ [n] and all a1, . . . , ak−1 ∈ {0, 1}, Pr [Xk = 1|X1 = a1, . . . , Xk−1 =
ak−1] ≤ p. Let furthermore w1, . . . , wn be reals in (0, 1] and μ ≥ p

∑
wi . Then for

ε > 0,

Pr

[
n∑

i=1

wi Xi ≥ (1 + δ)μ

]

≤
(

eε

(1 + ε)1+ε

)μ

. (4)

4 Link scheduling algorithm

In this section, we present a distributed link scheduling algorithm in which each link
executes the algorithm only based on its own length. The detailed algorithm is given in
Algorithm 1. We divide the links into �logΔ� nearly-equilength classes {Li }, where
Li denotes the set of links whose lengths are in the range [2i−1, 2i ). A link lv is called
unsuccessful if the sender still does not receive the ack message from the receiver rv .
In Algorithm 1, we denote by [�δA�] the positive integers {1, 2, . . . , �δA�}.

The algorithm execution is divided into stages (line 2–29) and each stage is further
divided into �logΔ� phases (line 3–27). In each stage, links in Li execute the algorithm
in the i-th phase. So links in the same nearly-equilength class execute the algorithm
together. In each subphase (line 6–18) of phase i , each unsuccessful link in Li selects a
random delay in a range determined by an estimate of the maximum nearly-equilength
class affectance. Links with the same delay execute the algorithm together in the round
after the delay. The round consists of two slots. In the first slot, the sender sv transmits.
And in the second slot, the receiver rv transmits with a constant probability p̂ if rv
received the transmission of sv . Senders that receive the acknowledgement from their
receivers stop transmitting from then on. The adjustment of the affectance estimate
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uses a back on/back off manner: After each stage, the estimate is doubled and after
each subphase, the estimate is decreased by a constant factor. Furthermore, there is a
clean-up subphase (line 20–26) at the end of each phase for dealing with the case that
the affectance on unscheduled links is small.

Algorithm 1 Link Scheduling Algorithm

Initially, σ = 96 p̂−1, δ = 64e p̂−1, Ie = σ log n, p̂ = 1
2

(
β1/α−2
β1/α+2

)α

, pc = 1
2σ log n

1: loop
2: for i = 1, 2, . . . , �logΔ� do
3: A = Ie
4: if lv ∈ Li then
5: while A > σ log n do
6: if sv still does not receive ack message from rv then
7: sv selects a delay uniformly at random in [�δA�]
8: In the round after the delay,
9: Slot 1: sv transmit
10: Slot 2:
11: if rv received the transmission from sv in Slot 1 then
12: rv transmit an ack message with constant probability p̂
13: end if
14: if sv received the ack message from rv then
15: sv stop transmitting from then on
16: end if
17: A = (1 − p̂/8)A
18: end if
19: end while
20: for 24 p̂−1σ log2 n rounds do
21: Slot 1:sv transmits with probability pc
22: Slot 2:
23: if rv received the transmission from sv in Slot 1 then
24: rv transmit an ack message with constant probability p̂
25: end if
26: end for
27: end if
28: end for
29: Ie = 2Ie
30: end loop

4.1 Algorithm analysis

In this section, we analyze the correctness and the time complexity of Algorithm 1. In
particular, we will show that after O(logΔ(Imax + log3 n)) rounds, all links will be
scheduled with high probability.

For a link lv = (sv, rv), define the dual link l∗v of lv as l∗v = (rv, sv). The dual link
is introduced in Kesselheim and Vöcking (2010). For a link set S, its dual link set is
denoted as S∗ = {l∗v |lv ∈ S}. We use au∗(v∗) to denote the affectance on l∗v caused
by l∗u under the given power assignment. We first present an observation on dual link
sets.
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Observation 1 For a feasible link set S which is nearly-equilength, IS∗ ≤
(

β1/α+2
β1/α−2

)α

.

Proof The proof is based on the following key claim. 	


Claim 3 For two link lu, lv ∈ S, au∗(v∗) ≤
(

β1/α+2
β1/α−2

)α

au(v).

Proof By the given power assignment, 1
2α Pv ≤ Pu ≤ 2αPv . Because lu and lv can

be scheduled together, by the SINR condition, we have d(su, ru) ≤ 2
β1/α d(sv, ru) and

d(sv, rv) ≤ 2
β1/α d(su, rv). We then can get that

d(su, rv) ≤ d(su, ru) + d(ru, sv) + d(sv, rv)

≤ 2

β1/α d(sv, ru) + d(sv, ru) + 2

β1/α d(su, rv). (5)

With the above inequality, d(sv, ru) ≥ β1/α−2
β1/α+2

d(su, rv). Then

au∗(v∗) = cv

Pu
Pv

·
(
d(rv, sv)

d(ru, sv)

)α

≤
(

β1/α + 2

β1/α − 2

)α

· cv

Pu
Pv

·
(
d(sv, rv)

d(su, rv)

)α

=
(

β1/α + 2

β1/α − 2

)α

au(v).

(6)

	

By the feasibility of S, IS = maxlv aS(v) ≤ 1. By Claim 3, we can get that

IS∗ = max
lv

∑

lu∈S
au∗(v∗) ≤ max

lv

∑

lu∈S
(
β1/α + 2

β1/α − 2
)αau(v) ≤

(
β1/α + 2

β1/α − 2

)α

. (7)

The above observation shows that the dual link set of a nearly-equilength feasible
set is nearly feasible (with constant maximum affectance).

Now we start analyzing the algorithm’s performance. Consider phase i of a stage.
By the algorithm, links in Li execute the algorithm in this phase. We next show the
reduction of the maximum affectance of Li after each subphase of phase i . Consider
a subphase in phase i . If it is clear in the context, we use Li to denote the set of
unsuccessful links in Li at the beginning of the subphase, and use L

′
i to denote the set

of unsuccessful links in Li after the subphase.

Lemma 4 Consider a subphase in the i-th phase of a stage. If A ≥ ILi and ILi >

σ log n, where σ is a constant defined in Algorithm 1, then after the subphase, IL ′
i
≤

(1 − p̂/8)ILi with probability 1 − O(n−3).
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Proof A link lv = (sv, rv) ∈ Li does not stop the execution of the algorithm during a
subphase for two reasons: First, the affectance on lv is larger than 1 such that rv does
not receive the transmission; second though sv successfully transmits its message to
rv , sv does not receive an ack message from rv . We next bound the affectance on a
link lw after the subphase caused by links that are unsuccessful for these two reasons,
respectively. Clearly, we only need to consider links lw with aLi (w) > (1− p̂/8)ILi .
Divide Li into two sets R1 and R2, where R1 is the set of links that are unsuccessful
for the first reason and R2 = Li\R1. 	


We first consider the affectance on lw caused by links in R1. Denote by E1 the
random variable whose value is

∑
lv∈R1

av(w).

Claim 5 Pr [E1 ≥ p̂
8 ILi ] ≤ O(n−4).

Proof We use the Chernoff bound of Lemma 2 to prove the result. We first give
an arbitrary order on all links in Li and denote Li = {l1, l2, . . . , lt }. Consider an
arbitrary link lk = (sk, rk) ∈ Li . Let S be the set of links that are scheduled together
with lk . Denote by S−

k and S+
k be the sets of links l j in S with j < k and j > k

respectively. If sk does not send the message to rk , it means that
∑

l j∈S−
k
a j (k) > 1

2 or
∑

l j∈S+
k
a j (k) > 1

2 . In the first case let the indicator X−
k = 1 and in the second case

let the indicator X+
k = 1.

We next show that the random variables {X−
k } fulfill the condition of the Chernoff

bound of Lemma 2. It is easy to see that the values of X−
1 , . . . , X−

k are determined
by the delays d1, . . . , dk , where d j is the delay selected by link l j for 1 ≤ j ≤ k.
Fix a1, . . . , ak−1 ∈ {0, 1}. Let [�δA�]k−1 be the set of vectors (v1, . . . , vk−1) with
1 ≤ vi ≤ �δA� for 1 ≤ i ≤ k − 1. Then there exists a subset H ⊆ [�δA�]k−1 such
that X−

1 = a1, . . . , X
−
k−1 = ak−1 iff (d1, . . . , dk−1) ∈ H .

For 1 ≤ j ≤ k, let Y j be the random variable with value 1 if d j = dk and 0
otherwise, where dk is the delay selected by link lk . Define Z−

k = ∑k−1
j=1 a j (k)Y j .

Because each link selects the delay independently and uniformly at random from
[�δA�], we can get that for all (b1, . . . , bk−1) ∈ [�δA�]k−1,

E[Y j |d1 = b1, . . . , dk−1 = bk−1] = 1

�δA� . (8)

Then we can get that

E[Z−
k |d1 = b1, . . . , dk−1 = bk−1] =

k−1∑

j=1

a j (k)E[Y j |d1 = b1, . . . , dk−1 = bk−1]

= 1

�δA�
k−1∑

j=1

a j (k)

≤ 1

δ
(9)
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Based on the above, we obtain that

Pr [X−
k = 1|d1 = b1, . . . , dk−1 = bk−1] = Pr

⎡

⎢
⎣

∑

l j∈S−
k

a j (k) >
1

2
|d1 = b1, . . . , dk−1 = bk−1

⎤

⎥
⎦

≤ 2E[Z−
k |d1 = b1, . . . , dk−1 = bk−1]

≤ 2δ−1.

(10)

Now we can compute Pr [X−
k = 1|X−

1 = a1, . . . , X
−
k−1 = ak−1] as follows.

Pr
[
X−
k = 1|X−

1 = a1, . . . , X
−
k−1 = ak−1

]

=
∑

(b1,...,bk−1)∈H
Pr

[
X−
k = 1|d1 = b1, . . . , dk−1 = bk−1

]

· Pr [
d1 = b1, . . . , dk−1 = bk−1|X−

1 = a1, . . . , X
−
k−1 = ak−1

]

≤ 2

δ
.

(11)

Define the random variable A−
w = ∑t

j=1 X
−
j a j (w). Set p = 2

δ
and μ = 2aLi (w)

δ
.

By the Chernoff bound in Lemma 2, we can get that

Pr

[

A−
w ≥ p̂

16
aLi (w)

]

≤ 2− p̂
16 aLi (w) ≤ 2− p̂

16 (1− p̂
8 )ILi ≤ n−4. (12)

By using a similar argument, we can get the bound for A+
w = ∑t

j=1 X
+
j a j (w)

which is Pr [A+
w ≥ p̂

16aLi (w)] ≤ n−4. Clearly, E1 ≤ A+
w + A−

w . Thus,

Pr

[

E1 ≥ p̂

8
aLi (w)

]

≤ Pr

[

A+
w ≥ p̂

16
aLi (w)

]

+ Pr [A−
w ≥ p̂

16
aLi (w)] ≤ O(n−4).

(13)
	


We next consider the affectance on lw caused by unsuccessful links in R2. For each
link lv ∈ R2, define a random variable Zv with value av(w) if rv successfully transmits
the ack message and 0 otherwise. Let Z = ∑

lv∈R2
Zv and E2 = ILi − Z . Clearly, E2

is an upper bound for the affectance on lw caused by unsuccessful links in R2.

Claim 6 Pr [E2 ≥ (1 − p̂
4 )ILi ] ≤ O(n−4).

Proof Let lv be an arbitrary link in R2, and denote by M ⊆ R2 the set of links that
select the same delay with lv . For each other link lu ∈ M , by Claim 3, au∗(v∗) ≤
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(
β1/α+2
β1/α−2

)α

au(v), which concludes that

E

⎡

⎣
∑

lu∈M
au∗(v∗)

⎤

⎦ ≤ p̂ ·
(

β1/α + 2

β1/α − 2

)α ∑

lu∈M
au(v) ≤ p̂ ·

(
β1/α + 2

β1/α − 2

)α

≤ 1

2
. (14)

By Markov inequality, with probability 1
2 ,

∑
lu∈M au∗(v∗) ≤ 1. In other words, with

probability 1/2, if the receiver rv of lv transmits, sv will receive the ack message. Then
we can get that

E[Zv] ≥ p̂

2
· av(w). (15)

by which it can be obtained that E[Z ] ≥ p̂
2

∑
lv∈R2

av(w). By Inequality (13), with

probability 1 − O(n−4),
∑

lv∈R2
av(w) ≥ (1 − p̂

8 )aLi (w) ≥ (1 − p̂
8 )2 ILi . Thus,

E[Z ] ≥ p̂

2

(

1 − p̂

8

)2

ILi ≥ 3 p̂

8
· ILi . (16)

Because {Zv} are negatively associated, we can apply the Chernoff bound of
Lemma 1 with a = 1 to get that

Pr

[

Z ≤ p̂

4
ILi |E[Z ] ≥ 3 p̂

8
· ILi

]

≤ e− (1/3)2 ·(3 p̂ ILi /8)

2 ≤ n−4. (17)

Then we can get that Pr [E2 < (1 − p̂
4 )ILi ] = Pr [Z >

p̂
4 ILi ] ≥ 1 − O(n−4). 	


Now we are ready to prove the lemma. Clearly, aL ′
i
(w) ≤ E1 + E2. By Claim 5 and

Claim 6,

Pr

[

aL ′
i
(w) ≥ (1 − p̂

8
)ILi

]

≤ Pr

[

E1 ≥ p̂

8
ILi

]

+ Pr

[

E2 ≥ (1 − p̂

4
)ILi

]

≤ O(n−4).

(18)

The above bound is true for all links in Li with probability 1 − O(n−3). So IL ′
i
≤

(1 − p̂
8 )ILi holds with probability 1 − O(n−3).

We next show that if the maximum affectance of a nearly-equilength class is small,
all links will be successfully scheduled in the clean-up subphase.

Lemma 7 For the link set Li , if ILi ≤ σ log n, where σ is a constant defined in
Algorithm 1, then all links in Li will be successfully scheduled in the the clean-up
subphase with probability 1 − n−2.

Proof Consider a round r in the clean-up subphase. Let R be the set of unsuccessful
links in Li at the beginning of r . 	
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Claim 8 In the first slot of round r, at least pc|R|
2 links can successfully transmit their

messages in expectation.

Proof For each link lv ∈ R, let Zv be the indicator with value 1 if sv transmits
in the considered slot. Let Z

′
v be the random variable with value 1 if sv sends the

message to rv and 0 otherwise. By the algorithm, Pr [Zv = 1] = pc and E[aR(v)] =∑
lw∈R aw(v)pc ≤ pc · ILi ≤ 1

2 . By the Markov inequality,

Pr [aR(v) ≤ 1] ≥ 1

2
. (19)

In other words, sv can send its message to rv with probability at least 1
2 if it transmits.

Then,

Pr [Z ′
v = 1] = Pr [Z ′

v = 1|Zv = 1]Pr [Zv = 1] ≥ pc
2

. (20)

The number of successful transmissions is

E

⎡

⎣
∑

lw∈R

Z
′
w

⎤

⎦ =
∑

lw∈R

E
[
Z

′
w

]
=

∑

lw∈Li

Pr
[
Z

′
w = 1

]
≥ pc|R|

2
. (21)

	

Let R

′ ⊆ R be the set of links that successfully transmit in the first slot of the

considered round. By Observation 1, the maximum affectance on R
′
is

(
β1/α+2
β1/α−2

)α

.

Then using a similar argument to that for proving Claim 8, we can get the following
result.

Claim 9 In the second slot of round r, at least p̂|R′ |
2 links in expectation whose

receivers can send ack messages to their senders.

Let Rt be the set of unsuccessful links in Li after round t . By the above two claims,
after round r , pc· p̂|Rt |

4 links can be successfully scheduled in expectation. Thus,

E[Rt+1] =
∞∑

k=1

Pr [Rt = k] · (1 − pc · p̂
4

)k = (1 − pc · p̂
4

)

∞∑

k=1

Pr [Rt = k] ·

k = (1 − pc · p̂
4

)E[Rt ].

After 24 p̂−1σ log2 n rounds, E[R24 p̂−1σ log2 n] ≤ (1 − pc· p̂
4 )24 p̂

−1σ log2 n · n ≤ n−2,
and

Pr [R24 p̂−1σ log2 n > 0] = Pr [R24 p̂−1σ log2 n ≥ 1] ≤ E[R24 p̂−1σ log2 n] ≤ n−2,

which completes the proof. 	
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Theorem 2 Algorithm 1 schedules all links in O(logΔ(Imax + log3 n)) rounds
with probability 1 − O(n−1), where Imax is the maximum nearly-equilength class
affectance.

Proof If Imax ≤ σ log n, by the algorithm and Lemma 7, with probability 1 − n−1,
all links will be scheduled in O(logΔ log2 n) rounds noting that there are at most n
non-empty nearly-equilength classes. In the following,we assume that Imax > σ log n.

Consider the stage T with Ie ∈ [Imax , 2Imax ). For each nearly-equilength class
Li , using Lemma 4, it is easy to inductively prove that after O(log(Imax/ log n))

subphases, with probability 1 − O(n−2), the maximum affectance of unsuccessful
links in Li will be reduced to be less than σ log n. Then by Lemma 7, all remaining
links in Li will be scheduled in the subsequent clean-up phases with probability
1− n−2. Thus, all links in Li will be scheduled by the end of phase i of stage T with
probability 1 − O(n−2). Note that there are at most n non-empty nearly-equilength
classes. By the union bound, all links will be scheduled by the end of stage T with
probability 1 − O(n−1).

Now we bound the running time by stage T . In a stage j ≤ T with estimate I j , the
running time of this stage is upper bounded by

�logΔ�
⎛

⎝
O(log(I j / log n))∑

i=0

(

1 − p̂

8

)i

I j + O
(
log2 n

)
⎞

⎠ = O
(
logΔ

(
I j + log2 n

))
.

Then the running time by stage T is at most

O(log(Imax/ log n))∑

i=0

O

(

logΔ

((
1

2

)i

· 2δ Imax + log2 n

))

= O
(
logΔ

(
Imax + log Imax log2 n

))
.

By the definitions of Imax and the affectance, Imax ≤ n, which help complete the
proof. 	


4.2 Comparison to the optimal schedule

In the following, we give a lower bound for scheduling all links in a nearly-equilength
class.

Lemma 10 Let R be a nearly-equilength class of links. Given a length-monotone
sublinear power assignment on R, any scheduling algorithm needs Ω(IR)rounds to
schedule all links in R, where IR is the maximum affectance of R.

Proof Let S = {S1, . . . , ST } be a scheduling of R. The following Claim is proved
in Ásgeirsson et al. (2012). 	
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Claim 11 Consider a feasible set R
′ ⊆ R and a link lv (not necessarily a member of

R
′
). Then

aR′ (v) =
∑

lw∈R′
aw(v) ≤ κ, (22)

for some constant κ .

For each link lv ∈ R, aR(v) = ∑T
i=1 aSi (v). By the above Claim, aR(v) ≤ κT . It

follows that IR = maxlv∈R aR(v) ≤ κT , which completes the proof.
Lemma 10 shows that given a link set L and a length-monotone sublinear power

assignment, any scheduling algorithm needs Ω(Imax ) rounds to schedule all links in
L . By Theorem 2, we have the following result.

Theorem 3 For any given link set and length-monotone sublinear power assignment,
Algorithm 1 achieves an approximation ratio of O(logΔ) in dense networks with
Imax ∈ Ω(log3 n).

5 Conclusion

Assuming the physical SINR model and for the length-monotone sublinear power
assignment, we gave an efficient distributed algorithm for wireless link scheduling
whose approximation ratio is independent of the network size. Our work shows that
it is possible to design algorithms with approximation ratio better than O(log n) in
many cases in spite of theΩ(log n) lower bound in general. One interesting question is
whether O(logΔ) approximation is the best possible, or we can get faster algorithms.
It is also meaningful to adapt the link scheduling algorithm given in this work to solve
more sophisticated problems in wireless networks, such as broadcast (Min et al. 2006),
gossiping (Shi and Srimani 2006), information dissemination (Wang et al. 2014; Yan
et al. 2014) and data aggregation (Li et al. 2013).
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