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Abstract We consider the online scheduling of equal length jobs on unbounded par-
allel batch processing machines to minimize makespan with limited restart. In the
problem m identical unbounded parallel batch processing machines are available to
process the equal length jobs arriving over time. The processing batches are allowed
limited restart. Here, “restart” means that a running task may be interrupted, losing all
the work done on it, and the jobs in the interrupted task are then released and become
independently unscheduled jobs, called restarted jobs. “Limited restart” means that
only a running batch that contains no restarted jobs can be restarted. For this problem,
we present a best possible online algorithm.

Keywords Online scheduling · Limited restart · Unit length jobs · Restricted batch

1 Introduction

In this paper, we consider the online scheduling of equal length jobs on m identical
unbounded parallel batch processing machines with limited restart. In the online ver-
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sion, each job becomes available at its arrival time, which is unknown in advance, and
its characteristics become known upon its arrival. A parallel batch processingmachine
is modeled as a system that can process up to b jobs simultaneously as a batch, where
b is the batch capacity. The processing time of a batch is equal to the longest process-
ing time of the jobs in the batch. All jobs processed in a batch start at the same time
and complete at the same time. Depending on the characteristic of batch capacity b,
there are two different models. One is the unbounded model, in which the capacity of
batches is sufficiently large, i.e., b = ∞. The other is the bounded model, in which
the capacity of batches is finite, i.e., b < ∞. In this paper we study the unbounded
model, i.e., b = ∞. In our research, we assume that all jobs have equal processing
times. By scaling, we may assume that each job has a processing time 1. The objective
of the problem considered in this paper is to assign jobs to batches and determine their
processing sequence on each machine so as to minimize the makespan, namely, the
maximum completion time of all jobs.

Restart (see Hoogeveen et al. 2000) means that a running task may be interrupted,
losing all the work done on it. The jobs in the interrupted task, which are called
restarted jobs, are then released and become independently unscheduled jobs which
can be scheduled later from scratch. Allowing restarts may give us a better schedule
because we have the chance to change our original mind and make a better decision.
For some scheduling models, we can obtain more efficient online algorithms by using
restarts. For example, for online minimization of the maximum delivery time on a
single machine using restarts, Van der Akker et al. (2003) gave an algorithm with
competitive ratio 3/2; while without restarts, a best possible online algorithm with
competitive ratio (

√
5 + 1)/2 was given in Hoogeveen and Vestjens (2000). We also

can see more research on online algorithms using restarts in Epstein and Stee (2003),
Van Stee and La Poutré (2005), and Yuan et al. (2011).

Limited restart, which is first introduced in Fu et al. (2008), means that a job can be
restarted at most once. So in the online parallel batch scheduling with limited restart,
once a running batch contains some restarted jobs, we cannot interrupt the processing
of the batch again. The assumption of limited restart is motivated by considering
restarts as scarce resources. In practice, too many restarts of a job may cause the waste
of resources and increase the probability of a spoiled product.

The quality of an online algorithm is measured by the competitive ratio. An online
algorithm is called ρ-competitive if for any input instance, it generates a schedule with
an objective value no worse than ρ times the value of an optimal off-line schedule.
The nearer the ratio is to 1, the better the algorithm is.

Parallel batch scheduling is motivated by burn in operations in semiconductor man-
ufacture (see Uzsoy et al. 1992, 1994). Online scheduling on parallel batch processing
machines was first studied by Zhang et al. (2001) and Deng et al. (2003). They studied
online scheduling problem tominimizemakespan on a single unbounded parallel batch
processing machine and independently presented the same best possible online algo-
rithm which is (

√
5+1)/2-competitive. For the corresponding problem with bounded

batch capacity, Poon andYu (2005) showed that any FBLPT-based algorithm has com-
petitive ratio at most 2 and for batch capacity 2, they gave an 7/4-competitive online
algorithm. Zhang et al. (2003) studied the online scheduling of equal length jobs onm
parallel batchingmachines. They first presented a (1+βm)-competitive optimal online
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algorithm for the unbounded version, where βm is the positive solution of the equation
(1+βm)m+1 = βm +2. They also proposed a (

√
5+1)/2-competitive optimal online

algorithm for the bounded version. For the problem of minimizing makespan on two
unbounded parallel batch processing machines, Nong et al. (2008) proposed an online
algorithm which is

√
2-competitive. And later Tian et al. (2009b) showed that

√
2 is

the lower bound for the problem and gave a new optimal online algorithm. For the
corresponding problem onm unbounded parallel batch processingmachines, Liu et al.
(2012) and Tian et al. (2009a) independently presented two different but best possible
online algorithms which are (1 + αm)-competitive, where αm is the positive solution
of the equation a2m + mαm − 1 = 0.

For minimizing makespan on an unbounded parallel batch processing machine
using restarts, Fu et al. (2007) showed that there exists no on-line algorithm with a
competitive ratio less than (5 − √

5)/2 and a best possible online algorithm match-
ing the lower bound was presented in Yuan et al. (2011). Fu et al. (2008) studied
the corresponding problem with limited restart and proposed a best possible online
algorithm with competitive ratio 3/2. For minimizing makespan on two unbounded
parallel batch processing machines using limited restart, a best possible online algo-
rithm with competitive ratio (

√
3 + 1)/2 was proposed in Fu et al. (2010) under the

second-restart assumption. For minimizing makespan on a bounded parallel batch
processing machine using restarts, an online algorithm with competitive ratio 3/2 was
given in Chen et al. (2009). Recently, Liu and Yuan (2014) presented best possible
online algorithms for minimizing makespan of equal length jobs on a bounded par-
allel batch processing machine with limited restart or restarts. More results of online
scheduling in parallel batch machines can be found in Tian et al. (2014).

This paper studies online scheduling of equal length jobs on m unbounded par-
allel batch machines to minimize makespan with limited restart. In the schedul-
ing notation, the problem is denoted by Pm|online, r j , p j = 1, p-batch, b =
∞, L-restart|Cmax.

The research approaches in this paper can be stated as follows. For each α with
0 < α < 1, we define an online algorithm LAZY(α). Based on algorithm LAZY(α),
we generate a job instance I (α). The candidate choices of α in our research are given
by α(i, j), where i, j are positive integers with j < i ≤ lm and α(i, j) is the positive
solution of equation (1+ x)i − (1+ x) j = 1. Here, lm is a positive integer associated
with m and will be defined later in the paper. Then we define

αm = min
0< j<i≤lm

{
α(i, j) : LAZY(α(i, j)) is (1 + α(i, j))-competitive on instance I (α(i, j))

}
.

It is proved that αm is also the minimum value of α with 0 < α < 1 so that LAZY(α)

is (1 + α)-competitive on instance I (α). Then we show that any online algorithm
for problem Pm|online, r j , p j = 1, p-batch, b = ∞, L-restart|Cmax has a
competitive ratio of at least 1 + αm . Finally, we present an (1 + αm)-competitive
algorithm ALGm based on algorithm LAZY(αm). This implies that ALGm is the best
possible.

InSect. 2, for eachαwith 0 < α < 1,wefirst present the online algorithmLAZY(α)

and, based on the algorithm, we generate a job instance I (α) and a schedule σα . Some
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related properties are presented. In Sect. 3, we present the lower bound 1 + αm for
the problem studied in this paper. In Sect. 4, we present the (1 + αm)-competitive
algorithm ALGm .

2 The Algorithm LAZY(α)

Throughout this paper, a restricted batch refers to a batch which contains at least one
restarted job, and a free batch refers to a batch which contains no restarted jobs. This
implies that, in an online algorithm, a running restricted batch cannot be interrupted
again. Note that a running free batch can be interrupted freely and the batch capacity
is unbounded. Then we take the convention that, in an online algorithm, if we start
a restricted batch at a time S, then we will interrupt all free batches running at time
S and generate a restricted batch which consists of all interrupted jobs and all other
unscheduled available jobs at time S.

The following notations are used in our discussion:

• F(i, j) = i + (i + 1) + · · · + j for positive integers i, j with i ≤ j .
• βm is the positive solution of equation (1 + x)F(1,m+1) − (1 + x)m+1 = 1.
• lm = min{i : i ≥ F(1,m + 1), βm(1 + βm)i ≥ 1}.
• α(i, j) is the positive solution of equation (1+ x)i − (1+ x) j = 1 where i and j
are both positive integers with i > j . Then βm = α(F(1,m + 1),m + 1).

Some properties of the above notations can be observed as follows which will be
used in further discussions.

• For every two positive integers i and j with i > j , (1 + x)i − (1 + x) j − 1 is
monotonically increasing in x ≥ 0.

• α(i, j) is the unique positive solution of equation (1 + x)i − (1 + x) j = 1 with
i > j . For 0 < α < α(i, j), (1 + α)i − (1 + α) j < 1.

• βm = α(F(1,m + 1),m + 1) is monotonically decreasing in m.

When an online algorithm starts to process a batch B at a time t , we use the
terminology “a job J arrives at time t” to denote the fact that job J arrives at time
t + ε for some very small positive number ε. In the discussion, we use t to replace
t + ε without loss of validity.

Since a job can be restarted once, the first starting time of a job is defined to be the
starting time of the earliest starting batch including the job. Since the jobs have the
equal processing time 1, the optimal value of any job instance is given by rmax + 1
where rmax is the latest arriving time of jobs in the instance. Then we concentrate our
attention on the schedules generated by online algorithms. Since the batch capacity is
unbounded, we may assume that at most one batch starts at a time instant.

Let σ be an online schedule for a job instance. Let S1 < S2 < · · · < Sn be the
sequence of time instants so that for each i with 1 ≤ i ≤ n, a batch Bi starts at time Si
in σ . By omitting the machine information, the online schedule σ can be denoted by
the sequence σ = ((S1, B1), . . . , (Sn, Bn)). When no ambiguity can occur, we write
σ = (S1, . . . , Sn) for simplicity. We take the convention that the information of all
starting batches (including the interrupted batches) is implied in σ . Thus, an online
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schedule is in fact the record of the implementation of an online algorithm. In the
following, we just use “schedule” to denote “online schedule”.

For convenience, we sometimes require that a batch Bi cannot be interrupted, no
matter it contains restarted jobs or not. In this case, Bi is called an assigned restricted
batch. In an online algorithm, we cannot interrupt the processing of a restricted or
assigned restricted batch.

In the following discussion, we assume that m is an arbitrary fixed positive integer.
For a given online algorithm H , we use the following algorithm, called Generating
I(H), to generate a job instance I(H) together with the schedule generated by algo-
rithm H on I(H). We use Bi (H) to denote the i-th starting batch, Si (H) the starting
time of Bi (H) and ri (H) the latest arriving time of jobs in Bi (H). B ′

i (H) is used to
denote the i-th starting restricted batch, S′

i (H) the starting time of B ′
i (H) and r ′

i (H)

the latest arriving time of jobs in B ′
i (H). Furthermore, we use Bi,k(H) to denote the

i-th starting batch after S′
k(H), Si,k(H) the starting time of Bi,k(H) and ri,k(H) the

latest arriving time of jobs in Bi,k(H).
Generating I(H): Given any online algorithm H , we release one job at time 0, and
then greedily release a new job whenever H starts a batch (that is, ε time after H starts
a batch for some very small positive ε). We continue doing this until n jobs have been
released in total, where n is sufficiently large for our discussion. The resulting input
is denoted by I(H), and the schedule is denoted by σH . �

Note that Generating I(H) generates a job instance I(H) = {J1(H), . . . , Jn(H)}
together with a schedule σH = (S1(H), . . . , Sn(H)) for I(H). We further define
S0(H) = 0 and B0(H) = ∅.

For an online algorithm H and a positive number α, we say that σH is an α-nice
schedule if all batches Bi (H) satisfy Si (H) ≤ (1+α)Si−1(H)+α, i.e., Si (H)+1 ≤
(1 + α)(Si−1(H) + 1). If Si (H) = (1 + α)Si−1(H) + α, i.e., Si (H) + 1 = (1 +
α)(Si−1(H) + 1), then Bi (H) is called an α-regular batch in σH . Furthermore, σH is
called an α-regular schedule if all batches in σH are α-regular.

LetU (t) be the set of the available unscheduled jobs at time t in an online algorithm.
Write r(t) = max{r j : J j ∈ U (t)}. Let α be a real number with 0 < α < 1. The
online algorithm, called LAZY(α), can be described as follows.

Algorithm LAZY(α):

1. Wait until the time t so that U (t) 	= ∅.
2. Wait until the current time t = (1 + α)r(t) + α.
3. If all machines are busy at time t , stop all free batches (if any).
4. Wait until either a machine is available or a new job arrives.
5. If no new jobs arrive during the waiting procedure in step 4, start to process all

unfinished jobs in one batch on an available machine. Go to step 1.
6. If a new job arrives during the waiting procedure in step 4, go to step 2.


�
Note that, for the instance consisting of all jobs released by a time t , the optimal

off-line schedule has makespan r(t) + 1. Therefore, if LAZY(α) ever waits in step 4
and a batch is processed in step 5, then some batch starts at a time t > (1+α)r(t)+α,
and so, LAZY(α) is not (1 + α)-competitive.
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By running algorithm LAZY(α) for instance I(LAZY(α)), we get a schedule
σLAZY(α). By algorithmLAZY(α), we have Si (LAZY(α)) ≥ (1+α)Si−1(LAZY(α))+
α for i ≥ 1. Since S0(LAZY(α)) = 0, this further implies that Si (LAZY(α)) ≥
(1 + α)i − 1 for i ≥ 1.

The following notations are also used in our discussion.

• I(α) is the job instance consisting of the first lm jobs of I(LAZY(α)).
• σα is the subschedule of σLAZY(α) for instance I(α). Then there are total lm batches
in σα .

• Based on σ(α), we define Bi (α), Si (α), etc. completely analogously to Bi (H),
Si (H), etc..

• S0(α) = S′
0(α) = 0.

• S0,k(α) = S′
k(α).

Note that σα = (S1(α), . . . , Slm (α)). We first prove several useful inequalities.
Recall that, for every two positive integers i and j with i > j , (1 + x)i − (1 +

x) j − 1 = (1 + x) j ((1 + x)i− j − 1) − 1 is monotonically increasing in x ≥ 0 and
α(i, j) is the unique positive solution of equation (1+ x) j ((1+ x)i− j − 1) − 1 = 0.
So, if (i, j) and (i ′, j ′) are two pairs of positive integers with i > j and i ′ > j ′, then
( j, i − j) ≤ ( j ′, i ′ − j ′) implies that α(i, j) ≥ α(i ′, j ′). ( j, i − j) ≤ ( j ′, i ′ − j ′) and
( j, i − j) 	= ( j ′, i ′ − j ′) imply that α(i, j) > α(i ′, j ′). Applying this observation to
the three pairs (m + 1, 1), (2m + 1, 2), and (3m,m + 1), we can deduce that

α(m + 1, 1) > α(2m + 1, 2) ≥ α(3m,m + 1). (1)

Similarly, applying the above observation to the two pairs (2m + 1, 2) and (F(1,m +
1),m+1) by noting that 2m−1 ≤ F(1,m) = F(1,m+1)− (m+1), we can deduce
that

βm = α(F(1,m + 1),m + 1) ≤ α(2m + 1, 2), (2)

where the equality in (2) follows from the definition of βm .

Lemma 2.1 Let α be a real number with 0 < α < 1. Then σα has the following
properties.

(i) Every batch Bk(α) with Sk(α) ≤ S′
m(α) is α-regular in σα and Sk(α) = (1 +

α)k − 1.
(ii) If α ≤ α(2m + 1, 2), then B ′

1(α) exists and B ′
1(α) = Bm+1(α).

(iii) If α ≥ α(2m + 1, 2), then σα is an α-regular schedule.

Proof By the definition of LAZY(α) and I (α), we have S0(α) = 0 and Sk(α) =
(1+ α)Sk−1(α) + α as long as LAZY(α) does not wait in Step 4. But LAZY(α) only
waits in Step 4 if all machines are running restricted batches at the time it enters Step
4, which can happen at the earliest after the mth restricted batch has started. Now
induction on k proves (i).

To prove (ii), suppose that α is an arbitrary positive number with α ≤ α(2m + 1, 2).
From (1), we have α(2m + 1, 2) < α(m + 1, 1), and so, α < α(m + 1, 1). Since
α(m + 1, 1) is the positive solution of equation (1 + x)m+1 − (1 + x) = 1 and (1 +
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x)m+1−(1+x) ismonotonically increasing in x > 0,wehave (1+α)m+1−(1+α) < 1.
From property (i), Bi (α) (1 ≤ i ≤ m) are all α-regular with Si (α) = (1 + α)i − 1.
Thus (1 + α)Sm(α) + α − (S1(α) + 1) = (1 + α)m+1 − (1 + α) − 1 < 0. This
implies that at time (1+α)Sm(α)+α, Bi (α) (1 ≤ i ≤ m) are m free batches running
on different machines and all uncompleted. So by algorithm LAZY(α), Bm+1(α) is a
restricted batch and B ′

1(α) = Bm+1(α).
To prove (iii), let α be a positive number with α ≥ α(2m + 1, 2). From (1), we have

α(2m + 1, 2) ≥ α(3m,m + 1), and so, α ≥ α(3m,m + 1). If there are no restricted
batches in σα , the result holds trivially. Thus we may assume that there are some
restricted batches in σα . If possible let k ≤ lm be the minimum so that Bk(α) is not
α-regular. Then Sk(α) > (1+α)Sk−1(α)+α and Bi (α), 1 ≤ i ≤ k−1, are α-regular.
From the fact S0(α) = 0, we can inductively deduce that Si (α) = (1 + α)i − 1 for
1 ≤ i ≤ k − 1.

The choice of k also implies that, at time t = (1+α)Sk−1(α)+α, each machine is
occupied by a restricted batch. Suppose that Bk1(α), . . . , Bkm (α) are the m restricted
batches running at time t with k1 < · · · < km = k − 1. Then t < Sk1(α) + 1.
By the definition of I(α), for each i with 2 ≤ i ≤ m, Bki−1(α) is a free batch
interrupted by Bki (α) at time Ski (α). Then ki ≥ ki−1 + 2 for 2 ≤ i ≤ m. It follows
that km ≥ k1 + 2(m − 1).

Now Sk−1(α)+1 = Skm (α)+1 = (1+α)km−k1(Sk1(α)+1) ≥ (1+α)2m−2(Sk1(α)+
1). Then t = (1 + α)(Sk−1(α) + 1) − 1 ≥ (1 + α)2m−1(Sk1(α) + 1) − 1. Since
t < Sk1(α) + 1, then ((1 + α)2m−1 − 1)(Sk1(α) + 1) < 1. As Sk1(α) ≥ S′

1(α) ≥
Sm+1(α) = (1+ α)m+1 − 1, we have (1+ α)3m − (1+ α)m+1 < 1. This implies that
α < α(3m,m + 1), a contradiction. The proof is completed. 
�
Lemma 2.2 Let α be a real number with 0 < α < βm. Then, for every online
algorithm A, σA is not an α-nice schedule. Moreover, σα is not an α-nice schedule.

Proof From (2), we have βm ≤ α(2m + 1, 2). Let A be an arbitrary online algo-
rithm. We consider the job instance I(A) and the schedule σA generated by algorithm
Generating I(A) so that we have sufficiently many batches in σA.

Let σ 1
A be the subschedule of σA consisting of the first lm starting batches in σA.

Note that lm ≥ F(1,m + 1) by the definition of lm . Now we prove that σ 1
A is not an

α-nice schedule. Suppose to the contrary that σ 1
A is an α-nice schedule. We claim that

the following statements hold for σ 1
A:

• B ′
1(A), . . . , B ′

m(A) exist and S′
i (A) ≤ (1 + α)m−i+2(S′

i−1(A) + 1) − 1 for i =
1, . . . ,m,

• at time S′
m(A) the m machines are occupied by the m restricted batches, and

• each B ′
i (A) (1 ≤ i ≤ m) is just Bji (A) for some ji ≤ F(m − i + 2,m + 1).

To this end, we recall that (1 + x)m+1 − (1 + x) − 1 is monotonically increasing
in x > 0. Then we have

Sm+1(A) − (
S1(A) + 1

)

≤ (
1 + α

)m(
S1(A) + 1

) − (
S1(A) + 1

) − 1

≤ (
1 + α

)m+1 − (
1 + α

) − 1
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<
(
1 + βm

)m+1 − (
1 + βm

) − 1

<
(
1 + α(m + 1, 1)

)m+1 − (
1 + α(m + 1, 1)

) − 1

= 0,

where the first two inequalities follow from the assumption that σ 1
A is an α-nice sched-

ule, and the rest inequalities hold as 0 < α < βm ≤ α(2m + 1, 2) < α(m + 1, 1) from
(1) and (2). This implies that Sm+1(A) < S1(A)+ 1, and so, the first m + 1 batches in
σ 1
A must contain a restricted batch. Hence, B ′

1(A) exists and S′
1(A) ≤ Sm+1(A) ≤ (1+

α)m+1−1 = (1+α)m+1(S′
0(A)+1)−1 = (1+α)F(m−1+2,m+1)(S′

0(A)+1)−1. This
further implies that B ′

1(A) is just Bj1(A) for some j1 ≤ m+1 = F(m−1+2,m+1).
Let k ≤ m be themaximum so that B ′

1(A), . . . , B ′
k−1(A) exist and, at time S′

k−1(A),
k − 1 machines are occupied by the k − 1 restricted batches. For i = 1, . . . , k − 1,
as there are at most m − i + 1 free batches between B ′

i−1(A) and B ′
i (A), each B ′

i (A)

(1 ≤ i ≤ k−1) is just Bji (A) for some ji ≤ m− i +2+ ji−1 ≤ F(m− i +2,m+1)
and S′

i (A) ≤ (1 + α)m−i+2(S′
i−1(A) + 1) − 1.

From the fact that Bm−k+2,k−1(A) is some batch Bj (A)with j = m−k+2+ jk−1 ≤
m− k+2+ F(m− (k−1)+2,m+1) = F(m− k+2,m+1) < F(1,m+1) ≤ lm ,
we have

Sm−k+2,k−1(A) − (
S′
1(A) + 1

)

≤ (
1 + α

)m−k+2(
S′
k−1(A) + 1

) − 1 − (
S′
1(A) + 1

)

≤ (
1 + α

)F
(
m−k+2,m

)(
S′
1(A) + 1

) − (
S′
1(A) + 1

) − 1

≤ (
1 + α

)F
(
m−k+2,m+1

)
− (

1 + α
)m+1 − 1

<
(
1 + α

)F
(
1,m+1

)
− (

1 + α
)m+1 − 1

<
(
1 + βm

)F
(
1,m+1

)
− (

1 + βm
)m+1 − 1

= 0,

where the first inequality follows from the assumption thatσ 1
A is anα-nice schedule, the

next two inequalities follow from the fact that S′
i (A) ≤ (1+α)m−i+2(S′

i−1(A)+1)−1
for i = 1, . . . , k − 1, and the last inequality holds as 0 < α < βm . This implies that
Sm−k+2,k−1(A) < S′

1(A) + 1.
Suppose to the contrary that all Bi,k−1(A), 1 ≤ i ≤ m−k+2, are free batches. Since

there are only m − k + 1 idle machines at time S′
k−1(A), we have Sm−k+2,k−1(A) ≥

S′
1(A) + 1, a contradiction. So some batch in {Bi,k−1(A), 1 ≤ i ≤ m − k + 2} is a

restricted batch. Let B ′
k(A) be the first starting restricted batch in {Bi,k−1(A) : 1 ≤

i ≤ m− k+2}. Then B ′
k(A) is just Bjk (A) for some jk ≤ m− k+2+ jk−1 ≤ F(m−

k+2,m+1). Therefore, S′
k(A) ≤ Sm−k+2,k−1(A) ≤ (1+α)m−k+2(S′

k−1(A)+1)−1
and S′

k(A) ≤ Sm−k+2,k−1(A) < S′
1(A) + 1. The claim follows.
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To continue the proof, we assume that, at time S′
m(A), a new job arrives. Note that

(
1 + α

)
S′
m(A) + α − (

S′
1(A) + 1

)

≤ (
1 + α

)F(1,m)(
S′
1(A) + 1

) − (
S′
1(A) + 1

) − 1

≤ (
1 + α

)F(1,m+1) − (
1 + α

)m+1 − 1

<
(
1 + βm

)F(1,m+1) − (
1 + βm

)m+1 − 1

= 0,

where thefirst two inequalities follow from the fact that S′
i (A) ≤ (1+α)m−i+2(S′

i−1(A)

+ 1) − 1 for i = 1, . . . ,m, and the last inequality holds as 0 < α < βm . Then, from
the above claim, at time (1 + α)S′

m(A) + α, each of B ′
i (A), 1 ≤ i ≤ m, has not been

completed. So S1,m(A) ≥ S′
1(A) + 1 > (1 + α)S′

m(A) + α. Note that B1,m(A) is
Bj ′(A) with j ′ = jm + 1 ≤ 1+ F(2,m + 1) = F(1,m + 1) ≤ lm . Then σ 1

A is not an
α-nice schedule, a contradiction.

The above discussion implies that σ 1
A (and so, σA) is not an α-nice schedule. Then

σα , which is just the schedule σ 1
LAZY(α), is not an α-nice schedule. The result follows. 
�

Lemma 2.3 If σα is an α-regular schedule, then σLAZY(α) is also α-regular.

Proof Assume thatσα is anα-regular schedule. Thedefinitions ofσα andσLAZY(α) imply
that the batches Bi (LAZY(α)) = Bi (α), 1 ≤ i ≤ lm , are α-regular in σLAZY(α). From
Lemma 2.2, we have α ≥ βm . For each i > lm , we have (1+α)Si−1(LAZY(α))+α−
(Si−1(LAZY(α)) + 1) = α(Si−1(LAZY(α)) + 1) − 1 ≥ α(1+ α)i−1 − 1 ≥ βm(1+
βm)lm −1 ≥ 0. Thus Bi−1(LAZY(α)) completes by time (1+α)Si−1(LAZY(α))+α.
Consequently, Bi (LAZY(α)) is a free andα-regular batch inσLAZY(α), as required. Then
σLAZY(α) is α-regular. The result follows. 
�

3 The lower bound

Lemma 3.1 Let α be a real number with 0 < α < 1. If there exists an algorithm A′
such that σA′ is an α-nice schedule, then σα is an α-regular schedule.

Proof Assume that σA′ is an α-nice schedule with sufficiently many batches. Then
Si (A′) ≤ (1 + α)Si−1(A′) + α for i ≥ 1. From Lemma 2.2, we have α ≥ βm . If
α ≥ α(2m + 1, 2), the result follows from Lemma 2.1iii. Hence we assume in the
following that βm ≤ α < α(2m + 1, 2). Suppose to the contrary that σα is not an
α-regular schedule. Set n′ = min{i : 1 ≤ i ≤ lm, Si (α) > (1 + α)Si−1(α) + α}.

Based on σA′ , we define a new schedule σ ∗
A′ which consists of n′ batches and has the

same batch sequence on eachmachine as σA′ . The starting time of each batch B∗
i (A′) in

σ ∗
A′ is given by S∗

i (A′) = (1+α)i −1 and, furthermore, B∗
i (A′) is (assigned) restricted

in σ ∗
A′ if and only if Bi (A′) is restricted in σA′ . Then S∗

i (A′) = (1 + α)S∗
i−1(A

′) + α

for 1 ≤ i ≤ n′. Since Si (A′) ≤ (1 + α)Si−1(A′) + α for i ≥ 1, it can be verified that
for every batch indexes i and j with 1 ≤ i < j ≤ n′, we have S∗

j (A
′) − S∗

i (A′) ≥
S j (A′)−Si (A′). It follows that σ ∗

A′ is also a feasible schedule.We also define a new job
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instance I ′(α) which consists of the first n′ jobs in I(α). Note that σ ∗
A′ can be taken as

a feasible schedule for instance I ′(α) in which all batches are α-regular. Hence there
exists an α-regular schedule for instance I ′(α).

It can be observed that, for every α-regular schedule for instance I ′(α), the first
batch is exactly B1(α).

Let π be an α-regular schedule for instance I ′(α). The i-th batch in π is denoted by
Bπ
i . Define e(π) = max{k : 1 ≤ k ≤ n′, Bπ

i = Bi (α) for i ≤ k}, where we overload
the notation “Bπ

i = Bi (α)” to indicate that the two batches include the same jobs,
have the same starting time and are both free batches or both restricted batches. Then
e(π) ≥ 1.We can choose π so that e(π) is as large as possible. Since π is an α-regular
schedule, we have Si (α) = Sπ

i = (1 + α)i − 1 for 1 ≤ i ≤ e(π). If e(π) = n′, then
Bi (α) (1 ≤ i ≤ n′) are all α-regular, a contradiction. So in the following we suppose
that e(π) < n′. Then Bπ

i = Bi (α) for 1 ≤ i ≤ e(π) and Bπ
e(π)+1 	= Be(π)+1(α).

From the fact that π is an α-regular schedule and by the implementation of algorithm
LAZY(α), Be(π)+1(α) isα-regular, and so, Se(π)+1(α) = Sπ

e(π)+1 = (1+α)e(π)+1−1.
If Bπ

e(π) = Be(π)(α) is a restricted batch, then both Bπ
e(π)+1 and Be(π)+1(α) are

free batches consisting of only one job Je(π)+1(α). But then Bπ
e(π)+1 = Be(π)+1(α), a

contradiction. Hence Bπ
e(π) = Be(π)(α) is a free batch.

If Bπ
e(π)+1 and Be(π)+1(α) are both restricted batches, then both of them consist of

the same jobs. Then we have Bπ
e(π)+1 = Be(π)+1(α), a contradiction.

If Bπ
e(π)+1 is a free batch, then Bπ

e(π)+1 = {Je(π)+1(α)} and at time (1+ α)Sπ
e(π) +

α = (1 + α)Se(π)(α) + α, some machine is idle. The implementation of algo-
rithm LAZY(α) implies that Be(π)+1(α) = {Je(π)+1(α)} is also a free batch. Thus,
Bπ
e(π)+1 = Be(π)+1(α), a contradiction.
Hence, the only possibility is that Bπ

e(π)+1 is a restricted batch and Be(π)+1(α)

is a free batch. Noticing that Bπ
e(π) = Be(π)(α) is a free batch, the implementation

of algorithm LAZY(α) implies that Be(π)+1(α) = {Je(π)+1(α)} is also an α-regular
batch. So in the case e(π) = n′ − 1, Bn′(α) is α-regular, a contradiction.

Suppose that e(π) ≤ n′ −2.We obtain a new schedule π ′ from π so that Bπ ′
i = Bπ

i

for 1 ≤ i ≤ e(π), Bπ ′
e(π)+1 = {Je(π)+1(α)}, and, for each e(π) + 2 ≤ i ≤ n′, Bπ ′

i is
(assigned) restricted in π ′ if and only if Bπ

i−1 is restricted in π . The α-regularity of

π ′ can be observed from the fact that we can always schedule each batch Bπ ′
i with

e(π) + 2 ≤ i ≤ n′ (no matter restricted or free) on the machine occupied by Bπ
i−1 in

π . Now π ′ is α-regular and Bπ ′
i = Bi (α) for 1 ≤ i ≤ e(π) + 1. This contradicts the

choice of π . The result follows. 
�

Lemma 3.2 Suppose that 0 < α < β < 1. If σα is α-regular, then σβ is β-regular.

Proof If σα isα-regular, then σLAZY(α) isα-regular by Lemma 2.3. Sinceα < β, σLAZY(α)

is β-nice. By Lemma 3.1, σβ is β-regular. The result follows. 
�

We define

αm = min
{
α(s, t) : 1 ≤ t < s ≤ lm, σα(s,t) is α(s, t)-regular

}
. (3)
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From Lemmas 2.1iii and 2.2, αm is well defined in (3) and

βm ≤ αm ≤ α(2m + 1, 2). (4)

Lemma 3.3 αm = min{α : 0 < α < 1, σα is α-regular}.
Proof Write γ = min{α : 0 < α < 1, σα is α-regular}. From Lemma 2.2 we
have γ ≥ βm and by the definition of αm , we have γ ≤ αm . We first prove that
γ ∈ {α(s, t) : 1 ≤ t < s ≤ lm}.

Suppose to the contrary that γ /∈ {α(s, t) : 1 ≤ t < s ≤ lm}. Then γ < αm by the
definition of αm and γ . Furthermore, the assumption also implies the following Claim
1.
Claim 1 For each pair of positive integers s and t with 1 ≤ t < s ≤ lm , we have
(1 + γ )s − (1 + γ )t − 1 	= 0.

Since s and t have finitely many choices, fromClaim 1, we have the following Claim
2.
Claim 2 There is a positive number α < γ such that, for each pair of positive
integers s and t with 1 ≤ t < s ≤ lm , (1 + γ )s − (1 + γ )t − 1 > 0 if and only if
(1 + α)s − (1 + α)t − 1 > 0.

Let α be given as in Claim 2. Note that the definition of γ implies that σγ is a
γ -regular schedule. We first show that σα is also an α-regular schedule.

We construct a new schedule σ ∗ from σγ by the following way. The batches in σ ∗
are given by B∗

1 , B∗
2 , . . . , B∗

lm
so that B∗

i is (assigned) restricted in σ ∗ if and only if
Bi (γ ) is restricted in σγ for each i with 1 ≤ i ≤ lm . Furthermore, each batch B∗

i is
processed on the machine occupied by Bi (γ ) with starting time S∗

i = (1+ α)i − 1 in
σ ∗. We only need to show that such a schedule σ ∗ is feasible, or equivalently, there is
no violated batch in σ ∗. Here, a restricted batch B∗

i is called violated if B∗
i overlaps

with some restricted batch B∗
i ′ with i ′ < i on the same machine in σ ∗, and a free

batch B∗
i is called violated if B∗

i overlaps with some batch B∗
i ′ with i

′ < i on the same
machine in σ ∗.

If possible let B∗
s be the first violated batch in σ ∗. Then there is a batch B∗

t with
t < s on the same machine such that B∗

s overlaps with B∗
t in σ ∗ but Bs(γ ) processed

after Bt (γ ) in σγ . Then we have S∗
t + 1 > S∗

s and St (γ ) + 1 ≤ Ss(γ ), and therefore,
(1 + α)t > (1 + α)s − 1 and (1 + γ )t ≤ (1 + γ )s − 1. From Claim 1, we have
(1+ γ )s > (1+ γ )t + 1. Then the facts that (1+ α)s < (1+ α)t + 1 and (1+ γ )s >

(1 + γ )t + 1 contradict Claim 2.
The above discussion implies that γ ∈ {α(s, t) : 1 ≤ t < s ≤ lm}. Then the only

possibility is that γ = αm . The result follows. 
�
Theorem 3.4 There exists no online algorithm with a competitive ratio of less than
1 + αm.

Proof Suppose to the contrary that A is an online algorithmwith a competitive ratio of
1 + γ , where γ < αm . Then in schedule σA with sufficiently many batches, Si (A) ≤
(1+ γ )Si−1(A) + γ for each i ≥ 1, where S0(A) = 0. Thus σA is a γ -nice schedule.
From Lemma 3.1, σγ is a γ -regular schedule. This contradicts Lemma 3.3. The result
follows. 
�
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4 An online algorithm

The following online algorithm ALGm is closely related to the αm-regular schedule
σLAZY(αm ) for instance I(LAZY(αm)). The intuition of the algorithm ALGm can be
stated as follows.

According to the arriving of the jobs, we generate a sequence of positive integers
j1, j2, . . . , jn so that j1 < j2 < · · · < jn . When the first job arrives at time 0,
let j1 = 1. When the first job arrives at a time t1 > 0, we determine j1 so that
t1 ∈ ((1 + αm) j1−1 − 1, (1 + αm) j1 − 1]. Then we start the first batch BALG

1 as a
free batch at time SALG

1 = (1 + αm) j1 − 1. Generally, suppose that the first i − 1
batches BALG

1 , BALG
2 , . . . , BALG

i−1 have been generated and a new job arrives at a time
ti > SALG

i−1. Then we determine ji so that ti ∈ ((1 + αm) ji−1 − 1, (1 + αm) ji − 1]
and generate a batch BALG

i with starting time SALG
i = (1 + αm) ji − 1 in ALGm . Thus

we have SALG
i = (1 + αm) ji − 1 for each i . We take the convention that BALG

i is an
assigned restricted batch in ALGm if and only if Bi (LAZY(αm)) is a restricted batch
in σLAZY(αm ). Note that in algorithm ALGm , an assigned restricted batch can not be
restarted again.

Algorithm ALGm :

1. Set i := 0.
2. Wait until U (t) 	= ∅.
3. Set i := i + 1. Let ji be the minimum positive integer so that t ≤ (1 + αm) ji − 1

and wait until the current time t = (1 + αm) ji − 1.
4. If Bi (LAZY(αm)) is a restricted batch in σLAZY(αm ), interrupt all free batches at

time t . BALG
i will be an assigned restricted batch consisting of all interrupted jobs

and all jobs in U (t).
5. If Bi (LAZY(αm)) is a free batch in σLAZY(αm ), set BALG

i = U (t) and take BALG
i as a

free batch.
6. Start to process BALG

i at time SALG
i = t on the machine of Bi (LAZY(αm)) in

σLAZY(αm ).
7. Go to step 2. �

Algorithm ALGm runs in linear time, since we only take action when a new job
arrives.

Theorem 4.1 Algorithm ALGm has a competitive ratio at most 1 + αm.

Proof Let J be an arbitrary job instance. Let σ ALG be the schedule generated by
algorithm ALGm for instance J . Let BALG

1 , BALG
2 , . . . , BALG

n be the starting batches in
σ ALG, where each BALG

i has a starting time SALG
i . We first show that σ ALG is feasible (no

overlapping batches, and no interruptions of restricted batches).
By the implementation of ALGm , for 1 ≤ i ≤ n, BALG

i is processed on the machine
occupied by Bi (LAZY(αm)) in σLAZY(αm ) with SALG

i = (1+ αm) ji − 1. Moreover, BALG
i

is an assigned restricted batch in σ ALG if and only if Bi (LAZY(αm)) is a restricted
batch in σLAZY(αm ). Let i and k be any two integers with 1 ≤ i < k ≤ n. As there are
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k − i batches between BALG
i and BALG

k in σ ALG, we have jk − ji ≥ k − i . Thus,

SALG
k − SALG

i

= (
1 + αm

) jk − (
1 + αm

) ji

= (
1 + αm

) ji ((1 + αm) jk− ji − 1
)

≥ (
1 + αm

)i (
(1 + αm)k−i − 1

)

= Sk
(
LAZY(αm)

) − Si
(
LAZY(αm)

)
.

It follows that σ ALG is feasible.
Furthermore, it is clear that each job is started (for the first time) early enough

so that it can complete in time to maintain the competitive ratio 1 + αm . The result
follows. 
�

From Theorems 3.4 and 4.1, we conclude the main result of this paper as follows.

Theorem 4.2 Algorithm ALGm is a best possible online algorithm for problem
Pm|online, r j , p j = 1, p-batch, b = ∞, L-restart|Cmax. 
�

As we can see, αm is not presented as an explicit formulation of m in this paper.
We list some values of αm and the competitive ratio 1 + αm in the following table.

m αm = α(i, j) Competitive ratio

2 α(6, 3) ≈ 0.1740 1.1740
3 α(10, 4) ≈ 0.0926 1.0926
4 α(17, 9) ≈ 0.0599 1.0599
5 α(20, 6) ≈ 0.0421 1.0421
6 α(30, 13) ≈ 0.0308 1.0308
7 α(44, 26) ≈ 0.0242 1.0242
8 α(46, 17) ≈ 0.0190 1.0190
9 α(60, 27) ≈ 0.0155 1.0155
10 α(60, 11) ≈ 0.0128 1.0128
11 α(97, 57) ≈ 0.0109 1.0109
12 α(100, 46) ≈ 0.0093 1.0093
13 α(101, 27) ≈ 0.0080 1.0080
14 α(122, 42) ≈ 0.0070 1.0070
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