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Abstract We study an integrated production–distribution scheduling problem where
jobs are released by customers to a manufacturer over time. The jobs are released
online, that is, at any time the information of the number, release and processing times
of future jobs is unknown, and the processing time of a job becomes known when the
job is released. The manufacturer processes the jobs on a single machine. During the
processing of jobs preemption is not allowed. Completed jobs are delivered in batches
to customers via sufficient capacitated vehicles. For the objective of minimizing the
sum of the total delivery time and the total distribution cost, we present a 3-competitive
algorithm for the single-customer case and then extend the result to themulti-customer
case. A lower bound of two on the competitive ratio of the problem is also given.

Keywords Supply chain scheduling · Integrated production–distribution problems ·
Online algorithm · Competitive analysis

1 Introduction

In manufacturing supply chain management, production and distribution are two
important stages in operation. There has been a lot of literatureon integrated
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production–distribution scheduling on supply chain management in recent decades.
Hall and Potts (2003) pointed out that the essential issue is the coordination of batch-
ing and delivery decisions. Chen and Vairaktarakis (2005) considered the objective
of minimizing αS

(
Dj

) + (1 − α) T , where S
(
Dj

)
is a function of delivery times of

completed jobs andmeasures the customer service level, and T denotes the total distri-
bution cost. The constant α (0 ≤ α ≤ 1) represents the relative preference between the
customer service level and the total distribution cost. The above literature assumes that
all the information of jobs is known at the very beginning, that is considers the offline
version of the problem. The reader is referred to Chen (2010) for a comprehensive
review on the integrated production–distribution scheduling problem.

In practice, a manufacturer usually makes production and delivery decisions with
little information of future jobs. Thus the online version of the integrated production–
distribution scheduling problem arises to deal with such scenario. The performance of
an online algorithm is generally evaluated by its competitive ratio (see e.g., Borodin
and El-Yaniv 1998). In the terminology of our problem, for any job instance I , let
A(I ) be the objective value of the schedule produced by an online algorithm A, and
let OPT (I ) be the objective value of an optimal offline schedule for I . Then A is
said to be ρ-competitive if A(I ) ≤ ρOPT (I )+ ε holds for any job instance I , where
ρ ≥ 1 and ε is a fixed constant. The competitive ratio of algorithm A is the infimum
of the set of all values ρ such that A is ρ-competitive.

Averbakh and Xue (2007) studied an online integrated production–distribution
scheduling problem where jobs are released over time and the manufacturer processes
at most one job at a time. The problem is under a preempt-resume model, that is the
processing of a job can be interrupted and then be resumed later from where it was
preempted. There are sufficient vehicles of infinite capacity, and the distribution is in
direct mode such that completed jobs from the same customer can be delivered in one
vehicle. For the objective of minimizing the sum of the total flow time and the total
delivery cost, they proposed an optimal 2-competitive algorithm for the case with a
single customer and a 2m-competitive algorithm for the case withm customers. Aver-
bakh (2010) further studied the above problem with capacitated vehicles. Recently,
Averbakh and Baysan (2013a) presented a (3 + α)-competitive algorithm for the prob-
lem under the preempt-resume model (with capacitated or uncapacitated deliveries),
where α is the ratio of the processing time of the longest job to the processing time of
the shortest job.

Averbakh and Baysan (2012) investigated a semi-online problem such that a lower
bound P for all job processing times is known beforehand, aiming at minimizing the
total flow time plus the total delivery cost. They presented a 2D/(D+ P)-competitive
algorithmwhere D is the cost of a delivery. Averbakh and Baysan (2013b) also studied
a semi-online problem for a distribution center where the processing time of an order
is assumed to be zero, with the objective to minimize the total delay time plus the
total delivery cost. The distribution center is able to foresee the orders to be released
in the next S time units. They presented an online algorithm whose competitive ratio
is (4D + S)/(2D + S) when 0 < S < 2D, and is (S + D)/S when S ≥ 2D.

Hoogeveen and Vestjens (2000) studied a non-preemptive problem to minimize the
time by which all jobs have been delivered. They presented an optimal (

√
5 + 1)/2-

competitive algorithm. With the same objective function, van den Akker et al. (2000)
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studied a preempt-restart problemwhere an interrupted job needs to be processed later
from the scratch, and they presented an optimal 3/2-competitive algorithm.

There is also plenty of research on the offline version of the integrated production–
distribution scheduling problem. Recently, Fan et al. (2015) studied the problem on a
single machine with availability constraint, with the same objective to minimize the
sum of the total delivery time and the total distribution cost as in our paper. Pei et al.
(2014) and Lu et al. (2015) studied the problem on a serial batch machine, with the
objective to minimize the makespan, that is the maximum delivery completion time of
the jobs. Lee (2015) studied the problem in which the delivery cost depends on time
period for each delivery, subject to the no-wait condition for the finished products,
that is the finished products are immediately delivered to the retailer. Gao et al. (2015)
studied the problem in which orders are processed and delivered in batches, subject
to the no-wait condition between the production and distribution of each batch.

In this paper, we study an online non-preemptive integrated production–distribution
scheduling problem, with the objective to minimize the sum of the total delivery time
and the total distribution cost. For both single-customer and multi-customer cases, we
present competitive online algorithms and lower bounds on the competitive ratio of
the problem.

The rest of our paper is organized as follows. In Sect. 2 we formally describe the
problem studied. In Sect. 3, we present an online algorithm for the single-customer
case and prove that it is 3-competitive, by a novel construction of a schedule for the
preemptive version of the problem studied. In Sect. 4, we extend our result to the
multi-customer case. The paper is concluded in Sect. 5.

2 Problem description

We study a supply chain scheduling problem including production and distribution
stages. Jobs J = {J1, J2, . . . , Jn} are released bym customers to a manufacturer over
time, where the value of n is unknown beforehand. Each job J j has a release time
r j and a processing time p j . At any instant, there is no information about the release
and processing times of future jobs, parameters of a job become known when the
job is released. The manufacturer can only start processing a job after it is released.
Assume that in the production stage there is a single machine to process the jobs, and
at most one job can be processed at a time. Preemption is not allowed. A job is called a
completed job after its completion on processing. A schedule regarding the production
stage is called a production schedule. A production schedule specifies for each job its
start time for processing.

In the distribution stage, there are sufficient vehicles with uniform capacity c > 1
to deliver completed jobs to customers. That is, at most c jobs can be included in each
delivery. As in Averbakh and Xue (2007), transportation time of a delivery is assumed
to be zero (nonzero transportation time would increase the objective values of all
solutions by the same constant, and so would not change the validity of our results).
We assume that each delivery from the manufacturer to a customer k incurs a delivery
cost Tk , which depends only on k (i.e., independent of the number of jobs included
in the delivery). A schedule regarding the distribution stage is called a distribution
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schedule. A distribution schedule specifies for each delivery its start time and the
jobs included in it. A full schedule specifies both the production schedule and the
distribution schedule. Hereafter, unless stated otherwise when we say a schedule we
mean a full schedule.

For each job J j , we use C j to denote its processing completion time, and use d j to
denote its delay time which is the time between its completion of processing and the
start of its delivery. The delivery completion time Dj of job J j , under the assumption
that the transportation time of a delivery is zero, is then Dj = C j + d j . The objective
is to minimize

∑n
j=1 Dj + TC , where TC is the total cost of all deliveries.

We use the five-field notation α|β|π |δ|γ introduced byChen (2010) to represent the
problemstudied,whereα, β, π, δ andγ denotemachine configuration, job restrictions,
delivery characteristics, number of customers, and the objective function respectively.
In this paper, we study the following two problems with m = 1 customer and with
m > 1 customers respectively.

P1 : 1|r j |V (∞, c) , direct |1|
∑

Dj + TC.

P2 : 1|r j |V (∞, c) , direct |m|
∑

Dj + TC.

Here V (∞, c) means that there are sufficient vehicles and each has a capacity of
c, and direct means that only jobs released from the same customer are allowed to be
included in one delivery.

3 The single-customer problem P1

In this section, we present a 3-competitive algorithm for Problem P1 where all jobs
are released from a single customer. Since there is only one customer, each delivery
has the same transportation cost T . Hence, if there are u deliveries in total, then the
total delivery cost TC = uT . Before presenting our online algorithm, we first give
a lower bound on the competitive ratio for Problem P1 for any deterministic online
algorithm.

Consider the online scheduling problem1|r j | ∑C j , which is a special case of Prob-
lem P1 with T = 0. Hence, the lower bound on the competitive ratio for 1|r j | ∑C j

is also a lower bound for P1. Hoogeveen and Vestjens (1996) proved a lower bound
of 2 on the competitive ratio for 1|r j | ∑C j , which indicates the following theorem.

Theorem 3.1 For Problem P1, no deterministic online algorithm can be better than
2-competitive.

3.1 An online algorithm for Problem P1

Lu et al. (2003) proposed a 2-competitive online algorithm SSPT (Shifted SPT,
where SPT stands for Shortest Processing Time first rule) for the scheduling problem
1|r j | ∑C j , which is a special case of Problem P1 with T = 0. Averbakh (2010)
studied a preemptive model
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1|r j , pmtn|V (∞, c) , direct |1|
∑

Fj + TC,

where Fj denotes the flow time of job J j , that is the time between the release and
the delivery of J j . Averbakh presented an optimal 2-competitive algorithm for this
problem. By combining the ideas used in the above two algorithms, we present the
following online algorithm for Problem P1 where preemption is not allowed.

Algorithm A1 In the production stage, schedule jobs by the SSPT algorithm as fol-
lows: Reset each job J j available for processing at time r̃ j , where r̃ j is an arbitrary
real number within interval

[
max

{
r j , p j

}
, r j + p j

]
. At any moment the machine

becomes available, schedule from the available jobs the one with shortest processing
time.

In the distribution stage, one delivery is made as soon as at least one of the following
two situations happens, and each delivery takes as many available jobs as possible.

(a) the number of completed but undelivered jobs is at least c;
(b) the total delay time of completed but undelivered jobs is equal to 2T .

3.2 Analysis of Algorithm A1

For any job instance I of Problem P1, we use σ to denote the schedule produced by
Algorithm A1 on I . Let σp and σd be the production schedule and the distribution
schedule of σ respectively, and let Dσ and TCσ be the total delivery time (of all jobs)
and the total transportation cost (of all deliveries) of σ respectively. Let S j be the
starting time of job J j in schedule σ .

Given I and σ , we construct another job instance I (σ ) as follows. For each job J j
of instance I we define a job, also denoted by J j , for instance I (σ ) with the same
processing time p j but with shifted release time r̄ j = min

{
S j , 2r j + p j

}
. Preemption

is allowed for I (σ ), that is, we may interrupt the processing of any job in I (σ ) and
continue processing it from where it is interrupted at a later moment. We use P ′

1 to
denote the corresponding preemptive version of Problem P1 as follows (then I (σ ) is
an instance of Problem P ′

1).

P ′
1 : 1|r̄ j , pmtn|V (∞, c) , direct |1|

∑
Dj + TC.

The shortest remaining processing time (SRPT) rule prescribes to process at each
instant the job with the smallest remaining processing time among all released unfin-
ished jobs, which can be implemented online. For the online preemptive scheduling
problem 1|r̄ j , pmtn| ∑C j , which is a special case of Problem P ′

1 with T = 0, the
SRPT rule gives an optimal solution (Pruhs et al. 2004). The following lemma will be
used for later analysis.

Lemma 3.2 (Pruhs et al. 2004) For Problem P ′
1 in the production stage (which is

preemptive), at any instant the number of completed jobs in an SRPT production
schedule is not less than that in any other production schedule.
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By the same arguments as in Averbakh (2010), for both problems P1 and P ′
1,

when there are c or more undelivered finished jobs, there is no benefit to further
delay a delivery (since otherwise the delay times of these jobs are increased without
any benefit gained from saving the transportation cost). Thus, we only consider full
schedules where there is a delivery as soon as there are c or more finished undelivered
jobs, and each delivery takes as many available jobs as possible. However, there may
exist deliveries at other times when there are less than c undelivered finished jobs.

Let σ ∗ be an optimal offline schedule for job instance I of Problem P1, and let
OPT (I ) be the objective value of σ ∗. Clearly, for the distribution schedule σ ∗

d of σ ∗,
each delivery is made at the completion time (in the production schedule σ ∗

p ) of some
job in I , and each delivery takes all the currently undelivered finished jobs.

The main ingredient of our analysis is a novel construction of a schedule σ̄ for each
instance I (σ ) of Problem P ′

1 as follows: the production schedule σ̄p of σ̄ is in SRPT
rule, and the distribution schedule σ̄d of σ̄ has the same configuration as that of σ ∗

d
for I . That is, assume that there are s deliveries in total in σ ∗

d , and they are made at
the completion times of the i1th, i2th, · · · , is th (i1 < i2 < · · · < is = n) completed
jobs of I in σ ∗

p respectively, then, there are also s deliveries in total in σ̄d , and they are
made respectively at the completion times of the i1th, i2th, · · · , is(= n)th completed
jobs of I (σ ) in σ̄p, and each delivery takes all the currently undelivered finished jobs
(from the optimality of schedule σ ∗, the number of such jobs cannot be larger than c).
Thus, for each h = 1, 2, · · · , s, the number of jobs in the hth delivery of σ̄d is equal
to that of the hth delivery of σ ∗

d . Let F̄ be the objective value of schedule σ̄ . We have
the following lemma.

Lemma 3.3 F̄ + TCσ̄ ≤ 2OPT (I ).

Proof We construct another schedule σ ′ for job instance I from the optimal offline
scheduleσ ∗ as follows. LetC∗

j be the completion time of job J j inσ ∗. In the production
stage of σ ′ (which is non-preemptive), the completion time of each job J j is set to be
2C∗

j . For the distribution stage of σ ′, there is a one to one correspondence between
deliveries in σ ′

d and σ ∗
d as follows. In the optimal offline schedule σ ∗, each delivery

must be made at the completion time of some job included in the delivery (and the job
is the last completed job in the delivery), and this also holds for the deliveries in σ ′.
Each delivery in σ ′ contains the same set of completed jobs as that in σ ∗.

From the construction of σ ′, it can be verified that the processing of all jobs in I do
not overlap with each other in σ ′, and for each job J j its delivery time in σ ′ is 2D∗

j ,
i.e. twice as its delivery time D∗

j in σ ∗. Thus, Dσ ′ = 2Dσ ∗ .
The start time of each job J j in schedule σ ′ is S′

j = 2C∗
j − p j ≥ 2r j + p j , where

the inequality is due to C∗
j ≥ r j + p j . Hence, in the corresponding instance I (σ ) of

Problem P ′
1, the release time of job J j is r̄ j = min

{
S j , 2r j + p j

} ≤ 2r j + p j ≤ S′
j .

It follows that σ ′ is a feasible schedule for I (σ ).
From the construction of schedule σ̄ for I (σ ), the two distribution schedules σ̄d

and σ ′
d have the same configuration. Since the production schedule σ̄p is in SRPT rule,

by Lemma 3.2, the i th delivery in σ̄d is not later than the i th delivery in σ ′
d for each

i = 1, 2, · · · , s. Therefore, Dσ̄ ≤ Dσ ′ = 2Dσ ∗ . Also, from the construction of σ̄d ,
we have TCσ̄ = TCσ ∗ . Therefore,
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F̄ + TCσ̄ = Dσ̄ + 2TCσ̄ ≤ 2Dσ ∗ + 2TCσ̄ = 2Dσ ∗ + 2TCσ ∗ = 2OPT (I ).

The lemma is proved. �	

Given a full schedule for Problem P1, a delivery in the schedule is said to be
unsaturated if it contains less than c completed jobs, otherwise the delivery is said to
be saturated. For schedule σ produced by Algorithm A1 on I , we use Li and li to
denote the start time of the i th unsaturated delivery and the number of completed jobs
in it, respectively. We virtually set L0 = 0. The last delivery in σ is considered to be
unsaturated even if it contains c jobs. Assume that there are w unsaturated deliveries
in σ in total. Then, Lw is the start time of the last delivery in σ , and from Algorithm
A1, we have L0 < L1 < · · · < Lw, and li ≤ c for i = 1, 2, · · · , w.

If a delivery is started within time interval (Li−1, Li ], we say it is a delivery within
(Li−1, Li ] for simplicity, for i = 1, 2, · · · , w. For scheduleσ , letqi denote the number
of saturated deliveries within (Li−1, Li ], and let d(i) denote the total delay time of
the qi + 1 deliveries within (Li−1, Li ] (qi saturated deliveries and one unsaturated
delivery). Here the delay time of a delivery is the sum of the delay times of all jobs in
the delivery.

Let F(I ) be the objective value of schedule σ produced by Algorithm A1 on I .
Next, we prove the following lemma.

Lemma 3.4 F(I ) ≤ 3
2

(
F̄ + TCσ̄

)
.

Proof In schedule σ , for each i = 1, 2, · · · , w, there are qi saturated deliveries and
one unsaturated delivery within (Li−1, Li ], and the qi + 1 deliveries contain qi c + li
completed jobs in total. The total transportation cost of schedule σ is

TCσ =
w∑

i=1

(qi + 1)T .

By Algorithm A1, the delay time of each delivery in σ is at most 2T , and so d(i) ≤
2(qi + 1)T . Hence,

F(I ) =
n∑

j=1

Dj + TCσ

=
w∑

i=1

⎛

⎝
∑

j∈(Li−1, Li ]
C j + d(i)

⎞

⎠ +
w∑

i=1

(qi + 1)T

=
w∑

i=1

∑

j∈(Li−1, Li ]
C j +

w∑

i=1

d(i) +
w∑

i=1

(qi + 1)T

≤
w∑

i=1

∑

j∈(Li−1, Li ]
C j + 3

w∑

i=1

(qi + 1)T .
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The production stage of Algorithm A1 is the same as Algorithm SSPT proposed by
Lu et al. (2003). By Theorem 2 in Lu et al. (2003), for any instance I of Problem P1,
the production schedule σp produced by Algorithm A1 on I is an SRPT production
schedule for the corresponding instance I (σ ) of the preemptive problem P ′

1. Thus, by
the construction of schedule σ̄ , the production schedules of σ̄ (for problem instance
I (σ )) and σ (for problem instance I ) are the same, that is σ̄p = σp. It follows that for
each i = 1, 2, · · · , w, the number of jobs completed within (Li−1, Li ] in schedule σ̄

is the same as that in schedule σ , which is qi c + li .
For each j = 1, 2, · · · , n, let C̄ j and D̄ j be the completion time and the delivery

time of job J j in σ̄ , respectively. Because σ̄p = σp, we have C̄ j = C j for each j =
1, 2, · · · , n, whereC j is the completion time of job J j in σ . For each i = 1, 2, · · · , w,
let F̄i be the portion of F̄ contributed from all the jobs completed and deliveries made
within (Li−1, Li ] in schedule σ̄ , and let TCi

σ̄ be the total cost of all deliveries made
within (Li−1, Li ] in schedule σ̄ .

Since the number of jobs completed within (Li−1, Li ] in σ̄ is qi c + li , and σ̄d has
the same configuration as that of σ ∗

d (the distribution schedule of an optimal schedule
σ ∗ for I ), it follows that the number of deliveries made within (Li−1, Li ] in σ̄ is at
least qi . For each i = 1, 2, · · · , w, based on the number of deliveries made within
(Li−1, Li ] in σ̄ , there are the following two cases.

Case 1. The number of deliveries made within (Li−1, Li ] in schedule σ̄ is at least
qi + 1. By the above analysis, in this case we have

F̄i + TCi
σ̄ =

∑

j∈(Li−1, Li ]
D̄ j + 2TCi

σ̄

≥
∑

j∈(Li−1, Li ]
D̄ j + 2(qi + 1)T

≥
∑

j∈(Li−1, Li ]
C̄ j + 2(qi + 1)T

=
∑

j∈(Li−1, Li ]
C j + 2(qi + 1)T .

Case 2. The number of deliveries made within (Li−1, Li ] in schedule σ̄ is exactly
qi . In this case, from the construction of the distribution schedule of σ̄ , the number
of jobs completed within (Li−1, Li ] in σ̄ must be strictly less than (qi + 1)c. Since
σp = σ̄p, it follows that li < c (that is, the unsaturated delivery made at time point
Li in σ contains li < c jobs). In schedule σ̄ , for the qi c + li jobs completed within
(Li−1, Li ], clearly the qi deliveries within (Li−1, Li ] contain at most qi c jobs, and so
they do not deliver any of the last li jobs completed within (Li−1, Li ]. Hence, in σ̄ all
the last li jobs completed within (Li−1, Li ] are delivered after time Li .

In schedule σ , since the unsaturated delivery with start time Li delivers li < c jobs
(which are the last li jobs completed within (Li−1, Li ] in σ ), by Algorithm A1 the
total delay time of these li jobs at time Li is equal to 2T . Because σ̄p = σp, it follows
that the total delay time of the last li jobs completed within (Li−1, Li ] in σ̄ at time
Li is also equal to 2T . Hence, the total delay time of these li jobs in σ̄ is larger than
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2T (since they are delivered after time Li in σ̄ ). Let d̄ j be the delay time of job J j in
schedule σ̄ . By the above analysis, in this case we have

F̄i + TCi
σ̄ =

∑

j∈(Li−1, Li ]
D̄ j + 2TCi

σ̄

=
∑

j∈(Li−1, Li ]
C̄ j +

∑

j∈(Li−1, Li ]
d̄ j + 2qi T

>
∑

j∈(Li−1, Li ]
C̄ j + 2T + 2qi T

=
∑

j∈(Li−1, Li ]
C j + 2(qi + 1)T .

From the above, in both cases we have

F̄i + TCi
σ̄ ≥

∑

j∈(Li−1, Li ]
C j + 2(qi + 1)T,

for i = 1, 2, · · · , w. It follows that

F(I ) ≤
w∑

i=1

∑

j∈(Li−1, Li ]
C j + 3

w∑

i=1

(qi + 1)T

<
3

2

w∑

i=1

( ∑

j∈(Li−1, Li ]
C j + 2(qi + 1)T

)

≤ 3

2

w∑

i=1

(
F̄i + TCi

σ̄

)

= 3

2

(
F̄ + TCσ̄

)
.

The lemma is proved. �	
By combining Lemmas 3.3 and 3.4, we have the following theorem.

Theorem 3.5 For Problem P1, Algorithm A1 is 3-competitive.

4 The multi-customer problem P2

In this section, we study Problem P2 where jobs are released from m different cus-
tomers. For each k = 1, 2, · · · ,m, let Tk be the transportation cost for customer k,
and let uk be the total number of deliveries made to customer k, then the total delivery
cost TC = ∑m

k=1 ukTk .
For the preempt-resume productionmodel with the objective ofminimizing the sum

of the total flow time and the total delivery cost, Averbakh and Xue (2007) presented
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a 2m-competitive algorithm if the vehicles are of unbounded capacity; If the vehicles
are of bounded capacity c, Averbakh (2010) presented a 2γ -competitive algorithm
with

γ = min

{
c, 1 +

(
1 − 1

c

)∑m
k=1 Tk
Tmin

}
, (1)

where Tmin = min{Tk |k = 1, 2, · · · ,m}. On the contrast, Problem P2 studied in
this section is non-preemptive and has the objective to minimize

∑
Dj + TC .

4.1 An online algorithm for Problem P2

We present an online algorithm, denoted by A2, for Problem P2. The algorithm is an
extension of Algorithm A1 for the single-customer case.

Algorithm A2 In the production stage, schedule all jobs by the SSPT algorithm.

In the distribution stage, completed jobs are delivered to each customer k as soon
as either of the following two situations happens, and each delivery takes as many
available jobs (to the corresponding customer k) as possible.

(a) the number of completed but undelivered jobs for customer k is at least c;
(b) the total delay time of completed but undelivered jobs for customer k is equal to

Tk .

4.2 Analysis of Algorithm A2

Given an instance I of Problem P2, we use σ to denote the schedule produced by
Algorithm A2 on I , and use σ ∗ to denote an optimal offline schedule for I . In the
same way as in Sect. 3, from I and σ we construct an instance I (σ ), which is an
instance of the preemptive version P ′

2 of Problem P2 as follows.

P ′
2 : 1|r̄ j , pmtn|V (∞, c) , direct |m|

∑
Dj + TC.

Assume that in the optimal offline schedule σ ∗ of I , all the deliveries (to the m
customers) are made at l distinct time points τ1 < τ2 < · · · < τl . We construct a
schedule σ̃ for I (σ ) as follows: the production schedule σ̃p of σ̃ is in SRPT rule for
all the jobs from m customers, and in the distribution schedule σ̃d of σ̃ , at time points
2τ1, 2τ2, · · · , 2τl , all the completed jobs are delivered to their respective customers in
the minimum number of shipments, that is, at each time point 2τi , for each customer
there is at most one unsaturated delivery (we will explain later in Lemma 4.1 that at
time point 2τl , all jobs of I (σ ) are completed in σ̃p, and so it is valid for 2τl to be the
last delivery time point of σ̃d ). Let OPT (I ) and F̃ be the objective value of σ ∗ and
σ̃ respectively. We have the following lemma.

Lemma 4.1 F̃ ≤ γ OPT (I ), where γ is defined in (1).
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Proof We use TCσ ∗ and TCσ̃ to denote the total distribution cost of σ ∗ and σ̃ , respec-
tively. We first show that TCσ̃ ≤ γ TCσ ∗ . The idea of this part is similar to the proof
of Lemma 5 in Averbakh (2010).

Since each delivery in σ ∗ contains at most c completed jobs, while each delivery
in σ̃ contains at least one completed job, it follows that

TCσ̃ ≤ cTCσ ∗ . (2)

Assume that in schedule σ ∗ there are in total zk deliveries for customer k, and in
schedule σ̃ there are in total ms

k saturated deliveries and m
u
k unsaturated deliveries for

customer k. Then, for k = 1, 2, · · · ,m,

ms
kc + mu

k ≤ zkc.

From the construction of σ̃ , at each time point 2τi there is at most one unsaturated
delivery for each customer k, implying that mu

k ≤ l for k = 1, 2, · · · ,m. On the
other hand, the total number of deliveries in σ ∗ satisfies that

∑m
s=1 zs ≥ l. Hence, for

k = 1, 2, · · · ,m,

mu
k ≤

m∑

s=1

zs .

By combining the above two inequalities, we have that for k = 1, 2, · · · ,m,

ms
k + mu

k =
(
ms

k + 1

c
mu

k

)
+

(
1 − 1

c

)
mu

k

≤ zk +
(
1 − 1

c

) m∑

s=1

zs . (3)

Now, the ratio between TCσ̃ and TCσ ∗ can also be bounded from the above as
follows

TCσ̃

TCσ ∗
=

∑m
k=1

(
ms

k + mu
k

)
Tk∑m

k=1 zkTk

≤
∑m

k=1

(
zk + (

1 − 1
c

)∑m
s=1 zs

)
Tk∑m

k=1 zkTk

= 1 +
(
1 − 1

c

) ∑m
s=1 zs

∑m
k=1 Tk∑m

k=1 zkTk

≤ 1 +
(
1 − 1

c

) ∑m
s=1 zs

∑m
k=1 Tk

Tmin
∑m

k=1 zk

= 1 +
(
1 − 1

c

) ∑m
k=1 Tk
Tmin

, (4)
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where in the above the first inequality holds by Inequality (3). By the definition of
γ and Inequalities (2) and (4), we have

TCσ̃ ≤ γ TCσ ∗ . (5)

Let Dσ ∗ and Dσ̃ denote the total delivery time (of all jobs) of σ ∗ and σ̃ , respectively.
Similar to the proof of Lemma 3.3, we can construct a schedule σ ′ for I from the
optimal offline schedule σ ∗, in which each job J j is completed at time 2C∗

j , and each
delivery in σ ′ contains the same set of completed jobs as that in σ ∗. Similarly as the
argument in the proof of Lemma 3.3, we have that the deliveries in σ ′ are made at time
points 2τ1, 2τ2, · · · , 2τl , Dσ ′ = 2Dσ ∗ , and σ ′ is a feasible schedule for I (σ ) (This
also indicates that in schedule σ ′ at time point 2τl , all jobs of I (σ ) are completed.
Since σ̃p, the production schedule of σ̃ , is in SRPT rule, and by the property of the
SRPT rule stated in Lemma 3.2, we have that in σ̃p at time point 2τl , all jobs of I (σ ) are
also completed, which validates the construction of σ̃ in which 2τl is the last delivery
time point).

Next we show that Dσ̃ ≤ Dσ ′ . The idea is similar to the proof of Corollary 1 in
Averbakh and Xue (2007). For i = 1, 2, · · · , l, let f ′

i and f̃i be the number of jobs
delivered by time 2τi in σ ′ and σ̃ , respectively. Then, f ′

l = f̃l = n. Let f ′
0 = f̃0 = 0.

We have

Dσ ′ =
l∑

i=1

2τi
(
f ′
i − f ′

i−1

) = 2nτl −
l−1∑

i=1

2
(
τi+1 − τi

)
f ′
i ,

and

Dσ̃ =
l∑

i=1

2τi
(
f̃i − f̃i−1

) = 2nτl −
l−1∑

i=1

2
(
τi+1 − τi

)
f̃i .

From the constructions of σ ′ and σ̃ , and by the property of the SRPT rule stated in
Lemma 3.2, we have that f̃i ≥ f ′

i for i = 1, 2, · · · , l. Thus, Dσ̃ ≤ Dσ ′ .
Since Dσ ′ = 2Dσ ∗ , it follows that Dσ̃ ≤ 2Dσ ∗ . From the definition of γ , it is easy

to verify that c ≥ 2 and m ≥ 2 imply γ ≥ 2, and so

Dσ̃ ≤ γ Dσ ∗ . (6)

By Inequalities (5) and (6), together with F̃ = Dσ̃ + TCσ̃ and OPT (I ) = Dσ ∗ +
TCσ ∗ , it follows that F̃ ≤ γ OPT (I ). The lemma is proved. �	

For schedule σ , similarly as the notations defined before Lemma 3.4 in Sect. 3, we
use Lk

i to denote the start time of the i th unsaturated delivery for customer k, and use
lki to denote the number of completed jobs in it. We virtually set Lk

0 = 0 for each k.
Also, the last delivery for each customer k is considered to be unsaturated even if it
contains c jobs. Let wk be the total number of unsaturated deliveries for customer k in
σ . Let qki denote the number of saturated deliveries made in time interval (Lk

i−1, L
k
i ]
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for customer k, and let dk(i) denote the total delay time of the qki + 1 deliveries made
within (Lk

i−1, L
k
i ] for customer k, in schedule σ .

By Algorithm A2, the delay time of each delivery for customer k in σ is at most
Tk , it follows that dk(i) ≤ (qki + 1)Tk for i = 1, 2, · · · , wk . Let F(I ) be the objective
value of schedule σ .

Lemma 4.2 F(I ) ≤ 2F̃ .

Proof For each customer k, let Jk be the set of jobs in I which are released from
customer k.We use Fk(I ) (respectively, F̃k) to denote the portion of F(I ) (respectively,
F̃) contributed from jobs inJk and deliveries to customer k, and use TCk

σ (respectively,
TCk

σ̃
) to denote the total delivery cost for customer k in σ (respectively, σ̃ ).

Then, F(I ) = ∑m
k=1 Fk(I ), and F̃ = ∑m

k=1 F̃k . For each k = 1, 2, · · · ,m,

Fk(I ) =
∑

j∈Jk

D j + TCk
σ

=
wk∑

i=1

⎛

⎜
⎝

∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + dk(i)

⎞

⎟
⎠ +

wk∑

i=1

(
qki + 1

)
Tk

≤
wk∑

i=1

∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + 2
wk∑

i=1

(
qki + 1

)
Tk, (7)

where in the above the inequality holds because dk(i) ≤ (
qki + 1

)
Tk , for i =

1, 2, · · · , wk .
By the same argument as in the proof of Lemma 3.4, in the production stage

Algorithm A2 processes all jobs of I in SSPT schedule, which is the same as the
SRPT schedule for the corresponding instance I (σ ) of the preemptive problem P ′

2.
That is, σ̃p = σp.

Let TCk
σ̃
(i) be the portion of TCk

σ̃
contributed from all deliveries to customer k

made within (Lk
i−1, L

k
i ]. Let F̃ i

k be the portion of F̃k contributed from all jobs in Jk

completed within (Lk
i−1, L

k
i ], together with all deliveries to customer k made within

(Lk
i−1, L

k
i ]. Let C̃ j (respectively, D̃ j ) be the completion time (respectively, delivery

time) of job J j in σ̃ , and let C j be the completion time of job J j in σ . Since σ̃p = σp,
we have C̃ j = C j for j = 1, 2, · · · , n.

Next we bound F̃ i
k from below. For the following analysis, we only consider jobs for

customer k unless stated otherwise. For each i = 1, 2, · · · , wk , based on the number
of deliveries for customer k made within

(
Lk
i−1, L

k
i

]
in σ̃ , there are the following two

cases.
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Case 1. The number of deliveries for customer kmadewithin
(
Lk
i−1, L

k
i

]
in schedule

σ̃ is no less than qki + 1. By the above analysis, in this case we have

F̃ i
k =

∑

j∈(Lk
i−1, L

k
i ]∩Jk

D̃ j + TCk
σ̃ (i)

≥
∑

j∈(Lk
i−1, L

k
i ]∩Jk

C̃ j + (
qki + 1

)
Tk

=
∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + (
qki + 1

)
Tk .

Case 2. The number of deliveries for customer kmadewithin
(
Lk
i−1, L

k
i

]
in schedule

σ̃ is no more than qki . We use qki − ski to denote this number, where 0 ≤ ski ≤ qki .
Since the number of jobs for customer k completed within

(
Lk
i−1, L

k
i

]
in σ (also in σ̃

because σ̃p = σp) is qki c + lki , it follows that in σ̃ the number of jobs for customer k
completed within

(
Lk
i−1, L

k
i

]
but delivered after Lk

i is at least l
k
i + ski c, and from the

construction of σ̃d these jobs are the last completed ones within
(
Lk
i−1, L

k
i

]
. Let d̃ j be

the delay time of job J j in σ̃ . We further divide Case 2 into two subcases:
Case 2.1. The delivery for customer k made at time point Lk

i is not the last delivery
for customer k in σ (that is, i < wk). In this case since the delivery is unsaturated, it
must have lki < c. For the last lki completed jobs for customer k within (Lk

i−1, L
k
i ] in

schedule σ (also in schedule σ̃ ), by Algorithm A2 their total delay time at time point
Lk
i is Tk .
For the ski c jobs for customer k completed right before the last lki jobs within(

Lk
i−1, L

k
i

]
(which are delivered after Lk

i in σ̃ in this case), since lki < c, it follows that
the total delay time of each c of them at Lk

i is more than Tk , which is the total delay time
at Lk

i of the last l
k
i jobs completed within

(
Lk
i−1, L

k
i

]
for customer k. Hence, at time

point Lk
i the total delay time of the jobs for customer k completed within

(
Lk
i−1, L

k
i

]

but delivered after Lk
i in σ̃ is more than

(
1 + ski

)
Tk . Thus, in this case we have

F̃ i
k =

∑

j∈(Lk
i−1, L

k
i ]∩Jk

D̃ j + TCk
σ̃ (i)

=
∑

j∈(Lk
i−1, L

k
i ]∩Jk

(
C̃ j + d̃ j

) + (
qki − ski

)
Tk

=
∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j +
∑

j∈(Lk
i−1, L

k
i ]∩Jk

d̃ j + (
qki − ski

)
Tk

>
∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + (
qki + 1

)
Tk .
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Case 2.2. The delivery for customer k made at time point Lk
i is the last delivery for

customer k in σ (that is, i = wk). In this case, we count into F̃ i
k the deliveries in σ̃ for

customer k after time Lk
i , and the number of such deliveries is at least ski + 1 since no

less than lki + ski c jobs are delivered after time Lk
i in σ̃ . Thus, in this case we have

F̃ i
k ≥

∑

j∈(Lk
i−1, L

k
i ]∩Jk

D̃ j + TCk
σ̃ (i) + (ski + 1)Tk

=
∑

j∈(Lk
i−1, L

k
i ]∩Jk

D̃ j + (qki + 1)Tk

≥
∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + (qki + 1)Tk .

Hence, in both Case 1 and 2, we have

F̃ i
k ≥

∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j + (
qki + 1

)
Tk .

Therefore,

F̃k ≥
wk∑

i=1

F̃ i
k ≥

wk∑

i=1

∑

j∈(Lk
i−1, L

k
i ]∩Jk

C j +
wk∑

i=1

(
qki + 1

)
Tk . (8)

By Inequalities (7) and (8), it follows that Fk(I ) ≤ 2F̃k for each k = 1, 2, · · · ,m,
and so F(I ) ≤ 2F̃ . The lemma is proved. �	

By combining Lemmas 4.1 and 4.2, we have the following theorem.

Theorem 4.3 For Problem P2, Algorithm A2 is 2γ -competitive where γ is defined in
(1).

Corollary 4.4 If delivery costs to different customers are equal, then the competitive
ratio of Algorithm A2 is not greater than 2min

{
c, 1 + (1 − 1

c )m
}
.

5 Concluding remarks

In this paper, we investigate an online integrated supply chain scheduling problem
without preemption. We consider two cases with a single customer and with multiple
customers respectively. The objective is to minimize the sum of the total delivery time
and the total distribution cost. For the single-customer case, we present a 3-competitive
algorithm and give a lower bound of 2 on the competitive ratio for any deterministic
online algorithm; for the multi-customer case, we present a 2γ -competitive algorithm
where γ is defined in (1). Clearly, the lower bound of 2 on the competitive ratio for
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the single-customer case also applies to the multi-customer case. It is interesting to
further tighten the above bounds on the competitive ratio for both cases.

This study was focused on the development of competitive online algorithms. For
further research, it also would be interesting to conduct a computational study of the
effectiveness of the algorithms proposed. Since the offline versions of Problems P1
and P2 both contain the strongly NP-hard problem 1|r j | ∑C j (Lenstra et al. 1977)
as special case, the key for such study is clearly deriving good lower bounds for the
offline versions of P1 and P2 which can be efficiently computed. The lower bounds
used to prove the results in this paper are derived from schedules σ̄ (in Lemma 3.3)
and σ̃ (in Lemma 4.1), whose constructions are partially based on the optimal offline
schedules for P1 and P2 respectively, and so it seems not likely that there is an efficient
way to compute them.
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