
J Comb Optim (2016) 31:1461–1478
DOI 10.1007/s10878-015-9834-5

Heuristics for the network design problem with
connectivity requirements

Roman E. Shangin · Panos Pardalos

Published online: 17 February 2015
© Springer Science+Business Media New York 2015

Abstract We consider the NP-complete problem of finding a spanning k-tree of mini-
mumweight in a complete weighted graph. This problem has a number of applications
in designing reliable backbone telecommunication networks. We propose effective
algorithms based on a greedy strategy and several variable neighborhood search meta-
heuristics. We also develop an integer linear programming model for calculating a
lower bound. Preliminary numerical experiments using random and real-word data
sets are reported to show the effectiveness of our approach. In addition, we compare
our approach with known metaheuristics.

Keywords K-trees · Robust networks · Network design · Heuristics · Variable
neighborhood search

1 Introduction

Nowadays, due to a significant increase in scales and complexity of telecommunication
infrastructures, one of the most important problems is designing telecommunication
networks of minimal costs with a given level of network reliability (Thai and Pardalos
2011; Pardalos and Thai 2011; Dinh et al. 2012). Traditionally, this problem is con-
sidered in two variants. The first one, when a network topology is not specified and
it is computed in the process of solving the problem (Haidine 2013; Elshqeirat et al.

R. E. Shangin (B)
Department of Computational Mathematics and Informatics, South Ural State University, Cheliabinsk,
Russia
e-mail: shanginre@gmail.com

P. Pardalos
Department of Industrial and Systems Engineering, University of Florida, Gainesville, USA
e-mail: pardalos@ufl.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9834-5&domain=pdf

1462 J Comb Optim (2016) 31:1461–1478

2013; Dengiza et al. 2010; Johnston et al. 2013). The second one, when the network
topology is given (Konak and Smith 2011; Khandekara et al. 2013; Simonetti et al.
2011; Alvarez-Mirandaa et al. 2013; Bansal et al. 2013). In the second variant, con-
nectivity requirements of a network are a kind of surrogate for reliability (Magnanti
and Raghavan 2005). Researches in this field have led to the appearance of the concept
of isolated failure immune (IFI) networks (Farley 1981) in the 80s of the last century.
Such networks remain connected even in the presence of a large number of failures.
Specifically, IFI networks work with three types of failures (Farley 1981; Candia and
Bravo 2002):

• [i, j] and [p, q] are two line isolated failures if [i, j] and [p, q] are not incident
to a common node;

• i and j are two node isolated failures if i and j are not connected;
• a line failure [i, j] and a node failure p are isolated if [i, j] is not incident to p or
to a node connected to p.

A set of failures is isolated if failures in the set are pairwise isolated. The network is
IFI if it remains connected as long as network failures are isolated. In Farley (1981) it
is proved that 2-trees are minimal (with respect to edge inclusion) IFI networks. Many
problems of designing IFI networks can be formulated as a Minimum Spanning k-Tree
Problem (MSkT), which generalizes the classical problem, the Minimum Spanning
Tree Problem (MST) (Prim 1957).

The mathematical formulation of the MSkT problem is as follows. We are given a
complete weighted undirected graph G = (V, E), where V refers to a set of nodes
(telecommunication stations) and E refers to a set of edges among n = |V | nodes
(possible links). The expense of each edge [i, j] between vertices i and j is quantified
as a nonnegative valuew(i, j). We are given a positive integer constant k. Let T (G) be
the set of all spanning k-trees in the graph G, where a spanning k-tree is a k-tree that
contains all vertices and some edges of the graphG. Letw(T) be theweight of edges of
the spanning k-tree T ∈ T (G). It is required to find the spanning k-tree T ∗ ofminimum
weight in the complete weighted graph G, that is T ∗ = argminT ∈T (G){w(T)}.

In Bern (1987), Cai and Maffray (1992) it is proved that the MSkT problem when
k ≥ 2 is NP-complete. In Bern (1987) it is proved that the cardinality of the set of
feasible solutions of the MSkT problem equals to n!(n + k − 1)!/k!. Thus, the time
complexity of an exhaustive search is O(n2n/kk). Also in Bern (1987) there has been
proposed a nonpolynomial exact algorithmbased on dynamic programming,which has
a significantly lower complexity O(nk+13n) than the exhaustive search. InBern (1987)
there has been proved inapproximability of the MS2T problem (i.e. where k = 2).
In Beck and Candia (1993), Beck et al. (1993), Candia and Bravo (2002), Beltran
and Skorin-Kapov (1993), Cai (1996), Beck and Candia (2000), Wald and Colbourn
(1983) there have been proposed effective heuristics andmetaheuristics for solving the
MS2T. Although the MS2T is well studied, nevertheless, there is little attention given
in the literature to the development of algorithms for solving the MSkT, where k > 2.
The main purpose of this work is to develop effective heuristics and metaheuristics
for solving the MSkT problem (i.e. where k ≥ 2) on a complete weighted graph.

The plan of this paper is as follows. In Sect. 2, we give the definition of a k-tree
and several of its basic properties. In Sect. 3, we propose heuristics that use a greedy

123

J Comb Optim (2016) 31:1461–1478 1463

strategy. InSect. 4,wepropose variable neighborhood searchmetaheuristics. InSect. 5,
we present an integer linear program for computing a lower bound for the MSkT. In
Sect. 6, we present results of computational experiments. In Sect. 7 we summarize our
findings and discuss directions for further research.

2 Definition and basic properties of k-trees

Here is a well-known definition of a k-tree.

Definition (Rose 1974) A k-tree is a member of a class of undirected graphs defined
recursively as follows: a complete graph with k vertices is a k-tree; if T is a k-tree with
n vertices, then a new k-tree with n + 1 vertices is formed by creating a new vertex
v and adding edges between v and every vertex of an existing k-clique (clique with k
vertices) in T .

The class of k-treeswas introduced in the 70s of the last century byD. Rose. Besides
using trees in the networks design, wide interest in the study of such graphs is caused
by the fact that someNP-hard combinatorial problems are solvable in polynomial time
when they are restricted to k-trees. Today there are polynomial time algorithms for
solving some classical problems of graph theory on k-trees for example, maximum
clique problem, minimum dominating set problem, Steiner tree problem, etc (Garey
and Johnson 1976). Polynomial time algorithms formany location problems on k-trees
are also known: simple location problem (Granot and Skorin-Kapov 1994), p-median
and p-center problems (Shi 2008), etc.

If T is a k-tree with n vertices, then

1. All maximal cliques in T have size equals to k;
2. The size of a minimal separator (disconnecting set) in T equals to k;
3. The number of edges of the k-tree T equals to nk − k(k+1)

2 ;
4. The number of (k + 1)-cliques in T equals to n − k;
5. The number of k-cliques in T equals to (n − k)k + 1;
6. For all nonadjacent vertices i, j ∈ V , there exist exactly k vertex-disjoint paths.

The recursive definition of k-trees implies that they have the perfect elimination
order property (Golumbic 1980). That is, for a k-tree T with n vertices, there exists
an ordering of the set V , say v1, v2, . . . , v j , ..., vn , such that in the node-induced
subgraph V \ {v j : j = 1, 2, . . . , i − 1}, where i ≥ 1, nodes adjacent to vi form a
k-clique. A detailed study of k-trees properties is presented, for example, in Golumbic
(1980), Rose (1970).

3 Heuristics based on greedy strategy

In this section, we propose greedy algorithms, which compute a feasible approximate
solution for the MSkT. These algorithms will be used both for solving the MSkT
problem and for computing a starting solution in metaheuristics.

123

1464 J Comb Optim (2016) 31:1461–1478

3.1 Algorithm Greedy

We propose the algorithm Greedy which uses the idea of the well-known Prim’s
algorithm for the MST problem (Prim 1957). Let Wi = (V ′

i , E ′
i) be a complete graph

with i nodes. Let Ti = (Vi , Ei) be a k-tree with i nodes and K (Ti) is a set of all
k-cliques in Ti .

ALGORITHM GREEDY

INPUT: Complete graph G = (V, E) with positive edge weights. Integer k ≥ 2.
OUTPUT: Spanning k-tree Topt in G.

STEP 1 Find the minimum weight edge [l, m]∗ in G. Construct the graph W2, where
V ′
2 = {l, m} and E ′

2 = [l, m]∗. Let i = 2.

STEP 2 (Compute the “starting” clique of size k + 1 in G)
Find the vertexm∗ ∈ V \V ′

i forwhich the total weight
∑

j∈V ′
i
ω(m∗, j) of edgeswhich

connect this vertex m∗ with nodes of the complete graph Wi is minimal. Construct
the complete graph Wi+1 by including the computed vertex m∗ and the set of edges
{[m∗, j] : j ∈ V ′

i } in the graph Wi . Let i = i + 1.
If |V ′

i | = k + 1, then Ti = Wi and go to step 3, else go to step 2.

STEP 3 (Compute the k-tree Ti+1 with i + 1 vertices)
Find the vertex m∗ ∈ V \ Vi and the k-clique K ∗ ∈ K (Ti) for which the total weight∑

j∈K ∗ w(m∗, j) of edges which connect this vertex m∗ with this k-clique K ∗ is
minimal. Construct the new k-tree Ti+1 by including the computed vertex m∗ and the
set of edges {[m∗, j] : j ∈ K ∗} in the k-tree Ti . Let i = i + 1.
If |Vi | = n, then Topt = Ti and STOP the algorithm, else go to step 3.

Proposition 1 The time complexity of the algorithm Greedy is O(n3k).

Proof At step 1 for finding the cheapest edge in graph G one needs O(|E |) operations.
Step 2 can be implemented in O((k − 1) · n) operations because O(n) operations are
necessary to compute the new vertex m∗ ∈ V \ V ′

i at every iteration of step 2, and the
number of such iterations at step 2 equals to k − 1. At every iteration of step 3 one
needs O((n − k)2 · k) operations because there are (n − k) · k cliques of the size k in
the k-tree Ti , and the number of all possible variants of the new vertex m∗ ∈ V \ Vi

at each iteration of step 3 does not exceed n − k. As far as the number of iterations
performed at step 3 is n − k −1, then at step 3 one requires O((n − k)3 · k) operations.
Based on this, the time complexity of the algorithm Greedy is O(n3k). ��

Despite the fact that the idea of the algorithm Greedy is simple and natural, this
heuristic computes approximate solutions of good quality (see Sect. 6.1). Note that,
the Greedy is a modification of the known heuristic proposed by Beck and Candia
(2000). The basic difference between our algorithm and the known heuristic is in the
method of computing the “starting” clique. In our algorithm it is computed in order
to minimize the weight of edges in Wi and in Beck and Candia’s heuristic it is chosen
randomly. Figure 1 shows the ways of constructing solutions for the MSkT problem
by the Greedy heuristic.

123

J Comb Optim (2016) 31:1461–1478 1465

Fig. 1 Construction of the solutions by the Greedy heuristic for: a MS2T; b MS3T

Fig. 2 Elements of the neighborhoods N L
l (T) with l = 1, 2, 3 for 2-tree and 3-tree

3.2 Neighborhoods

Let CT be a set of all cliques of a size k + 1 in a k-tree T . The neighborhood N L
l (T)

of the solution T is a set of spanning k-trees that differ from T by exactly l cliques
of a size k + 1, that is N L

l (T) = {T ′ : |CT ′ \ CT | = l}. The element T ′ of the
neighborhood N L

l (T) can be built from T by l-fold repetition of the operations: delete
k edges connecting some simplicial vertex j ′ (k-leaf) with vertices of some k-clique
K and then add k new edges connecting the vertex j ′ with another k-clique K ′,
where K ′ �= K . The cardinality of the neighborhood N L

l does not exceed O(nl+1kl)

because the number of all possible connections of a k-leaf with other k-cliques is at
most nk and the number of k-leaves does not exceed n. Figure 2 shows elements of
the neighborhoods N L

l (T) for 2-tree and 3-tree.
It is quite obvious that the search within the neighborhood N L

l for large values of l
is not justified from the computational point of view, despite the fact that it very often
leads to really good approximate solutions. This drawback of N L

l can be eliminated
by using the Kernighan–Lin neighborhood KL

l , which includes the neighborhood N L
1

123

1466 J Comb Optim (2016) 31:1461–1478

and is part of N L
l . Its main idea is to find the best solution in N L

l by using a greedy
procedure. The Kernighan–Lin neighborhood of T is defined by the following steps:

STEP 0 Let T0 = T .
STEP 1 Find the solution T ′ in N L

1 (T0) of minimal weight. Let T0 = T ′.
STEP 2 Repeat step 1 l times such that we do not consider vertices that have
already been used in the previous iterations.

Obviously, O(ln2k) operations are required for computing the neighborhood KL
l

because O(n2k) operations are required to build the neighborhood N L
1 , and KL

l con-
tains l such neighborhoods.

3.3 Modifications of the Greedy heuristic

We propose several modifications of the Greedy, aimed at improving its accuracy.
The first modification Greedy1 is to combine the heuristic Greedy with a local

descent algorithm. In this modification at every iteration i = k + 2, . . . , n the deter-
ministic steepest local descent with the neighborhood N L

1 will be applied to improve
the computed solution Ti+1. If the local descent algorithm is able to find a lower-cost
solution, then solution Ti+1 is replaced by the new computed solution, otherwise the
solution Ti+1 does not change. The time complexity of thismodification is also O(n3k)

because the local descent with N L
1 requires no more than O(n2k) operations at every

iteration of step 3.
The second modificationGreedy2 is as follows.We sort edges fromG in increasing

order based on their weights and select the first n edges. For every selected edge [x, y]
we construct a spanning k-tree using the Greedy heuristic, where we select the edge
[x, y] at step 1. A solution of this algorithm is a spanning k-tree of minimum weight
over all computed k-trees. The time complexity of this modification is O(n4k) because
the number of constructed k-trees by this algorithm equals to n.

The third modification Greedy3 combines ideas of two previous modifications.
In the algorithm for every selected edge we construct a spanning k-tree using the
Greedy1 algorithm. Then we find a spanning k-tree of minimum weight over all
computed k-trees. Essentially, the computational complexity of this modification is
also O(n4k).

4 Variable neighborhood search metaheuristics

The variable neighborhood searchmetaheuristicwas proposed byHansen et al. (2010).
This approach uses several neighborhoods and changes themsystematically that allows
to escape from local optima and find better and better solutions.

4.1 Basic scheme of variable neighborhood search

The variable neighborhood search algorithm can be implemented in many ways, such
as deterministic (VND), probabilistic (RVNS) or mixed (VNS). In this paper, we will
focus on the mixed scheme because it combines strengths of both schemes.

123

J Comb Optim (2016) 31:1461–1478 1467

There are two phases in the VNS: the shaking phase, thanks to which the algorithm
escapes from local optima, and the local search phase, where the iterative improvement
is carried out from solutions generated at the shaking phase. Denote by N S

t , t =
1, 2, . . . , tm neighborhoods used at the shaking phase and let N L

l , l = 1, 2, . . . , lm
be neighborhoods used at the local search phase. Let Im be a maximal number of
iterations at every t .

ALGORITHM VNS

INPUT: Complete graph G = (V, E). Integer k ≥ 2. Starting solution T0. Neighbor-
hoods N S

t , t = 1, 2, . . . , tm and N L
l , l = 1, 2, . . . , lm . Integer Im .

OUTPUT: Spanning k-tree Topt in G.

Let t = 1, I = 1 and T ∗ = T0.

STEP 1 Repeat steps 1.1-1.2 while w(T ′) ≥ w(T ∗) and I ≤ Im .

STEP 1.1 (shaking) Generate a solution T ′ at random from the neighborhood N S
t (T ∗).

Let l = 1.

STEP 1.2 (local search) Find the best solution T ′′ in the neighborhood N L
l (T ′).

– If w(T ′′) < w(T ′), then let T ′ = T ′′ and l = 1, else let l = l + 1.
– If l ≤ lm , then repeat step 1.2, else λ = λ + 1 and go to step 1.1.

STEP 2 Find the best solution T̂ computed at step 1 for a given t .
– If w(T̂) < w(T ∗), then update the record T ∗ = T̂ and t = 1, else t = t + 1.
– If t ≤ tm , then let λ = 1 and go to step 1, else STOP.
As the starting solution, we will use the solution found by the Greedy3 because of

its high accuracy and small computational time costs (see Sect. 6.1).

4.2 Neighborhoods

Denote by S = {1, 2, . . . , i, . . . , j, . . . , n} a sequence of vertices of a spanning k-
tree, where the vertices are ordered in accordance with the perfect order elimination
property (see Sect. 2). Note that for any k-tree we can compute the sequence of vertices
S in linear time (Golumbic 1980). Obviously, from some sequence S we can construct
a spanning k-tree by the following modification of the Greedy algorithm. In this
modification at the iteration i of step 3 we include the vertex with number i from the
sequence S and the set of edges {[i, j] : j ∈ K ∗} of minimal weight. Naturally, the
time complexity of this modification is O(n2k). Let S(t) be a set of sequences obtained
from the sequence S by sequential permutation of t pairs of its elements. For example,
the set S′ = {1, 6, 3, 2, 4, 5} is obtained from S = {4, 6, 3, 2, 1, 5} by permutation of
the one pair of vertices and hence S′ ∈ S(1).

The neighborhood N S
t (T) of the solution T is a set of spanning k-trees constructed

from sequences belonging to the set S(t), where S is the sequence of vertices corre-
sponding to the k-tree T . Naturally, the cardinality of the neighborhood N S

t is at most
O(n2t). Note that the idea of using such a neighborhood was partially used in Candia
and Bravo (2002), Beltran and Skorin-Kapov (1993).

123

1468 J Comb Optim (2016) 31:1461–1478

4.3 Modifications of the basic scheme

Denote by VNS(tm, lm, Im) the algorithm VNS with the maximum neighborhoods
N S

tm and N L
lm

and the maximum number of iterations Im , performed for every t .

Proposition 2 The time complexity of the algorithm VNS(tm, lm, Im) does not exceed
O(tm Imnlm+1klm).

Proof The sequence S′ is chosen randomly from the set S(t) that requires no more
than O(tm) operations. Computing a solution T ′ from S′ requires O(n2k) time and a
number of repetitions of this step equals to tm Im . Hence, step 1.1 of the VNS requires
O(tm Imn2k) operations. Step 1.2 requires O(tm Imnlm+1klm) operations because the
cardinality of N L

l does not exceed O(nlm+1klm), and a number of repetitions of step
1.2 equals to tm Im . Hence, the time complexity of the algorithmVNS(tm, lm, Im) does
not exceed O(tm Imnlm+1klm). ��

Next, we propose several modifications of the VNS algorithm.
The first modification VNS1(tm, lm, Im) of the VNS consists in changing the way

of choosing a solution from N S
t at step 1.1 (shaking phase). In this modification, the

new solution is not selected from N S
t at random, but by analogy with the simulated

annealing approach we select the solution, or with lower costs then record, or with
larger costs then record, but with a probability depending on its costs. Based on this,
step 1.1 of the VNS1 is as follows:

STEP 1.1 Select T at random from the neighborhood N S
t (T ∗). If w(T) < w(T ∗),

then let T ′ = T , else let T ′ = T with the probability e− �w·γ
λ , where �w =

w(T)−w(T ∗)
w(T ∗) and γ = 1, 2, ... is a sensitivity coefficient of the probability from the

solution’s costs. If T ′ is selected, then go to step 1.2, else repeat step 1.1.
This method of selecting solutions from the neighborhood N S

t (T ∗) has the fol-
lowing meaning. The smaller the costs of the solution are, the more likely its
choice is. The longer the algorithm can not improve the record, the lower the
costs of the solution T affect the probability of its selecting. The time complex-
ity of the algorithm VNS1 equals to the complexity of the VNS because this
modification requires O(1) repetitions of step 1.1, while the solution T ′ is not
selected. The numerical experiments showed that the algorithm achieves the highest
accuracy when γ ∈ [4, 7]. Based on this, we assume that the value γ equals
to 5.

The second modification VNS2(tm, lm, Im) of the basic scheme consists in using
the Kernighan–Lin neighborhood at the local search phase. The time complex-
ity of this algorithm is O(tm Imlmn2k) because the cardinality of KL

lm
equals to

O(lmn2k).
The third modification VNS3(tm, lm, Im) contains ideas of the previous two

modifications. The time complexity of the third modification also equals to
O(tm Imlmn2k).

123

J Comb Optim (2016) 31:1461–1478 1469

5 Lower bound for the MSkT problem

Wepresent an integer linear programming (ILP)model for calculating the lower bound
of theMSkT problem. This model is based on well-known properties of a k-tree which
are partially given in statement 1. We have the vertex set V = 1, 2, . . . , n. For any
i, j ∈ V, i < j the boolean variable xi j is defined, where xi j = 1 if the edge [i, j] is
included in the solution, and xi j = 0 otherwise. The ILP model for the lower bound
is as follows:

FL B = min
x

⎧
⎨

⎩

∑

i, j∈V : i< j

w(i, j)xi j

⎫
⎬

⎭
(1)

subject to

∑

i, j∈V : i< j

xi j = nk − k(k + 1)

2
, (2)

∑

j∈V : i< j

xi j +
∑

j∈V : i> j

x ji ≥ k; (∀i ∈ V), (3)

∑

i, j∈S: i< j

xi j ≤ |S|k − k(k + 1)

2
; (∀S ⊆ V, |S| ≥ k), (4)

∑

i∈S, j∈V \S: i< j

xi j +
∑

i∈S, j∈V \S: i> j

x ji ≥ k(k + 1)

2
; (∀S ⊆ V, |S| ≥ k), (5)

xi j ∈ {0, 1}, i < j, i, j ∈ V . (6)

Constraint (2) fixes the total number of edges to nk − k(k + 1)/2. Constraints (3)
say that every vertex of a k-tree must be connected by at least k vertices. Constraints
(4) say that a number of edges in a subgraph induced by a set of vertices S, |S| ≥ k
does not exceed the number of edges in a k-tree with |S| vertices. Constraints (5) say
that a set of vertices S, |S| ≥ k of some subgraph in a k-tree is connected with other
vertices of a k-tree by at least k(k +1)/2 edges. Note that this ILPmodel partially uses
the idea of computing a lower bound for the MS2T problem (where k = 2) (Beltran
and Skorin-Kapov 1993), and the idea of computing a lower bound for the minimum
spanning 2-connected graph problem (Grotschel and Monma 1992).

Obviously, this ILP problem has an exponential number of constraints and it is
difficult to handle directly. We propose the algorithm LB for computing the lower
bound which has a significantly lower time complexity than the model (1)–(6). The
algorithm LB uses an idea of a sequential inclusion of constraints (4) and (5) for
some S ⊆ V in the model (1)–(3), (6). At every step of this algorithm we consider a
relaxation of problem (1)–(6), and its objective function is also a lower bound for the
MSkT problem.

123

1470 J Comb Optim (2016) 31:1461–1478

ALGORITHM LB

INPUT: Complete graph G = (V, E). Integer k ≥ 2. ILPmodel (1)–(3), (6). Maximal
number of iterations Im .
OUTPUT: lower bound FL B for the MSkT.

STEP 0 Compute the solution T of the ILP problem with constraints (2), (3) and (6).
Let T 3 = T and I = 1.

STEP 1 In the graph T 3 for every vertex i ∈ V determine the set of vertices NT 3(i) that
includes the vertex i and all adjacent with i vertices in the graph T 3. Add constraints

∑

i, j∈NT 3(i): i< j

xi j ≤ |NT 3(i)|k − k(k + 1)

2
; (∀i ∈ V), (7)

in the previous ILP model. Compute the solution T 1 of the new ILP model. STEP 2
If the graph T 1 computed at step 1 is connected, then let T 2 = T 1 and go to step 3.
If the graph T 1 is disconnected, then compute the set C of its connected components.
Let VY be a set of vertices of the connected component Y ∈ C . Add constraints

∑

i∈VY , j∈V \VY : i< j

xi j +
∑

i∈VY , j∈V \VY : i> j

x ji ≥ k(k + 1)

2
; (∀Y ∈ C),

in the ILP model. Compute the solution T 2 of the new ILP model.

STEP 3Compute the set X of separators with capacity< k in the graph T 2. If the set X
is empty, then let T 3 = T 2 and go to step 4. If X is not empty, then for every separator
Q ∈ X compute the set CQ of connected components in the graph T 2 obtained by
removing the separator Q, |Q| = q. Add constraints

∑

i∈VY , j∈V ′: i< j

xi j+
∑

i∈VY , j∈V ′: i> j

x ji ≥ (k − q)(k − q + 1)

2
; (∀Q ∈ X, ∀Y ∈ CQ),

(8)
in the ILP model, where V ′ = (V \ Q)\ VY . Compute the solution T 3 of the new ILP.

STEP 4 If the number of iterations I exceeds Im or w(T 3) = w(T 1), then let
FL B = w(T 3) and STOP, else I = I + 1 and go to step 1.

Constraints (7) say that a subgraph of a k-tree which is induced by a vertex i ∈ V
and vertices adjacent to i is also a k-tree (Rose 1970). Obviously, constraints (7) are
a special case of constraints (4). Constraints (8) say that when we remove q, q < k
vertices that belong to a minimal separator Q in a k-tree, vertices of every subgraph
Y ∈ CQ, |Y | ≥ k will be connected with other vertices by at least (k −q)(k −q +1)/2
edges (Rose 1970).

Evidently, the number of separators of a size< k in the graph T 2 is atmost nk−1, and
the cardinality of the setCQ does not exceed nk. Hence, a number of constraints added
to the ILP model at every iteration does not exceed nk . The numerical experiments
indicated that for problemsMS2T andMS3T of dimension |V | = 20 at every iteration

123

J Comb Optim (2016) 31:1461–1478 1471

Table 1 The time complexity
of the proposed algorithms

Algorithm Time complexity Algorithm Time complexity

Greedy O(n3k) VNS O(tm Imnlm+1klm)

Greedy1 O(n3k) VNS1 O(tm Imnlm+1klm)

Greedy2 O(n4k) VNS2 O(tm Imlmn2k)

Greedy3 O(n4k) VNS3 O(tm Imlmn2k)

the average number of added constraints was 17 and 26, respectively, and the average
number of iterations was 6 and 8, respectively, when maximal number Im was 15.

6 Experimental results

The numerical experiments were performed to compare the effectiveness of the pro-
posed algorithms with known metaheuristics. By efficiency of an algorithm we under-
stand its running time and accuracy. All algorithms were implemented in “MATLAB
R2011a” . To calculate the lower bound of theMSkTwe used “IBM ILOG CPLEX
Optimization Studio 12.2” (solving the ILP by the branch and bound algo-
rithm). Calculations have been performed on a PCwith the processor “Intel Core
i7 2.6 GHz”. The study of the efficiency of the algorithms was performed on two
classes of instances:

• instances where weights of edges are Euclidean distances (class Euclidean);
• instanceswhereweights of edges are generated at randomwithuniformdistribution
(class Uniform).

We also tested the algorithms on a real-world data of the European backbone IP-
network provided by the “TeleGeography” consultancy (http://www.telegeography.
com). Denote by t̄ an average running time of an algorithm, sec.; ε̄ – an average
relative error of an algorithm, %; σ – standard deviation of the relative error. Note
that, the value ε is computed by the formula ε = (walg − wL B)/wL B · 100%, where
walg is the weight of a spanning k-tree constructed by the algorithm, and wL B is the
lower bound computed by the algorithm LB.

Table 1 presents the time complexity of the proposed algorithms.

6.1 Analysis of the algorithms based on the greedy strategy

Figure 3 shows the results of the computational experiments to analyze the efficiency
of the algorithm Greedy and its modifications. The experiments were conducted on
sets of instances, where every set includes 20 instances of the same dimension.

On the Uniform class the algorithm Greedy3 showed the best results in terms of
accuracy, and values of its average error were less than 2.2 and 2.9 % for the problems
MS2T and MS3T, respectively. For the problems MS2T and MS3T the algorithm
Greedy showed the worst results in terms of accuracy. Furthermore, there was a
significant increase of its relative error by increasing dimension of the problem.

123

http://www.telegeography.com
http://www.telegeography.com

1472 J Comb Optim (2016) 31:1461–1478

Fig. 3 The average relative errors of the algorithms based on the greedy strategy

On the Euclidean class errors of the greedy algorithms were much lower than on
the Uniform class, that takes place, apparently, due to the triangle inequality at the
matrices of distances. Despite this, Greedy showed the worst results and Greedy3

showed the best results in terms of accuracy.

6.2 Analysis of the variable neighborhood search algorithms

Figure 4 illustrates the results of the experiments to analyze the efficiency of the
variable neighborhood search algorithms.

On all sets of instances for Uniform and Euclidean classes errors of the algorithm
VNS and all its modifications were less than 2 % that indicates high accuracy of such
metaheuristics. The error in most cases was because it is not calculated with respect to
an optimum but with respect to the lower bound, which is often less than the optimum.
The algorithm VNS1 showed the best results in terms of accuracy but its running
time for instances of dimension |V | = 100 was about 30 min. The algorithm VNS2,
which uses the Kernighan–Lin neighborhood on the local search phase, showed the
worst results in terms of accuracy. It is interesting to note that the VNS3, which uses
Kernighan–Lin neighborhood and implements the idea of the simulated annealing
approach, showed significantly better results in comparison with the algorithm VNS2.
Its running time for instances of dimension |V | = 100 does not exceed 150 s.

123

J Comb Optim (2016) 31:1461–1478 1473

Fig. 4 The average relative error of the variable neighborhood search algorithms

6.3 Comparison of the effectiveness of the proposed algorithms

This section presents the results of the experiments to analyze the proposed algorithms
in comparison with knownmetaheuristics: Tabu Search (Beltran and Skorin-Kapov
1993), SA (Simulated Annealing) (Candia and Bravo 2002) and GA (Genetic Algo-
rithm) (Ghashghai and Rardin 2002). The efficiency was evaluated on random and
real-word data sets.

Tables 2 and 3 present results of the experiments to analyze the effectiveness of the
algorithms on the random data set. The experiments show that the algorithm VNS1

demonstrated the smallest error, which on the Uniform class was less than 0.25 %.
Note that this algorithm significantly outperformed all known metaheuristics in terms
of accuracy. The algorithms Greedy3, SA and GA showed almost the same results
in terms of accuracy, surpassing each other on different instances. The Greedy3 is
insignificantly worse than the Tabu Search.

Table 4 demonstrates the results on the real-world data provided by “TeleGeog-
raphy” consultancy. The data includes information about 25 hub-level nodes of the
European backbone IP-network and thematrix of shortest distances between the nodes.

On the real data the metaheuristic VNS1 demonstrates the best results in terms
of accuracy. The algorithm VNS3 outperformed all known metaheuristics. Figure 5
shows the solution of theMS2Tproblemwith the real-world data built by the algorithm
VNS1. Note that this solution is very similar to the existing structure of the IP-network

123

1474 J Comb Optim (2016) 31:1461–1478

Table 2 Comparison of the efficiency of the proposed algorithms

Algorithms |V | = 10 |V | = 20 |V | = 30 |V | = 50 |V | = 75 |V | = 100

Greedy3

ε̄ 1.75 2.09 2.23 2.43 2.42 2.45

t̄ 0.00 0.04 0.24 2.11 12.32 39.30

σ 0.63 0.87 0.79 0.83 0.91 0.77

VNS1(3, 2, 10)

ε̄ 0.46 0.39 0.45 0.44 0.47 0.45

t̄ 0.29 4.21 18.24 127.01 609.33 1,852.61

σ 0.11 0.07 0.10 0.08 0.12 0.11

VNS3(3, 5, 15)

ε̄ 1.05 1.16 1.36 1.86 1.98 2.30

t̄ 0.11 1.03 3.53 16.5 47.3 125.25

σ 0.27 0.29 0.37 0.31 0.41 0.38

Tabu Search

ε̄ 1.48 1.76 1.94 1.74 2.14 2.27

t̄ 1.49 23.71 36.65 303.29 554.47 2,245.95

σ 0.29 0.45 0.36 0.21 0.38 0.42

SA

ε̄ 1.91 1.61 2.27 2.14 2.65 2.32

t̄ 1.46 11.03 24.45 99.68 186.02 466.69

σ 0.45 0.39 0.57 0.41 0.43 0.45

GA

ε̄ 2.25 2.01 2.72 1.97 2.15 2.26

t̄ 0.05 0.44 1.80 8.38 62.38 189.98

σ 0.47 0.38 0.49 0.59 0.71 0.51

Class Uniform. MS2T problem
Bold values indicates the best results (minimal error)

but at the same time there are some differences. The differences are largely due to
unaccounted conditions in the MSkT problem, such as probability of link failure,
probability of node failure, bandwidth restrictions, etc.

7 Concluding remarks

In this paper we have considered the minimal spanning k-tree problem in a complete
weighted graph. We have proposed algorithms based on the greedy strategy and the
variable neighborhood search metaheuristics.

We have conducted numerical experiments to analyze the effectiveness of the pro-
posed algorithms on random and real-word data sets. The experiments showed that
VNS1 outperformed metaheuristics Tabu Search, SA and GA and all other algo-
rithms proposed in this paper. The average error of this algorithm on random instances
does not exceed 0.25 % and the running time for instances of dimension |V | = 100

123

J Comb Optim (2016) 31:1461–1478 1475

Table 3 Comparison of the efficiency of the proposed algorithms

Algorithms |V | = 10 |V | = 20 |V | = 30 |V | = 50 |V | = 75 |V | = 100

Greedy3

ε̄ 0.46 0.49 0.61 0.63 0.97 0.83

t̄ 0.00 0.04 0.26 2.31 12.38 34.37

σ 0.09 0.07 0.12 0.11 0.19 0.26

VNS1(3, 2, 10)

ε̄ 0.10 0.12 0.13 0.22 0.18 0.19

t̄ 0.28 3.97 20.45 151.26 638.17 2,102.04

σ 0.01 0.04 0.03 0.05 0.09 0.07

VNS3(3, 5, 15)

ε̄ 0.31 0.24 0.39 0.49 0.55 0.59

t̄ 0.13 1.13 3.37 16.22 48.39 118.35

σ 0.08 0.09 0.04 0.03 0.12 0.15

Tabu Search

ε̄ 0.33 0.28 0.39 0.51 0.53 0.53

t̄ 1.51 21.64 36.48 257.55 588.06 1978.21

σ 0.09 0.08 0.12 0.15 0.13 0.17

SA

ε̄ 0.38 0.62 0.52 0.75 0.54 0.75

t̄ 1.39 10.43 28.23 86.65 187.96 449.36

σ 0.10 0.09 0.19 0.25 0.20 0.37

GA

ε̄ 0.32 0.45 0.57 0.85 0.89 0.95

t̄ 0.05 0.43 1.79 7.47 27.27 95.85

σ 0.06 0.11 0.18 0.23 0.22 0.33

Class Euclidean. MS2T Problem
Bold values indicates the best results (minimal error)

Table 4 Comparison of the
proposed algorithms on the
real-world data

Bold values indicates the best
results (minimal error)

Algorithms t ε

Greedy3 0.19 0.42

VNS1(3, 2, 10) 15.82 0.15

VNS3(3, 5, 15) 3.01 0.21

Tabu Search 32.51 0.34

SA 19.61 0.56

GA 1.49 0.63

does not exceed 35 min. The algorithm VNS3, which uses Kernighan–Lin neigh-
borhood on the local search phase and partially implements the idea of the simulated
annealing approach showed almost the same accuracy with the known metaheuris-
tics. The running time of the algorithm VNS3 for solving the problem of dimension
|V | = 100 does not exceed 125 s. The results indicate prospects of use the algorithm

123

1476 J Comb Optim (2016) 31:1461–1478

Fig. 5 The solution of the MS2T with the real-world data built by the algorithm VNS1

for solving problems of large and extra large dimensions, while the algorithm VNS1,
due to its high time complexity, is advised to be applied for solving problems of small
and medium dimensions.

Importantly, the numerical experiments on the real-world data showed that the
MSkT problem in its pure form is interesting from more theoretical than practical
point of view because its mathematical model does not take into account many con-
ditions that are critical in designing real-world communication networks: probability
of link failure, probability of node failure, bandwidth restrictions, etc. Based on this,
as a direction of the further research, it seems appropriate to study modifications of
the MSkT problem which take into account conditions listed above. This direction
seems to be promising for the following reasons. First, many real-world communi-
cation networks are partial 3-trees (i.e. connected spanning subgraphs of a 3-tree)
(Granot and Skorin-Kapov 1994). Second, reliability of k-trees, due to their connec-
tivity properties, outperforms reliability of many well-known topologies, for instance,
tree topology, ring topology, etc (Candia and Bravo 2002). Third, the problem of cal-
culating a network reliability measure, which is NP-complete on arbitrary graphs, is
solvable in polynomial time on k-trees (for fixed k) (Granot and Skorin-Kapov 1994).

123

J Comb Optim (2016) 31:1461–1478 1477

Acknowledgments The authors are grateful to professors D. Skoryn-Kapov and A. Koster for their
interest in the problem and constructive suggestions, to professors F. Beltran, A. Candia and G. Fernandez
for providing the codes of known metaheuristics. Research by P. Pardalos was conducted at National
Research University Higher School of Economics and supported by RSF Grant 14-41-00039.

References

Alvarez-Mirandaa E, Ljubicb I, Toth P (2013) Exact approaches for solving robust prize-collecting Steiner
tree problems. Eur J Oper Res 229:599–612

Bansal N, Khandekar R, Konemann J (2013) On generalizations of network design problems with degree
bounds. Math Program 141:479–506

Beck H, Candia A (1993) An heuristic for the minimum spanning 2-tree problem. Comput Sci 47:97–109
Beck H, Candia A, Bravo H (1993) Optimal design of invulnerable networks. Res Report 15:107–113
Beck H, Candia A (2000) Heuristics for minimum spanning k-trees. Invest Oper 9:104–116
Beltran H, Skorin-Kapov D (1993) On minimum cost isolated failure immune network. Telecommun Syst

Model Anal 12:444–453
Bern M (1987) Networks design problems: Steiner trees and spanning k-trees, Ph. D. Thesis. University of

Berkeley
Cai L, Maffray F (1992) On the spanning k-tree problem. University of Toronto, Toronto
Cai L (1996) On spanning 2-trees in a graph. University of Hong Kong, Hong Kong
Candia A, Bravo HA (2002) Simulated annealing approach for minimum cost isolated failure immune

networks. Ess. Surv. Metaheuristics. 15:169–183
Dengiza B, Altiparmak F, Belgin O (2010) Design of reliable communication networks: A hybrid ant colony

optimization algorithm. IIE Trans 42:891
Dinh T et al (2012) On new approaches of assessing network vulnerability: hardness and approximation.

IEEE/ACM Trans Netw 20:609–619
Elshqeirat B, Soh S, Lazarescu M (2013) Dynamic programming for minimal cost topology with reliability

constraint. Adv Comput Netw 1:286–290
Farley A (1981) Networks immune to isolated failures. Networks 11:255–268
Garey M, Johnson D (1976) Some simplified NP-complete graph problems. Theor Comput Sci 1:237–267
Ghashghai E, Rardin R (2002) Using genetic algorithms to find good k-tree subgraphs. Evol Optim 48:

399–413
Golumbic M (1980) Algorithmic graph theory and perfect graphs. Academic Press, New York
Granot D, Skorin-Kapov D (1994) On some optimization problems on k-trees and partial k-trees. Discre

Appl Math 48:129–145
Grotschel M, Monma C (1992) Facets for polyhedra arising in the design of communication networks with

low-connectity constraints. SIAM J Optim 2:474–504
Haidine A (2013) Design of reliable fiber-based distribution networks modeled by multi-objective combi-

natorial optimization. Int J Commun Syst 26:1227–1242
Hansen P, Mladenovic N, Brimberg J (2010) Handbook of Metaheuristics. Intern Series Oper Res Manage

Sci 146:61–86
Johnston M, Lee H, Modiano E (2013) Robust network design for stochastic traffic demands. J Lightwave

Technol 31:3104–3116
Khandekara R, Kortsarzb G, Nutovc Z (2013) On some network design problems with degree constraints.

J Comput Syst Sci 79:725–736
Konak A, Smith A (2011) Efficient optimization of reliable two-node connected networks: a biobjective

approach. Inf Sci Technol 23:430–445
Magnanti TL, Raghavan S (2005) Strong formulations for network design problems with connectivity

requirements. Networks 45:61–79
Pardalos P, Thai MT (2011) Handbook of optimization in complex. Springer, New York
Prim R (1957) Shortest connection networks and some generalizations. Bell Syst Technol J 36:1389–1401
Rose D (1970) Triangulated graphs and the elimination process. J Math Anal Appl 32:597–609
Rose D (1974) On simple characterizations of k-trees. Discret. Math. 41:317–322
Shi Q (2008) Efficient algorithm for network center/covering location optimazation problems. Ph.D. thesis,

School of Computing Science-Simon Fraser University

123

1478 J Comb Optim (2016) 31:1461–1478

Simonetti L, Protti F, Frota Y (2011) New branch-and-bound algorithms for k-cardinality tree problems.
Electron Notes Discret Math 37:27–32

Thai MT, Pardalos P (2011) Handbook of optimization in complex networks: theory and applications.
Springer, New York

Wald J, Colbourn C (1983) Steiner trees, partial 2-trees and minimum IFI networks. Networks 13:159–167

123

	Heuristics for the network design problem with connectivity requirements
	Abstract
	1 Introduction
	2 Definition and basic properties of k-trees
	3 Heuristics based on greedy strategy
	3.1 Algorithm Greedy
	3.2 Neighborhoods
	3.3 Modifications of the Greedy heuristic

	4 Variable neighborhood search metaheuristics
	4.1 Basic scheme of variable neighborhood search
	4.2 Neighborhoods
	4.3 Modifications of the basic scheme

	5 Lower bound for the MSkT problem
	6 Experimental results
	6.1 Analysis of the algorithms based on the greedy strategy
	6.2 Analysis of the variable neighborhood search algorithms
	6.3 Comparison of the effectiveness of the proposed algorithms

	7 Concluding remarks
	Acknowledgments
	References

