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Abstract A vertex coloring of a graph G is called acyclic if it is a proper vertex
coloring such that every cycle C receives at least three colors. The acyclic chromatic
number of G is the least number of colors in an acyclic coloring of G. We prove that
acyclic chromatic number of any graph G with maximum degree � ≥ 4 and with
girth at least 4� is at most 12�.
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1 Introduction and notations

The graphs considered in this paper are finite and simple. We use Bondy and Murty
(1976), Molloy and Reed (2002, 1998) for terminologies and notations not defined
here. Let G = (V, E) be a graph. A vertex coloring of a graph G is called acyclic if it
is a proper coloring such that every cycle C receives at least three colors. The acyclic
chromatic number of G, denoted by A(G), is the least number of colors in an acyclic
vertex coloring of G. The concept of acyclic colorings of graphs was introduced by
Grünbaum (1973) and some results has been obtained in Alon et al. (1991), Gerke and
Raemy (2007), Greenhill and Pikhurko (2005). InAlon et al. (1991), Alon,McDiarmid
and Reed gave upper and lower bounds for the acyclic chromatic number. They proved
that for some constants c > 0,

J. Cai (B) · B. Feng
School of Mathematics and Information Sciences, Weifang University,
Weifang, Shandong 261061, China
e-mail: healthcai@163.com

G. Yan
Academy of Mathematics and System Sciences, Chinese Academy of Science, Beijing 100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-015-9829-2&domain=pdf


1400 J Comb Optim (2016) 31:1399–1404

c�
4
3

(log�)
1
3

≤ A(G) ≤ 50�
4
3 .

In Goncalves et al. (2014) by using entropy compression method, proved the fol-
lowing result.

Theorem 1 Let G be a graph with maximum degree �,
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≤ A(G) ≤ 3

2
�

4
3 .

In this paper, we gave a class of graphs whose acyclic chromatic numbers are linear
in their maximum degrees. Actually, we obtain the following result.

Theorem 2 Let G be a graph with maximum degree � ≥ 4 and girth g ≥ 4�. Then
A(G) ≤ 12�.

2 Proof of Theorem 2.

We make use of the Lováze Local Lemma as our important tool in the proof of The-
orem 2. Before giving the proof of Theorem 2, we state the general version of the
Lováze Local Lemma(see Molloy and Reed (2002) for details) as follows.

Lemma 2.1 Molloy and Reed (2002) Let A1, A2, · · · , An be events in an arbitrary
probability space. Let the graph H = (V, E) on the nodes {1, 2, · · · , n} be a depen-
dency graph for the events Ai ; that is, assume that for each i , Ai is independent of the
the family of events {A j : (i, j) /∈ E}. If there are reals 0 ≤ xi < 1 such that for all i ,

Pr(Ai ) ≤ xi
∏

(i, j)∈E
(1 − x j ),

then

Pr

(
⋂

i

Āi

)
> 0.

Proof of Theorem 2 Let G = (V, E) be a graph of size m. Our aim is to prove that
there exists a coloring of vertices of G, f : V → {1, 2, · · ·, k} such that f satisfies
the following two properties.

(i) every two adjacent vertex have different colors;
(ii) there are at least 3 colors in every cycle C of G.

��
Then we obtain an acyclic coloring of G

For each vertex v ∈ V (G), first we do the following random coloring. Put x = 12�.
Then let f : V → {1, 2, · · · , x} be a random vertex coloring of G, where for each
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vertex v ∈ V , the color f (v) ∈ {1, 2, · · · , x} is chosen randomly and independently
according to a uniform distribution on {1, 2, · · · , x}.

For the sake of using Lemma 2.1(Local Lemma), we consider the following two
type of bad events.
Type I. For each pair of adjacent vertices u and v of G, let Au,v be the event that

f (u) = f (v).

Type II. For each even cycle C , we say that event AC occurs if C receives two colors
under the random coloring f . If the length of cycle C is i , then such an event is called
an event of type i .

Then we obtain the following proposition.

Proposition 2.2 If no event of T ype I or T ype I I occurs, then f is an acyclic
coloring satisfying properties (i) and (ii).

It is obvious that Proposition 2.2 is true. In the following we will show that with
positive probability none of these two kinds of bad events happens, then we can apply
the Local Lemma 2.1 to prove Theorem 2.

Let us construct the dependency graph H needed in Lemma 2.1. We use X to
denote a set that consists of two adjacent vertices in G colored by the same color in
random coloring f , or an even cycle in G which is colored by 2 colors in random
coloring f . Let V (H) = {AX |AX is an event of Type I or Type II}. For each pair of
nodes AX , AY ∈ V (H), AX and AY are adjacent if and only if X ∩ Y 	= ∅. Since
the occurrences of each AX depends only on the colors of the vertices in X , H is
a dependency graph for our events. In order to apply the Local Lemma, we have to
estimate the probability of every event and the number of nodes of each type in graph
H which are adjacent to any given node.

Since all the cycles have length at least g, we only consider the cycle with length
at least g in the following.

It is easy to see that an event of type-1 happens with probability 1
x . We have the

following claim.

Claim 1 The probability of an event of type-i is at most ( 2x )i−2
( i
i−2

)
.

Proof Let C be an even cycle of length i ≥ g, which is colored with 2-colors. Then
there exists a subset B of the vertices of C of size (i − 2) such that every vertex in B
receives a color that appears also in C\B. There exists ( i

i−2

)
ways to choose such a

set B. If a set B and a coloring of C\B is fixed, then the probability that only colors
of C\B are used for B is at most ( 2x )i−2. This complete the proof of Claim 1. ��
Proposition 2.3 In the dependency graph H, each vertex of type-1 is adjacent to at
most 2� vertices of type-1 and is adjacent to at most 2�i−1 vertices of type-i . A vertex
of type i is adjacent to at most i� vertices of type-1 and at most i� j−1 vertices of
type- j .

It is obvious that Proposition 2.3 holds. Let x1 = 1
8� and xi = 1

(2�)i
. In order to

conclude that with positive probability none of the bad events hold, it suffices to prove
that the following Claim 2 holds.
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Claim 2 It holds that

Pr(A1) ≤ x1(1 − x1)
2�

n∏

j=g

(1 − x j )
2� j−1;

For all g ≤ i ≤ n,

Pr(Ai ) ≤ xi (1 − x1)
i�

n∏

j=g

(1 − x j )
i� j−1

,

where n is the order of G.

Proof Note that for all 0 ≤ t ≤ 1
24 , ( 13 )

t ≤ (1 − t). As xi ≤ 1
24 for all 1 ≤ i ≤ n,

( 13 )
xi ≤ (1 − xi ). Recall that g ≥ 4� ≥ 16. Hence it follows that

x1(1 − x1)
2�

n∏

j=g

(1 − x j )
2� j−1 ≥ x1

(
1

3

)2�x1 n∏

j=g

(
1

3

)2� j−1x j

≥ x1

(
1

3

)2�x1+∑∞
j=g

(
2

�2 j

)

= 1

8�

(
1

3

) 1
4+

(
2−g+1

�

) ∑∞
j=0 2

− j

≥ 1

8�

(
1

3

) 1
4+

(
2−14
3

)

≥ 1

12�
= 1

x
≥ Pr(A1).

For all i ≥ g ≥ 4�, we conclude that

3e�i ≤ 3

(
7
8−

(
1

�2g−1

))(
i
2

)

as can be seen as follows. Since when i = 4�, the left hand side of inequality equals

to 12e�2 and the right side of inequality is equal to 3
7
4�− 2

2g−1 . If � = 4 and g ≥ 16,

by computation one can see 12e�2 ≤ 3
7
4�− 2

2g−1 , then for � ≥ 4 and g ≥ 16, it is
obvious that the inequality also holds; moreover, if seen as a function of i , then the
right side grows much faster than the left side. So for i ≥ g,
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P(Ai ) ≤
(
2

x

)i−2 (
i

i − 2

)

=
(
2

x

)i−2 (
i

2

)

≤
(
2

x

)i−2 (
ei

2

)2

=
(

1

6�

)i

(3e�i)2

Since 3e�i ≤ 3
( 78−( 1

�2g−1 ))( i
2 )
, we know that

P(Ai ) ≤ 1

(2�)i

(
1

3

) i
8+ i

�2g−1

= 1

(2�)i

(
1

3

) i
8+

(
i2−g

�

) ∑∞
j=0 2

− j

≤ 1

(2�)i

(
1

3

) i
8+∑n

j=g
i

�2 j

= xi

(
1

3

)i�x1 n∏

j=g

(
1

3

)i� j−1x j
.

Since for all 0 ≤ t ≤ 1
24 , (

1
3 )

t ≤ (1 − t), we obtain

P(Ai ) ≤ xi (1 − x1)
i�

n∏

j=g

(1 − x j )
i� j−1

.

This completes the proof of Claim 2.
Therefore, by Claims 1, 2 and Lemma 2.1 we know that Theorem 2 is true. ��

Acknowledgments We would like to thank the reviewers for providing some very helpful suggestions
for revising this paper. This work is supported by NSFSD (ZR2013AM001, ZR2013AL016) and NSFC
(11371355).

References

Alon N, McDiarmid C, Reed B (1991) Acyclic coloring of graphs. Random Struct Algorithms 2:277–288
Bondy JA, Murty USR (1976) Graph theory with applications. Macmillan Press[M], New York
Gerke S, Raemy M (2007) Generalized acyclic edge coloings of graphs with large girth. Discret Math

307:1668–1671
Goncalves D, Montassier M, Pinlou A. Entropy compression method applied to graph coloring,

arXiv:1406.4380vl
Greenhill C, Pikhurko O (2005) Bounds on the generalized acyclic chromatic number of bounded degree

graphs. Graphs Combin 21:407–419

123

http://arxiv.org/abs/1406.4380vl


1404 J Comb Optim (2016) 31:1399–1404

Grünbaum B (1973) Acyclic colorings of planar graphs. Israel J Math 14:390–408
Molloy M, Reed B (2002) Graph coloring and the probabilistic method, algorithms and combinatorics.

Springer, New York
Molloy M, Reed B (1998) Further algorithmic aspects of Loász Local Lemma. In: Proceedings of the 30th

Annual ACM Symposium on Theory of Computing, p 524–529

123


	Acyclic coloring of graphs with some girth restriction
	Abstract
	1 Introduction and notations
	2 Proof of Theorem 2.
	Acknowledgments
	References




