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Abstract A metaheuristic is generally a procedure designed to find a good solu-
tion to a difficult optimization problem. Known optimization search metaheuristics
heavily rely on parameters, which are usually introduced so that the metaheuristic fol-
lows some supposedly related to the optimization problem natural process (simulated
annealing, swarm optimization, genetic algorithms). Adjusting the parameters so that
the metaheuristic performs successfully in the problem at hand could be quite tricky
and time consuming task which often requires intimate knowledge of the problem
and a lot of experimenting to achieve the needed level of performance. In this article I
present ametaheuristic with parameters depending only on the problem at hand, which
virtually eliminates the preliminary work on adjusting the parameters. Moreover, the
parameters are frequently updated during the process, based on the increasing amount
of information about the solution space collected during the run. The metaheuristic
has been successfully applied in several different searches for discrete objects such as
designs, packings, coverings and partitions.
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1 Discrete optimization problems (DOPs)

In this type of problems we define a set S of discrete objects called solutions; the set
S is the solution space. Every solution i ∈ S possesses a number of properties. The
question is to find a solution having an additional property, called optimality.
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Optimality is defined by introducing a function c : S → R from the set of solutions
to the real numbers, called the cost function. In the applications we dealt with, the
cost function was defined as

c : S → Z+ ∪ {0}.

In what follows we will assume a cost function of the above type.
An optimal solution is a solution i∗ ∈ S such that c(i∗) ≤ c(i) for all i ∈ S. We

can always define the cost function in such a way that c(i∗) = 0.
We can define aDOPas the problemof finding an optimal solution assuming the pair

(S, c) is defined. In some applications finding an optimal solution is not feasible (or we
do not know the cost of an optimal solution; we might have defined the cost function
in a way such that a zero cost solution seems feasible, but in reality, it might happen
that an optimal solution has cost higher than zero), so we might be just interested in
finding a “good enough solution”. The usual approach to solve a DOP is by moving
from one solution to another and try to find solutions of lower and lower cost, until
either an optimal solution is found or the process is terminated with the best solution
found so far recorded.

Amove is defined to be a function d : S(d) → S, where S(d) ⊆ S is the domain of
d. A move d has an inverse, denoted d−1, if s = d−1(d(s)) = s for every s ∈ S(d).
In all of the applications we were dealing with, we used invertible moves.

Let D be the set of all moves of a DOP. We require that the union of the domains
of all the moves in D is the solution set, that is,

⋃

d∈D
S(d) = S

(so that for every solution s ∈ S there is at least one d ∈ D so that d(s) ∈ S).
A solution s′ is a neighbor of the solution s, if s′ = d(s) for some d ∈ D.
The neighborhood N (s) of a solution s is the union of all neighbors of s:

N (s) =
⋃

{d∈D|s∈S(d)}
d(s).

Conventions: Solutions having the same cost will be referred to as solutions having
the same level. Given a solution s, a very good neighbour of s is any solution
s′ ∈ N (s) with c(s′) < c(s), and just a good neighbour s′ is one with c(s′) ≤ c(s).
A bad neighbour is one with c(s′) > c(s).

A move from a solution s to a new solution s′ such that c(s′) = c(s) is called a
sideway move.

2 Problems with the known heuristics

In known optimization metaheuristics, the strategy of moving from one solution to
another is based on a prespecified function, usually borrowed from some natural phe-
nomenon (simulated annealing, great deluge, etc.) There are not toomanygood reasons
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why the best strategy for attacking discrete problems by optimization should be based
on that kind of phenomena.

In the best known optimization metaheuristics, the good performance is due to the
ability of the metaheuristic to avoid getting stuck in a local minimum. However, there
are some issues that are not really well addressed. In trying to avoid getting stuck in a
local minimum, themetaheuristic might bemissing global minima too often. There are
no ways to know whether the metaheuristic is close to a global minimum and switch
to a complete search. On the other hand, if the metaheuristic has mechanisms to avoid
missing a global minimum (say, performing a complete search when the cost of the
current solution is under fixed level), then it might be spending too much time on that.

In the known metaheuristics, it is usually possible that the process “freezes” in the
neighbourhood of a local solution, which requires a restart (or restarts) if the freezing
is somehow recognized.

Known optimization search metaheuristics heavily rely on parameters. Adjusting
these parameters so that themetaheuristic performs successfully in the problem at hand
could be quite tricky and time consuming taskwhich often requires intimate knowledge
of the problem and a lot of experimenting to achieve the needed level of performance.

3 Objects in a DOP

– Set of solutions (huge size; known)
– Neighborhood of a solution (size known; constant)
– Set of very good neighbors of a solution (size variable; unknown)
– Set of optimal solutions (size unknown)

Neighbourhoods

Solution space

Optimal
solutions

Very good neighbours

4 Introducing problem dependent optimization (PDO)

The newmetaheuristic suggested here addressesmany of the problemswith the known
metaheuristics and resolves them in a natural way.
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In PDO, the strategy of moving from one solution to another is based on a function
which only depends on the solution space of the particular DOP; we call it the jump-
down function (JDF). We will define it shortly, but we first discuss the relevance of
the definition to follow.

Let C be the set of all possible costs. Let Sc ⊆ S be the set of all solutions of cost c
(we assume there is at least one solution of cost c, for each cost c ∈ C). Let G(B) be
the set of all very good neighbours of the solution B. (Note thatG(B) = ∅ is possible.)
Then

∑
B∈Sc

|G(B)|
|N (B)|

|Sc|
is the average probability of choosing a move from a solution B (residing at level c)
to a very good neighbour of B. We denote this probability by pc. Then p−1

c is the
average number of moves which have to be tried in order to find a cost-decreasing
solution from a solution B at level c.

The jump down function is a function f from the set C to Z+, such that for every
c ∈ C, at every moment of the run of the heuristic, f (c) is an approximation to the
average number of moves needed to find a cost-decreasing solution at level c under
the conditions of the heuristic. It is difficult to imagine what the precise value of this
average number is for a particular cost c. At this point, it looks like f (c) could be
an approximation to p−1

c , and this will indeed be the case if the heuristic stays at
one solution and examines solutions from the neighbourhood of the current one until
it finds a cost decreasing one and moves to it. But that is not exactly how the new
heuristic works... (It would be stuck at any solution which does not have a very good
neighbour, if it did work that way.)

In fact, PDO always accepts sideways moves, and these moves and the subsequent
moves to investigate the neighbourhoods of the accepted solutions at the same level
during one loop are also counted within the count of moves needed to find a cost
decreasing solution at that level. Hence f (c) is not related to p−1

c in any observable
way.

The precise value of the average number of moves used in the definition of f (c) is
somewhat tricky to define; technically, it is over all possible runs of the heuristic which
includes runs with infinite number of moves (say if the heuristic does not converge to
an optimal solution), and so there are infinitely many runs possible. We can define it
in a feasible manner by observing that there is a finite number of possible runs with
any prespecified number M of moves (there is a finite number of choices for a starting
solution, and a finite number of moves from each solution visited, so the number of
all possible runs for any particular M is finite), and then let M go to infinity.

At the start of the heuristic, we can assign the values of f (c) quite arbitrarily; we
can even use the same constant for the values of f for all c, for example, if N is the
constant size of a neighborhood, we can use f (c) = kN for some k, say k = 10.
The heuristic will steadily improve on the values of f (c) to almost a constant state,
optimal for the solution space of the particular DOP we solve.

The improving of the jump-down function comes from frequent updates of its values
based on the increasing amount of data collected during the run of the heuristic. It
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is done as follows: Suppose the heuristic has already visited n times the level c. Let
s j , j = 1, 2, ..., n, be the number of moves the heuristic tried in order to find a cost-
decreasing solution during its j-th visit to level c. Then the average number of moves
tried in finding a cost-decreasing solution, immediately after finding the last one is∑n

j=1 s j
n .
Therefore, we can set a value of the jump-down function at c to be

f (c) =
⌈∑n

j=1 s j

n

⌉

for the (n + 1)-th visit of level c. This value will remain the same until the next
jump-down from that level happens; then it will be updated again, etc.

It is possible to keep all of the the information about how many moves the heuristic
tried before a jump-down from level c (that is, to keep all of the numbers s j , j =
1, 2, ..., n in memory); that was done in earlier stages of testing the heuristic. In
the version we present here, we choose to save memory and update the jump-down
function as follows: After the (n+1)-st jump-down from level c, we just need sn+1 and
the current value of the jump-down function, f (c). The new value of the jump-down
function is set to

f (c) :=
⌈
n f (c) + sn+1

n + 1

⌉
.

Clearly, the expression on the right is sufficiently close to

⌈∑n+1
j=1 s j

n + 1

⌉
,

as evident from the next lemma.

Lemma Let

Sn = a1 + a2 + · · · + an
n

.

Then


Sn+1� =
⌈
n 
Sn� + an+1

n + 1

⌉
− ε,

where ε = 0 or 1.

Proof We have

n 
Sn� + an+1

n + 1
≥ nSn + an+1

n + 1
= Sn+1 ,
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so that

⌈
n 
Sn� + an+1

n + 1

⌉
≥ 
Sn+1� .

Equality is attained only if Sn = 
Sn�, that is, if Sn is an integer. On the other hand,

n 
Sn� + an+1

n + 1
<

n (Sn + 1) + an+1

n + 1

= n
( a1+a2+···+an

n + 1
) + an+1

n + 1

= a1 + a2 + · · · + an+1 + n

n + 1

= a1 + a2 + · · · + an+1

n + 1
+ n

n + 1
< Sn+1 + 1 ,

so that

⌈
n 
Sn� + an+1

n + 1

⌉
≤ 
Sn+1 + 1� = 
Sn+1� + 1 .

Thus


Sn+1� ≤
⌈
n 
Sn� + an+1

n + 1

⌉
≤ 
Sn+1� + 1 ,

which completes the proof. 
�

Suppose we knew the precise value of f (c) for any cost c ≥ 1 (we do not, but
as the heuristic progresses we get better and better idea about it). Then we would
not want to try way more than f (c) moves in an attempt to find a cost decreasing
solution while being at level c, because that would be waste of time; in particular, this
would lead to spending too much time in the neighborhood of each local minimum
encountered, and slow convergence, if at all, as a result.Wewould not want to trymuch
less than f (c) moves either, because we would be missing cost decreasing solutions
often, thereby making it difficult to reach low cost levels, which again will lead to
slow convergence, if at all. Testing more (but not much more) than f (c) neighbours
of the current solution before accepting a cost-increasing solution yields fairly good
convergence of the optimization process. The reason for that will be further clarified
after we present the new metaheuristic.
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The above picture illustrates a part of the solution space of a DOP and possible
moves. Each plane corresponds to a fixed cost (level). We can associate a graph with
each DOP as follows: The vertices are the solutions, and there is an edge between two
solutions Bi and Bj if there is a move d such that d(Bi ) = Bj (then d−1(Bj ) = Bi ).
The solutions residing in the same plane have the same cost. The heuristic jumps
between levels trying to reach the lowest one (which corresponds to cost 0).

Generally, there are edges between vertices in the same level (corresponding to
sideways moves) and edges between vertices residing in adjacent levels or edges
crossing several levels (both corresponding to cost-increasing and cost-decreasing
moves). Note that the graph of a DOP is N -regular; where N is the (constant) size of
a neighbourhood.

5 Description of PDO

1. Set values for f (c) for all c ≥ 1. (A rough approximation will do; for example,
if the size of a neighborhood is N , then f (c) = kN for all c ≥ 1 would be OK;
k = 10 worked pretty well in all of the applications we tried.)

2. Set jdc(c) := 1 for all c. ( jdc(c) counts the number of jump-downs from level
c.)

3. Start with any solution B.
4. Set counter := 0.
5. Perform a single move to obtain a new solution B ′ = d(B) ∈ N (B), and set

counter := counter + 1.

(a) If c(B ′) = 0 then stop (B ′ is an optimal solution.)
(b) If c(B ′) < c(B), then

f (c(B)) :=
⌈
jdc(c(B)). f (c(B)) + counter

jdc(c(B)) + 1

⌉
, (1)
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set jdc(c(B)) := jdc(c(B)) + 1,
set B := B ′,
and go to 4 (jump-down happened).

(c) If c(B ′) = c(B), then set B := B ′, and go to 5.
(d) If [c(B ′) > c(B) and counter > m f (c(B)], then set B := B ′, and go to 4.

(Accept a cost-increasing solution and continue the process. Settingm = 2 works
well, althoughm ∈ (a, 2), with a > 1 and not too close to 1, orm ∈ (2, 3] provide
similar performance.)

(e) If [c(B ′) > c(B) and counter ≤ m f (c(B))], then go to 5.

Notes:

– The counter counter counts the number of moves tried in order to find a cost
decreasing solution while at the level of the current solution (the sideway moves
and the moves from the accepted solutions are also counted).

– f (c) is (approximately) the average number of moves needed to jump-down from
level c after all of the jump-downs from that level so far.

– In other words: At level c, try up tom f (c)moves in order to find a cost-decreasing
solution (m is real, m > 1. We experimented with m ∈ (1, 3] with m = 2 being
universal). If such is found, accept it and continue the process at the level of the
accepted solution. If no cost-decreasing solution is found afterm f (c) moves, then
accept a cost-increasing solution and continue the process. Accept sideway moves
all the time.

– The reason we usem f (c) rather than just f (c) is to allow the heuristic to gradually
improve on the values of f (c). If we only try up to f (c) moves, the values of f (c)
will gradually decrease and this will diminish the ability of the heuristic to reach
very low levels, eventually bringing it to an almost non-convergent state.

– Technically, the initial values of jdc(c) (in 2.) should be set to 0, because, initially,
no level has been visited. However, setting jdc(c) = 1 for all c works slightly
better. This avoids the possible assigning of too small values for f (c) during the
first application of step 5.(b), and then wasting time to improve them (although,
technically the heuristic will gradually improve on the values of f (c) even if the
initial assignment is f (c) = 0 for all c).

Pseudo Code Description of PDO

Below is a description of the PDO heuristic in pseudo code. Pseudo language elements
used:

while <condition> do
<statements>

endwhile

if <condition> then
<statements>

elseif <condition> then
<statements>

else
<statements>
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endif

START PSEUDO CODE:
determine neighborhood size N
determine the set of all possible costs ; cost is generally type real?; we used int?
set f(c) = k * N for all c ; (default k=10)
set jdc(c) = 1 for all c
set counter = 0
select any starting solution B ; generally, the cost will be non-zero
calculate c(B)
make a move B --> B’
calculate c(B’)

while c(B’) > 0 do
counter = counter + 1 ; count loops
if c(B’) > c(B) then ; bad neighbor found

if counter > m * f(c(B)) then ; (default m = 2)
set counter = 0 ; failed to find a jump-down from this level
set B = B’ ; so accept the bad neighbor anyway
set c(B) = c(B’)

endif
elseif c(B) = c(B’) then ; sideway move

set B = B’
else ; c(B’) < c(B), so very good neighbor found

calculate new f(c(B)) ; update the jump-down function as per (1)
jdc(c(B))=jdc(c(B)) + 1 ; adjust the jump-down counter
set counter = 0 ; continue from the improved solution
set B = B’
set c(B) = c(B’)

endif
make a move B --> B’
calculate c(B’)

endwhile
END PSEUDO CODE

6 Advantages of PDO

• Clearly, the entire procedure is a self-improving optimization process, where the
jump-down function is constantly updated, based on the gradually increasing infor-
mation about the solution space; thus during the run of the metaheuristic, more
and more data about the solution space is examined and more precise values of
the jump-down function are obtained.

• The metaheuristic can be applied in any DOP , including ones where we are
interested in finding a global minimum. A justification for the good performance
of PDO comes from the fact that it uses a self-adjusting and problem-dependent
jump-down function instead of a prespecified jump-down function as in some
known good metaheuristics, such as simulated annealing, in particular.

Based on the description of PDOand on the author’s experience, PDOoverperforms
the known metaheuristics in some aspects. In support to this statement, we next list a
number of advantages of PDO. (Some of these, but not all, are present in other meta-
heuristics.) The first three items on this list are what separates the new metaheuristic
from the known ones.

– Self-improving, self-adjusting.
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– No need of assigning values of parameters at the start; no need of adjusting the
parameters later or after a restart.

– No need of restart.
– Space-efficient (only one solution is kept in memory at any time) which allows
to speed the search by running several copies of the software in one computer.
Generally, many copies can be ran on each of many computers for speeding up the
search.

– Accepts cost increasing solutions often enough to avoid getting stuck in a neigh-
borhood of a local minimum.

– Comparatively easy to program; generally, one does not need too deep specialized
knowledge on the objects of interest (although some knowledge on the structure
of the objects might help in achieving more efficient search, say, by reducing the
solution space, and/or introducing more refined cost function).

PDO has been successfully employed in finding cyclic designs (Abel et al. 2001,
2002, 2004a, b); super-simple designs (Bluskov and Heinrich 2001); coverings (Abel
et al. 2006, 2007, Bertolo et al. 2004, Bluskov 2007, Bluskov and Greig 2006); pack-
ings (Abel et al. 2010); large sets of cyclic designs (Bluskov and Magliveras 2001);
constant weight codes [Bluskov (in press)], and covering by coverings (in progress).

Acknowledgments Thanks go to Jan De Heer for reading this material and successfully testing the
metaheuristic and for his valuable input in the process.
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