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Abstract We consider the problem of Single- Tiered Relay Placement with

Basestations, which takes as input a set S of sensors and a set B of basestations
described as points in a normed space (M, d), and real numbers 0 < r ≤ R. The
objective is to place a minimum cardinality set Q of wireless relay nodes that connects
S and B according to the following rules. The sensors in S can communicate within
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distance r , relay nodes in Q can communicate within distance R, and basestations
are considered to have an infinite broadcast range. Together the sets S, B, and Q
induce an undirected graph G = (V, E) defined as follows: V = S ∪ B ∪ Q and
E = {uv|u, v ∈ B} ∪ {uv|u ∈ Q and v ∈ Q ∪ B and d(u, v) ≤ R} ∪ {uv|u ∈ S
and v ∈ S ∪ Q ∪ B and d(u, v) ≤ r}. Then Q connects S and B when this induced
graph is connected. In the case of the two-dimensional Euclidean plane, we get a
(1 + ln 6 + ε) < 2.8-approximation algorithm, improving the previous best ratio of
3.11. Let Δ be the maximum number of points on a unit ball with pairwise distance
strictly bigger than 1. Under certain assumptions, we have a (1 + ln(Δ + 1) + ε)-
approximation algorithm. When biconnectivity is required, we show that a variant of
our previously proposed algorithm has approximation ratio ofΔ+2. In the case of the
two-dimensional Euclidean plane, our ratio of 7 improves our previous bound of 16.

Keywords Approximation algorithm · Wireless network · Steiner points ·
Biconnectivity

1 Introduction

Wireless sensor networks are made up of a large number of autonomous sensors that
are densely deployed into an environment. Each of these sensors will typically have
limited power, memory, and computational power to reduce the cost of the network.
To solve the problems caused by these limitations, additional nodes can be added to
a sensor network called relays. The relay nodes will be equipped with more powerful
broadcasting hardware, giving them a larger communication range but making relays
more expensive than the sensor nodes. We consider one further generalization to this
problem by adding a set of basestations to the input, which have practically infinite
broadcasting range (being part of the wired infrastructure). In this paper we study the
problem of placing the minimum number of relay nodes to produce a network that
connects all sensors and basestations.

In order to make the discussion more general, we use normed spaces. A normed
space is a metric space (X, d), given by a set X (of points) and a symmetric function
(distance) d : X×X → R

+ that obeys the triangle inequality:∀x, y, z ∈ X, d(x, y) ≤
d(x, z)+d(z, y), and the property that d(x, y) = 0 if and only if x = y. As defined in
the literatureBryant (1985), a normed space also has the following property (and others
that we do not use): ∀x, y ∈ X and ∀α ∈ [0, 1], there exists z ∈ X such that d(x, y) =
d(x, z)+d(z, y) and d(x, z) = α ·d(x, y). In other words, the normed space contains
all the Steiner points. Normed spaces of interest to wireless networks are the two and
three dimensional Euclidean space, with d being the Euclidean distance (the l2 norm).

Formally, we first consider the problem of Single- Tiered Relay (Node)

Placement with Basestations (RPwB), which is defined as follows: As input
we are given two sets S and B of points in a normed space (M, d), which are the
coordinates of the sensor nodes and basestations respectively, and two real numbers
r and R, 0 < r ≤ R, which are the broadcast ranges of sensor and relay nodes
respectively (Basestations have infinite broadcast range). When B = ∅, we have the
Single- Tiered Relay Placement problem.
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A solution to the problem is a set Q of points to place relay nodes at. The sets S, B
and Q induce an undirected graph G = (V, E) defined as follows: V = S ∪ B ∪ Q
and E = {uv|u, v ∈ B} ∪ {uv|u ∈ Q and v ∈ Q ∪ B and d(u, v) ≤ R} ∪ {uv|u ∈ S
and v ∈ S ∪ Q ∪ B and d(u, v) ≤ r}. A solution Q is feasible if the induced graph
of S, B and Q is connected. The objective is to find a feasible solution of minimum
cardinality.

Note that in Single- Tiered Relay Placement (with Basestations), sensor
nodes can communicate with any other node within distance r . A related problem is
Two- Tiered Relay Node Placement, which only differs in that sensors cannot
communicate directly with other sensors.

Single- Tiered Relay Placement in the two-dimensional Euclidean plane was
proposed Lloyd and Xue (2007), who showed that an algorithm based on minimum
spanning tree (MST) achieves approximation ratio 7. This algorithmworks as follows.
It first constructs an undirected edge-weighted complete graph of the set of sensors,
where the edge weight is the distance between two sensors. Then it computes a MST
of that graph. Finally, if the length of an edge, d, is greater than sensor’s transmission
range, r , but less than or equal to 2r , the algorithm places a relay node on the middle
of the edge. If d > 2r , it places two relay nodes at the points, the distance of which
is r from each endpoint of the edge, and another � d−2r

R 	 − 1 relay nodes on the rest
of the edge, keeping the same distance between any two consecutive relay nodes on
this edge. One can easily check that this distance is at most R. The analysis of this
algorithm is improved in (Calinescu and Tongngam 2008) to 6, which is also shown
to be tight. We use this result which we present in a more general form. No other
submission based on Calinescu and Tongngam (2008) was made (since in the time
between the final version of Calinescu and Tongngam (2008) was submitted and the
date it was published, a better result - next paragraph - was published).

For Two- Tiered Relay Node Placement in the two-dimensional Euclidean
plane, Efrat, Fekete, Gaddehosur, Mitchell, Polishchuk, and Suomela, Efrat et al.
(2008) claim a polynomial time approximation scheme (PTAS) (a description with
proof sketches appears in Efrat et al. (2008), a version of Efrat et al. (2008) that
we obtained online). Further, they show that the Single-Tiered problem admits no
PTAS, assuming P 
= NP, and presented a 3.11-approximation algorithm for the two-
dimensional Euclidean plane.

We improve this to 2.8, for the generalized problem with basestations. Our approx-
imation ratio is based on using Zelikovsky’s Relative Greedy (Zelikovsky 1996) algo-
rithm for Steiner tree and results on the k-restricted ratio (defined later) of Cohen and
Nutov (2013). Thus this paper follows closely Cohen and Nutov (2013), who con-
sider the special case where r = R , with the following main difference. We use our
own (generalized from Calinescu and Tongngam 2008) α2 ratio (defined later), which
differs from the same ratio in the case r = R (which was settled by Mandoiu and
Zelikovsky 2000).

In order to discuss generalizations, we use the strict Hadwiger number of the unit
ball in the normed space, defined as follows: let Δ be the maximum number of points
on a unit ball with distance strictly bigger than 1 between any pair of points. It is known
(Robins andSalowe 1995;Martini andSwanepoel 2006) thatΔ is themaximumdegree
of a minimum-degreeMST in the normed space. It is known that in the Euclidean two-
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dimensional space, Δ = 5, and in the three dimensional space, Δ = 12. In Sect. 2, we
will prove the following Theorem:

Theorem 1 Single- Tiered Relay Placement with Basestations in the case
of Euclidean R

2 admits a polynomial time algorithm with approximation ratio
(1 + ln 6 + ε) < 2.8. In arbitrary normed spaces, the ratio is 1+ ln(Δ+1)+ ε, pro-
vided that instances of Single- Tiered Relay Placement with Basestations

on a constant number of sensors can be (1 + ε)-approximated in polynomial time.

Arelated problemhas the same input and output type, except thatwe explicitly allow
any combination of two sensors and/or relays to have the same coordinates, and we
require that G be two-connected. Our paper (Zhang et al. 2007) introduced Single-

tiered Relay Placement for Biconnectivity and obtain, in the Euclidean
two-dimensional space, an approximation ratio of 14 by computing a 2-approximation
(using Khuller and Raghavachari 1996) of the minimum-cost spanning two-connected
subgraph, with costs as in the previously mentioned MST-based approximation for
Single- Tiered Relay Placement, followed by placing, also as above, the nec-
essary number of relays on each edge of the two-connected subgraph produced by
the approximation algorithm. For Biconnectivity with basestations (2-RPwB) in the
Euclidean two-dimensional plane, Zhang et al. (2007) claimed a 16-approximation
using a similar approach.

We incorporate results from Zhang et al. (2007) to prove, in Sect. 4, the next
theorem.Noother submission based onZhang et al. (2007)wasmade, and, even though
Zhang et al. (2007) has more than 100 citations, we could not find any improvements
in the approximation ratio for the single-tiered results.

Theorem 2 Single- tiered Relay Placement for Biconnectivity with

Basestations admits a polynomial-time algorithm with approximation ratio Δ + 2.
In the Euclidean two-dimensional plane, the approximation ratio is 7.

This is obtained by a variant of the algorithm used by Cohen andNutov (2013), with
the only significant difference being computing a (different) average degree bound of
certain trees. This part comes from Zhang et al. (2007), overcoming some technical
difficulties to improve by an additive term of 1 for the version with basestations.

1.1 Related work

In Tang et al. (2006), Tang, Hao, and Sen present a 4.5-approximation algorithm
for Single- tiered Relay Placement and its version where two connectivity is
required. However, Tang et al. (2006) assumes that R > 4r and that the sensors are
uniformly distributed.

MSPT (Minimum Number of Steiner Points Tree with bounded edge length) is
Single- Tiered Relay Placement in the case R = r . In the case of Euclidean R2,
MSPT was introduced by Lin and Xue (1999) and proven NP-hard. They also prove
that the MST heuristic achieves an approximation ratio of 5. Mandoiu and Zelikovsky
(2000) give a tight analysis of 4 for the MST-based algorithm and generalize the proof
to arbitrary normed spaces obtaining a ratio of Δ − 1. Chen et al. (2001) also prove
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the same ratio of 4 but with a different approach, and present a 3-approximation algo-
rithm. Later, Cheng et al. (2008) improve the running time of some of the algorithms
found in Chen et al. (2001) and present a randomized algorithm with approxima-
tion ratio 2.5. In arbitrary normed spaces, Nutov and Yaroshevitch (2009) obtain a
(�(Δ + 1)/2� + 1 + ε)-approximation. Recently, Cohen and Nutov (2013) propose
a (1 + ln(Δ − 1) + ε)-approximation for this problem using Zelikovsky’s Relative
Greedy Zelikovsky (1996) local replacement algorithm.

The MSPT variant where two-connectivity is required was introduced by Kashyap
et al. (2006, 2011), and they obtain an approximation ratio of 10 (= 2Δ) in the
Euclidean R

2. A variant of the same algorithm, was shown by Calinescu (2012) to
have approximation ratio of Δ in arbitrary normed spaces. Here and later, elements of
S ∪ B are also called terminals.

2 Proof of Theorem 1

Given a tree T on S ∪ B ∪ Q, a Steiner component is a maximal subtree all whose
internal vertices (if any) are from Q. The edges of T are partitioned into these Steiner
components. If, for a tree T , each of its Steiner components has at most k vertices
from B ∪ S, they form a k-restricted decomposition of T .

Call a feasible solution Q of the Single- Tiered Relay Placement problem
a bead-solution if the graph G induced by S, B, and Q contains a spanning tree T
where each node from Q has degree exactly two. The MST-based algorithm produces
a bead solution. In a bead-solution, we may call the relay nodes beads.

For x, y ∈ S ∪ B, define

w(x, y) =

⎧
⎪⎨

⎪⎩

0 if ||x, y|| ≤ r or x, y ∈ B

1 + �||x,y||−2r
R 	 if r < ||x, y|| and x, y ∈ S

1 + �||x,y||−r−R
R 	 otherwise.

One can easily verify thatw(x, y) is theminimumnumber of relay nodes required to
connect x and y.Moreover, if one is to construct a bead-solution, thenonly the spanning
tree T matters, and we may as well directly construct a spanning tree with minimum
number of beads - that is a tree T ′ spanning S with minimum

∑
xy∈E(T ′) w(x, y).

Our approximation algorithm is based onZelikovsky’sRelativeGreedy (Zelikovsky
1996). The general idea is that we first select a group of up to k sensors and basestations
that if connected optimally improve the approximation given by a MST. Then this
k-restricted Steiner component is connected, and the algorithm repeats until no k-
restricted Steiner component improves the spanning tree approach. Finally, a MST is
used to finish connecting the sensors.

In an arbitrary normed space, Theorem 1 depends on the existence of a method for
finding a (1+ ε)-approximation to the problem with a fixed number of sensors. Even
in the Euclidean R

2, there is no known way to compute an exact solution to Single

Tiered Relay Placement with Basestations on a set of up to k sensors for our
k-restricted Steiner components. Still, from the definition of a k-restricted components,
the sensors and basestation nodes make up the leafs of a tree in the induced graph.
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In fact, we never need more than one basestation in the same Steiner component,
as they are already connected by a path of total weight 0. With no basestation, we can
consider the problem on these at most k sensors to be an instance of Two- Tiered

Relay Node Placement. Since Efrat et al. (2008) claims a PTAS for this problem
in R

2, we will use a (1 + ε)-approximation of the optimal solution in our algorithm.
One basestation does not change the approach of Efrat et al. (2008).

We remark that, using this PTAS, a (1 + ε)-approximation of the single tiered
problem can be done in time exponential in the number of sensors.

We will briefly sketch the approximation argument of Zelikovsky (1996) to show
the result of replacing optimal solutions on subproblemswith (1 + ε)-approximations.
For a problem instance I , we use opt (I ) to denote the optimal solution to I and τk(I )
to denote the optimal solution that decomposes into k-restricted Steiner components.
Then we define αk = supI∈I

τk (I )
opt (I ) .

Lemma 1 For any integer k ≥ 2 and ε > 0, Single- Tiered Relay Placement

with Basestations admits a polynomial time approximation with approximation
ratio (1 + ε)αk(1 + ln α2).

Proof The lemma follows immediately from the the following statement, with β =
1 + ε.

It just happens that the approximation ratio proof of Relative Greedy given byGröpl
et al. (2001) (Theorem 3.1) goes through when one uses a β-approximation instead
of finding the optimum way when connecting k terminals, given an overall ratio of
βαk(1 + ln α2).

If one wants to check, please refer to Gröpl et al. (2001) for most of the notions
below (which differs fromwhat we use in the rest of the paper). We denote the number
of relays our β-approximation uses to connect a set of terminals T by appr(T ) and,
(to match Gröpl et al. 2001) by |T | denote the optimum number of relays to connect
T . Here R denotes the set of terminals (in our Lemma, this is S ∪ B). Let Ti be the set
of terminals that our algorithm chooses to connect in iteration i , and ji be the index
that achieves the minimum in their Eq. (10). Then

appr(Ti+1)/β

MST(R/T1...Ti ) − MST(R/T1...Ti Ti+1)
(1)

≤ appr(T ∗
ji
)/β

MST(R/T1...Ti ) − MST(R/T1...Ti T ∗
ji
)

(2)

≤ |T ∗
ji
|

MST(R/T1...Ti ) − MST(R/T1...Ti T ∗
ji
)

(3)

Then the same proof will work with appr(Ti )/β instead of |Ti |. The final result
will be

imax∑

i=0

appr(Ti )/β = smtk + smtk ln
MST(R)

smtk
.

The βαk(1 + ln α2) ratio immediately follows. ��
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The method proposed by Cohen and Nutov (2013) for the special case when r = R
and B = ∅ uses the result in Chen et al. (2001) to solve the k-restricted Steiner trees
exactly in the two-dimensional Euclidean plane. However, Chen et al. (2001) has the
limitation of requiring a polynomial bound on the distance between any two sensors.
This bound is required because their method enumerates out all possible candidate
points for relays, which may be exponentially large between distant relays. Our work
avoids this issue by utilizing the existing PTAS for the Two-Tiered problem. This
PTAS gives its output as a set of points to place relays and lines to place relays evenly
along. This allows it to output a solution with an exponential number of relays in
polynomial time.

Then all that remains in order to prove Theorem 1 is to give an upper bound on the
values of α2 and αk .

Lemma 2 α2 ≤ Δ + 1.

The proof of this lemma is deferred to Sect. 3. This result is tight in the two-dimensional
Euclidean plane as shown by the example given in Fig. 1.

Cohen and Nutov (2013) proved that for ST-MSP, αk approaches 1 as k grows. We
adapt their proof to apply it to RPwB to get the following Lemma.

Lemma 3 For any integer k ≥ 4Δ − 2, αk ≤ 1 + 2
�lg�k/(2Δ−1)��

Proof This lemma can be found by adapting a lemma used in Cohen and Nutov (2013)
to prove a similar result for the special case when r = R follows. Their lemma is as
follows:

2 3

1 2 3

= Sensor node

= Relay node

R=5r R=5rr

1

(a)

(b)

Fig. 1 a is an optimal solution, b is an output from the MST-based algorithm. For such an example where
the optimal solution requires |Q| relays (here |Q| = 3), the MST solution will be 4+ 6(|Q| − 1). Thus the
ratio approaches 6 in the Euclidean two-dimensional plane
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Lemma 4 [Lemma 9 of Cohen and Nutov (2013)] Let T = (V, F) be a tree of
maximum degree δ ≥ 2, let S ⊆ V , and let Q = V \S. Then for any integer k ≥ 2δ−2
there exists a connected hypergraph H = (S, E) of rank ≤ k such that

∑
A∈E |VA ∩

Q| ≤
(
1 + 2

�lg�k/δ−1��
)

|Q|.

The hyperedges of this lemma are k-restricted Steiner components. Combining this
with the proof below that the induced graph of any feasible solution has a spanning
tree with maximum degree at most 2Δ will let us conclude Lemma 3.

Let Q be a feasible solution to the problem on sensor set (Basestations are handled
as in Lemma 5 below). To find this degree bounded spanning tree, we use the following
construction. Assign every edge in the graph induced by S and Q weight equal to the
Euclidean distance between the endpoints. Then let T be a minimum-weight spanning
tree of this graph. It is known that for ST-MSP (ie when r = R and thus all edges
can have length from 0 to r ), there exists such a minimum weight tree with maximum
degree Δ (Robins and Salowe 1995; Martini and Swanepoel 2006).

We partition our tree T into two edge-disjoint forests F1 and F2, where an edge is
in F1 if and only if its length is less or equal to r , and F2 has all remaining edges. Each
tree in these forests must be a minimum weight tree, otherwise T could be shortened.
All edges in F1 have lengths between 0 and r , inclusive. So we can use the previously
mentioned result on each tree in F1 to find another minimum weight tree the same
nodes with maximum degree Δ. Similarly, all edges in F2 have length greater than r ,
which implies they are all have relays or basestations as both endpoints. Therefore all
edges in F2 have lengths between 0 and R. Using the same result as before, we can
find another minimum-weight tree for each tree in F2 with maximum degree Δ. By
taking the union of F1 and F2 after these modifications, we get a minimum weight
tree with maximum degree 2Δ.

This degree bounded tree along with the Lemma 4 allows us to conclude Lemma 3.
��

By combining Lemma 1 with the upper bounds given by Lemmas 2 and 3, we find

that for any k ≥ 4Δ−2,we can compute a
(
(1+ε)(1+ 2

�lg�k/(2Δ−1)�� )(1+ln(Δ+1))
)
-

approximation in polynomial time. For large enough k, the approximation ratio
becomes (1 + ε′)(1 + ln(Δ + 1)), which completes our proof of Theorem 1.

3 Proof of Lemma 2

Lemma 2 follows immediately from the lemma below, whose proof only has minor
modifications compared to our proof from Calinescu and Tongngam (2008).

Lemma 5 Given Q̄ a solution to the Single- Tiered Relay Placement with

Basestations problem with input S, we can construct a bead-solution Q̄′ for S with
|Q̄′| ≤ (Δ + 1)|Q̄|.
Proof Let G be the connected graph induced by Q̄ and the input S and B. We assign
each edge between basestations in G weight zero, and all other edges weight equal to
the distance between the endpoints. Let T̄ be a MST in G where ties are broken such
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that edges between two nodes of S ∪ B are lighter than edges with only one endpoint
in S ∪ B.

Now consider the Steiner components in T̄ . It is sufficient to prove that each Steiner
component can be connected by a bead solution with at mostΔ+1 times more relays.
Therefore we will let T be a single subtree, S to be the sensors in T, Q to be the
relays of Q̄ in T . If Q 
= ∅, this component must have at most one edge incident to
a basestation (otherwise a lighter spanning tree is created by replacing one of those
edges with a basestation to basestation edge), and let b to be the single basestation in
our component, if one exists (in which case b is a leaf in T ).

Partition Q into X and Y : the nodes of X have a neighbor from S in T , and the
nodes of Y do not. So a node of Y has, in T , only neighbors from Q ∪ {b}. T will
be a minimum Euclidean spanning tree since it only contains one vertex in B. This
implies, from a standard argument (Robins and Salowe 1995; Martini and Swanepoel
2006) that each node of Y has at most Δ neighbors from Q ∪ {b}. Our proof, like (Lin
and Xue 1999; Mandoiu and Zelikovsky 2000), is based on replicating nodes of Q,
which means replacing a node by a number of beads placed in the same position.

Take a maximal set A of Y which is connected in T . A together with the nodes
of X adjacent to it induces a subtree TA of T (this is akin to the Steiner component
used for the Steiner tree problem (Zelikovsky 1993; Borchers and Du 1997). We use
the standard argument of doubling each edge of TA, and doing an Eulerian tour of TA
starting from a node of X . Each node of X other than the start appears once in this tour,
and each node of Y exactly as many times as its degree in TA, that is, at most Δ times.
Replicate each node of Y according to its degree, and replace TA by the Eulerian tour
above minus the last edge of the tour. Do this for all such A and obtain a new tree T ′
with node set S ∪ X ∪ Y ′ ∪ {b}, where Y ′ are the nodes obtained by replicating nodes
of Y , and such that T ′ is spanning and each node of Y ′ has degree at most two, i.e., is
a bead. Note that |Y ′| ≤ Δ|Y |.

Repeatedly remove nodes of X ∪Y ′ if they have degree one, resulting in a spanning
tree T ′′ with node set S∪ X ′ ∪Y ′′ ∪{b}, where Y ′′ and X ′ respectively, are those nodes
of Y ′ and X respectively, not removed. Thus in T ′′ all the leaves are from S ∪ {b}, and
all the nodes of Y ′′ have degree exactly two and neighbors only in X ′ ∪ Y ′′ ∪ {b}.

Root T ′′ at b if it exists and at an arbitrary leaf otherwise, and then execute a
postorder traversal of T ′′, processing each node of x ∈ X ′ as described below. While
doing this we construct a new tree T3, initialized to be T ′′. Node x must have, in T ′′, at
least one neighbor in S - and in fact, since the neighbors of x from S in T ′′ are exactly
neighbors of x from S in T , we can derive that x has at most Δ neighbors from S
in T ′′.

During the postorder traversal, we maintain the following invariant: each node of
x ∈ X ′ ready to be processed (that is, with all its descendants in X ′ already processed)
has, in T3, between one and Δ children, and all are from S. Also, except for x , all
its descendants are nodes from S or beads. In addition, at all times, nodes from Y ′′
remain beads (have degree two) with neighbors only from Y ′′ ∪ X ′ ∪ {b} or are newly
introduced beads.

Note that this invariant holds for nodes from X ′ which do not have proper descen-
dants from X ′: such a node x ′ must have descendants or it would have been removed,
and if x ′ has a child y from Y ′′, then y must be on path to a node s from S (or all the
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= Sensor node

= Relay node (optimum)

= New bead (proof)

= Existing bead (proof)

Fig. 2 Illustration of the first subcase

subtree rooted at y would have been removed, starting with the leafs). Now, on the
path from y to s there must be a node from X ′ - since nodes of Y ′′ are not adjacent in
T ′′ to nodes of S. Thus if y is a child of x ′, we obtain that x ′ has proper descendants
from X ′ - a contradiction.

Now we describe how a node x from X ′ is processed: let s1, s2, . . . , sk be its
children; recall that all belong to S and that 1 ≤ k ≤ Δ. If the parent of x in T3 is a
node s from S, change T3 by replicating x k times connecting, by paths of length two
with the middle node a bead, s1 to s2, s2 to s3, and so on until sk is connected to s. If
the parent of x in T3 is b, change T3 as before with b instead of s.

If the parent of x in T3 is not from S ∪ {b}, then there is a path P from x to an
ancestor node x ′ ∈ X ′ ∪ {b} with all the intermediate nodes from Y ′′ - this is since the
root is from S or is b, and nodes in Y ′′ are never adjacent in T3 with nodes from S. If
x ′ ∈ X ′ then let s′ be some node of S adjacent to x ′, otherwise let s′ = b. For ease of
presentation, we consider two subcases: P has two nodes or strictly more than two.

In the first subcase, x is the child of x ′. Change T3 by replicating x k times into
beads x1, x2, . . . , xk , and adding a new bead, called x ′′, connecting by beads s1− x1−
s2− x2 . . . xk−1− sk − xk − x ′′ − s′. This is possible by placing x ′′ at the same position
as x ′. If x ′ is left without children, remove it from T3. Otherwise x ′ stays in T3, with
one less neighbor (x is gone, and the new nodes are not adjacent directly to x ′), until
all its descendants are processed. See Fig. 2 for an illustration. The result is that all the
nodes of the subtree rooted at x go in a subtree rooted at s′, and this subtree consists
only of nodes of S and beads. In total, instead of x , we introduced up to k+1 ≤ Δ+1
beads.

In the second subcase, let y1 be the second node of P and y2 be the next to last
node of P; note that y1, y2 ∈ Y ′′, and it is possible y1 = y2. Replicate x k times,
connecting by paths of length two with the middle node a bead: s1 and s2, etc, sk−1 to
sk , and sk to y1. Also, add another bead x ′′ connecting y2 to s′ by a path of length two.
This is possible with x ′′ being a bead in the same position as x ′. If x ′ is left without
children, remove it from T3. Otherwise x ′ stays in T3, with one less neighbor (y2 is
not adjacent to x ′ anymore, and the new nodes are not adjacent directly to x ′), until
all its descendants are processed. See Fig. 3 for an illustration. As before, the result
is that all the nodes in the subtree rooted at y2 go in a subtree rooted at s′, and this
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= Existing bead (proof)

= Sensor node

= Relay node (optimum)

= New bead (proof)

Fig. 3 Illustration of the second subcase

subtree consists only of nodes of S and beads. In total, instead of x , we introduced up
to k + 1 ≤ Δ + 1 beads.

Note that in no case a node of X ′ maintains children from X ′ ∪ Y ′′ when it is time
to be processed - such children are now adjacent to some newly introduced bead x ′′,
and x ′′ is adjacent to some node in S. Thus the invariant is maintained, each node of
X ′ is replaced by Δ + 1 beads, and by the time we finish this postorder processing T3
consists of beads only, with the number of new beads being at most (Δ + 1)|X ′|.

We conclude that the final T3 has only nodes of S and beads, and the number of
beads does not exceed

|Y ′′| + (Δ + 1)|X ′| ≤ |Y ′| + (Δ + 1)|X | ≤ (Δ + 1)(|Y | + |X |) = (Δ + 1)|Q|.

��

4 Proof of Theorem 2

Definition 1 For a subset C of nodes of a graph G = (V, E), let us use the following
notation: ΓG(C) is the set of neighbors of C in G; δG(C) = δE (C) is the set of
edges in E with exactly one endpoints in C ; E(C) is the set of edges in E with both
endpoints in C . Given S ⊆ V , a Steiner component of G is a subgraph of G with node
set C ∪ ΓG(C) and edge set E(C) ∪ δG(C), where C is a connected component of
G\(S ∪ B). Let E(X,Y ) to be the set of edges in E(G) with one endpoint in X and
the other in Y .

Continuing to follow (Cohen andNutov 2013)with simplified notation, we consider
the fractional bead solutions to the standard cut linear program relaxation problem of
bead solutions 2-RPwB. Thus G below is the complete simple graph of S ∪ B, with
we for e = uv being equal to w(u, v). We can assume that our weighted complete
graph is simple, as parallel edges have no effect on two-connectivity. The variables of
the program are “capacities” xe for all e ∈ E(G).
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minimize
∑

e∈E
wexe

subject to
∑

e∈E(V (G)\X,X)

xe ≥ 2 ∀ X ⊆ V (G),∅ 
= X 
= V (G)

∑

e∈E(V (G)\({z}∪X),X)

xe ≥ 1 ∀ z ∈ V (G) ∀ ∅ 
= X ⊂ V (G)\{z}
0 ≤ xe ≤ 1 ∀e ∈ E .

Using Menger’s theorem, one can check that, for a simple graph G and for an
integral vector x valid for the linear program above, the set E ′ of edges e of E(G)

with xe = 1 is such that the graph (V (G), E ′) is two-connected. Thus one can think of
a valid fractional vector x as being “fractional-two-connected”. We use τ ∗ to denote
the optimal solution to our linear program.

We will show that for any problem instance I the ratio τ∗(I )
opt (I ) is at most Δ+2

2 .
Now notice that an approximation algorithm that produce a bead solution of cost at
most ρτ ∗, will then give 2-RPwB a

(
ρ Δ+2

2

)
-approximation. The 2-approximation

for minimum-cost two-connected subgraph of Fleischer et al. (2006) (also handling
a more general problem) is based on iterative rounding and does have ρ = 2 above,
and thus we have a (Δ + 2)-approximation.

To prove our upper bound on the gap between the optimal relay placement and the
optimal fractional bead solution, we need the two lemmas below. The first of these,
Lemma 6, is a special case of a theorem proven in Cohen and Nutov (2013).

Lemma 6 [From Theorem 5 of Cohen and Nutov (2013), also implicit in the journal
version of Calinescu (2012)] Let G be a two-connected graph such that V (G) =
S ∪ B ∪ Q, and such that no proper two-connected subgraph J ′ of G exists such that
S ∪ B ⊆ V (J ′). Then every Steiner component of G is a tree. Furthermore for any
subset C of Steiner components of G, replacing each C ∈ C by a fractional DFS cycle
of capacity 1/2 results in a two-connected fractional bead solution.

Aside from the existence of basestations, the next lemma is our Lemma 3.3 of
Zhang et al. (2007) with Δ instead of 5. With basestations, it improves by an additive
term of 1 the bound in Lemma 3.7 of Zhang et al. (2007).

Lemma 7 Let Q be a feasible solution to 2-RPwB on sensor set S and basestation set
B. Then the induced graph has a two-connected subgraph that can be decomposed in
to Steiner components such that each component is a tree and satisfies the following:
Let Q′ denote the set of relays of some Steiner component. Then

∑
v∈Q′ degree(v) ≤

(Δ + 2)|Q′|.
Proof Let G be the induced graph of S, B, and Q. We will first find a subgraph G ′ of
G that is still two-connected, but has at most one edge incident to a basestation per
Steiner component. We assume that there are at least three basestations in total, we
will handle the case of two or less basestations in the last paragraph of our analysis.

We construct G ′ as follows: Start with G ′ being a cycle going through all bases-
tations in G. While there are sensors in G that are not in G ′, find a path starting and
ending inG ′ containing such a sensor (such a path exists becauseG has two paths, dis-
joint except the sensor endpoint, between the sensor and G ′). Add this path to G ′ and
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repeat. Note that this corresponds to an ear-decomposition and G ′ is two-connected;
at the end, S ∪ B ⊆ V (G ′).

Our algorithm maintains the loop invariant that all Steiner components in G ′ have
at most one edge incident to a basestation. This is trivially true in the initial cycle.
Each path added to G ′ can be adjacent to at most two basestations (the first and last
edge). Since the path contains a sensor, these two basestations will be incident to
different Steiner components. Therefore any Steiner component created has at most
one adjacent basestation. An existing Steiner component only becomes larger when
an added path starts or ends in it. Then by the same argument, no edge incident to a
basestation can be added to this component.

Let G ′′ by a subgraph of G ′ such that no proper two-connected subgraph J ′ of G ′′
exists such that S∪B ⊆ V (J ′). Now, byLemma6, all the Steiner components are trees,
and we still have that each Steiner components has at most one basestation. Further
assume that the total length (in the normed space) of the edges of G ′′ is minimized,
and ties are broken such that two nodes of S are considered closer than any other
combination of two nodes, if their pairwise length is the same. Let Q′′ be the set of
relays of G ′′. We use the following version of Lemma 3.2 of Zhang et al. (2007).

Claim Every vertex of Q′′ has at most Δ neighbors in S.

Proof Assume that there is a relay node y ∈ Q′′ that has at least Δ + 1 neighbors
in S. We will show that this assumption leads to another another two-connected Ĝ
subgraph of G ′ with S ∪ B ⊆ V (Ĝ), contradicting the shortest length assumption of
G ′′.

Recall thatΔ is themaximum number of points on a unit ball with pairwise distance
strictly bigger than 1. Let x1, x2, . . . , xk be the neighbors of y in S. As k > Δ, two
of these, say, x1 and x2, satisfy d(x1, x2) ≤ r and thus the undirected edge x1x2 is
induced by S. In fact, then next paragraph (whole argument taken from Robins and
Salowe (1995)) shows that we can assume d(x1, x2) ≤ d(y, x1).

Draw a ball of radius ε (using distance d) around x , where ε < d(y, xi ) for all
i . Let x ′

i be the intersection of a segment yxi with the boundary of this ball. Since k
exceeds the Hadwiger number of the unit ball in the normed space, there exist i, j with
d(x ′

i , x
′
j ) ≤ ε. Assume by symmetry that d(y, xi ) ≤ d(y, x j ). Drawing the ball of

radius d(y, xi ) around y; and let x ′′
j be the pointwhere the segment yx j used for finding

x ′
j intersects the boundary of this bigger ball. Then we also have d(xi , x ′′

j ) ≤ d(y, xi ),
and therefore

d(y, x j ) = d(y, x ′′
j ) + d(x ′′

j , x j ) = d(y, xi ) + d(x ′′
j , x j ) ≥ d(xi , x

′′
j )

+ d(x ′′
j , x j ) ≥ d(xi , x j ),

and all that remains is to relabel x j = x1 and xi = x2. use yi as y and y j as z, and
then d(x1, x2) ≤ d(y, x1) as desired.

We first prove the following proposition.

(a): G ′′ does not contain edge x1x2.

Since G ′′ is two-connected, there is a path π in G ′′ connecting xk and x1 without
using node y. If π does not go through x2, we have a scenario as shown in Fig. 4a. If
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x1

x2

xky

(a)

x1

x2

xky

(b)

Fig. 4 G′′ cannot contain the edge x1, x2. In case (a), the edge yx1 can be removed, and in case (b), the
edge yx2 can be removed

x1

x2

vy

(a)

x1

x2

vy

(b)

x1

x2

vy

(c)

Fig. 5 Replacing the edge yx1 with the edge x1x2. The situation in a is impossible. Subfigure b shows
part of G′′ (before) and subfigure c shows part of Ĝ (after)

π goes through x2, we have a path π ′ in G ′′ connecting xk and x2 without using nodes
y and x1, as shown in Fig. 4(b). In the first scenario (see Fig. 4a), G ′′ contains a cycle
going through x1, x2, y, and xk and a chord (edge connecting two non-consecutive
vertices of the cycle) yx1. Deleting the chord yx1 from G ′′ will reduce the length
without destroying two-connectivity (Frank 2011), contradicting the shortest length
assumption of G ′′. Similarly, deleting the chord yx2 will lead to a contradiction in the
second scenario (refer to Fig. 4b). This proves (a).

Let Ĝ be the subgraph of the graph induced by S, B, and Q′′ that is obtained from
G ′′ by replacing the edge yx1 with x1x2. Note that Ĝ has smaller total edge length
compared to G ′′. Next we prove
(b): For any two u, v ∈ S ∪ B, there exists a pair of internally-disjoint paths in Ĝ

connecting u and v.

Since G ′′ is two-connected, there exists a pair of internally-disjoint paths π1 and
π2 in G ′′ connecting u and v. If neither path uses edge y, x1, then π1 and π2 also form
a pair of internally-disjoint paths in Ĝ. Now we consider the case where one of the
paths (WLOG, assuming π1) uses edge yx1.

First, consider the subcase where {u, v} = {x1, x2}. In this case, π2 and the edge
x1x2 form two internally-disjoint x1–x2 paths in Ĝ (note that π2 is a path in G ′′ and
the edge x1x2 was proven not to be in G ′′, and thus π2 is internally-disjoint from the
edge x1x2).

Next, consider the subcase where u = x1 but v 
= x2. Since π1 goes through y
(which is a relay node), π2 does not go through y. If π2 goes through x2,G ′′ contains
the cycle formed by the two paths π1 and π2, as well as a chord yx2. This contradicts
the shortest length assumption of G ′′ (see Fig. 5a and the similar argument used in the
proof of (a)).

Therefore π2 does not go through x2 (see Fig. 5b). We can replace π1 with a new
v–x1 path π3 which goes from v to y along π1, then to x2 via edge yx2, then to x1 via
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edge x2x1 (see Fig. 5c). π2 and π3 form a pair of node disjoint xi–x1 paths in Ĝ. This
shows that (b) is true in this subcase.

If v = x2 and u 
= x1, and π1 uses the edge yx1, we may as well replace (if needed)
the portion of π1 between y and x2 by the edge yx2. If π1 still contains yx1, the we
replace in π1 the edges x2y and yx1 by x2x1, resulting in a path of Ĝ that is still
internally-disjoint from π2 (which remains a path of Ĝ). This shows that (b) is true in
this subcase.

Finally we consider the subcase where {u, v}∩{x1, x2} = ∅. Since π1 goes through
y, π2 does not go through y. If π2 goes through x2, then G ′′ contains the cycle formed
by the two paths π1 and π2, as well as a chord yx2, contradicting the shortest length
assumption of G ′′. Therefore π2 does not go through x2. We can replace π1 with a
new u–v path π3 which goes from u to y along π1, then to x2 via edge yx2, then to x1
via edge x2x1, then to v following the subpath on π1. π2 and π3 form a pair of node
disjoint u–v paths in Ĝ. This shows that (b) is true in this subcase, and completes the
proof for (b).

Thus according to (b), for any two distinct u, v ∈ S ∪ B, there exists a pair of
internally-disjoint paths in Ĝ connecting u and v. If Ĝ is not two-connected, it has a
vertex z such that removing z from Ĝ results in at least two connected components,
and one of these components contains no vertex of S∪B, since we have two internally-
disjoint paths between any two vertices of S ∪ B. Change Ĝ by removing one such
component, and note this does not decrease the connectivity between the vertices
of S ∪ B.

The total edge length of Ĝ also does not increase, so we did reach the contradiction
of finding in Ĝ a two-connected subgraph subgraph of G ′ with S ∪ B ⊆ V (Ĝ),
contradicting the shortest length assumption of G ′′. This completes the proof of the
claim. ��

Let Q′ denote the set of relays of some Steiner component of G ′′. Therefore we
have at most Δ|Q′| edges between sensors and relays in this Steiner component.

All internal nodes of the Steiner component are relays, and therefore our tree has
|Q′| − 1 relay to relay edges. When summing over the degree of all relays, these
edges will be counted twice. Combining this, with our bound on the number of edges
incident to a sensor and incident to a basestation the total degree of relays in our Steiner
component is bounded by:

∑

v∈Q′
δ(v) ≤ 1 + 2(|Q′| − 1) + Δ · |Q′| < (Δ + 2)|Q′|

This analysis assumed that we had at least three basestations. If there are two or
fewer basestations, then we can bound the number of edges of a Steiner component
incident to a basestation by 2 (the Steiner component being a tree where basestations,
if any, are leafs), which gives

∑
v∈Q′ δ(v) ≤ (Δ+2)|Q′| by the same arguments. This

finishes the proof of Lemma 7. ��
For a given Steiner component in the optimal solution, we can create a cycle by

using a depth first traversal and duplicating each relay every time it is visited. From
Lemma 7, we know this cycle will have at mostΔ+2 beads per relay node on average.
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Then by Lemma 6, assigning the cycle in each Steiner component of the optimal relay
placement capacity 1/2 we find a fractional bead solution with cost at most Δ+2

2 times
more than the optimal relay placement.

5 Conclusion

We have shown that the method presented by Cohen and Nutov for ST-MSP can be
extended to give a (1 + ln(Δ + 1) + ε)-approximation to Single- Tiered Relay

Placement with Basestations. In the case of relay placement on a Euclidean
plane, this result improves the best known approximation from 3.11 to 2.8.

In three dimensions, our result (Theorem 1) is conditional on the existence of a
(1 + ε)-approximation for a constant number k of sensors. Actually, the running time
of this approximation can be any function of k, but must be polynomial in the length
of the (binary) representation of R and the coordinates of the sensors. We comment
on the existence of such an algorithm. A (1 + ε)-approximation seems possible if the
solution is at least k2 (the sensor are far apart), since the minimum Euclidean-length
Steiner tree can be approximated (Arora 1998) and used, with nodes relay on the
Steiner points and beads on the edges, losing only 12k beads compared to an optimum
solution. When the sensors are close to each-other, the typical approach is to construct
a finite set of points (a large number such as kk) using rigidity/motion planning and/or
local changes arguments (in two dimensions, this appears in Chen et al. (2001), 11),
and argue that an optimum or close-to-optimum solution exists with all the relays
place on this finite set of points. We leave the existence of such an algorithm open. If
it exists, then this paper gives a 3.57-approximation. It is not clear to us whether the
approach of Efrat et al. (2008) extends to three dimensions at all.

We also considered the biconnected version of relay node placement with basesta-
tions and obtained a (Δ + 2)-approximation. We choose to base our presentation on
Cohen and Nutov (2013) and Fleischer et al. (2006) as it allows for citations instead of
longer proofs. We believe that using the variant of Khuller and Raghavachari (1996)
proposed by Auletta et al. (1999), with Gabow (1993) implementation of the Frank
and Tardos (1989) gives the same approximation ratio without the (slower) iterative
rounding method of Fleischer et al. (2006). This would be a variant of our Zhang et
al. (2007) algorithm.

A more general problem has as input connectivity requirements ruv ∈ {0, 1, 2}
and the induced graph is required to have ruv-internally disjoint between for each
u, v ∈ S ∪ B. We failed in generalizing our (Δ + 2)-approximation for this model,
precisely the claim inside the proof of Lemma 7 does not seem to hold, in light of
the example of Fig. 4 of Kashyap et al. (2006), when connectivity requirements are 1
between any two sensors other than the (already) adjacent sensors, where connectivity
requirements are 2.

Acknowledgments Gruia Calinescu research was supported in part by NSF Grant CCF-0515088. Ben-
jamin Grimmer research was supported in part by a College of Science Undergraduate Summer Research
Award. Satyajayant Misra research was done while at Arizona State University, and was supported in part
by ARO Grant W911NF-04-1-0385, and NSF Grants CNS-1248109 and HRD-1345232. Sutep Tongngam
research was done while at the Illinois Institute of Technology, and was supported in part by NSF Grant

123



1296 J Comb Optim (2016) 31:1280–1297

CCF-0515088. Guoliang Xue research was supported in part by NSF Grant CCF-1115129 and ARO Grant
W911AF-09-1-0467. The information reported here does not reflect the position or the policy of the federal
government. Weiyi Zhang research was done while at Arizona State University, and was supported in part
by NSF Grant ANI-0312635.

References

Arora S (1998) Polynomial time approximation schemes for Euclidean traveling salesman and other geo-
metric problems. JACM 45(5):753–782

Auletta V, Dinitz Y, Nutov Z, Parente D (1999) A 2-approximation algorithm for finding an optimum
3-vertex-connected spanning subgraph. J Algorithms 32:21–30

Borchers A, Du D-Z (1997) The k-Steiner ratio in graphs. SIAM J Comput 26(3):857–869
Bryant V (1985) Metric spaces: iteration and application. Cambridge University Press, Cambridge
Calinescu G (2012) Relay placement for two-connectivity. In: Bestak R, Kencl L, Li LE, Widmer J, Yin H

(eds) Networking (2) lecture notes in computer science, vol 7290. Springer, Berlin, pp 366–377
Calinescu G, Tongngam S (2008) Relay nodes in wireless sensor networks. In: Li Y, Huynh DT, Das S, Du

D-Z (eds) Wireless algorithms, systems, and applications, of lecture notes in computer science, vol
5258. Springer, Berlin, pp 286–297

ChenD, DuD-Z, HuX-D, Lin G-H,Wang L, XueG (2001) Approximations for Steiner trees withminimum
number of Steiner points. Theor Comput Sci 262(12):83–99

Cheng X, Du D-Z, Wang L, Xu B (2008) Relay sensor placement in wireless sensor networks. Wirel. Netw.
14(3):347–355

Cohen N, Nutov Z (2013) Approximating 0,1,2-survivable networks with minimum number of Steiner
points. CoRR, arXiv:1304.7571

Efrat A, Fekete SP, Gaddehosur PR, Mitchell JS, Polishchuk V, Suomela J (2008) Improved approximation
algorithms for relay placement. In: Halperin D, Mehlhorn K (eds) Algorithms - ESA 2008, lecture
notes in computer science, vol 5193. Springer, Berlin / Heidelberg, pp 356–367

Efrat A, Fekete S.P, Gaddehosur P.R, Mitchell J.S, Polishchuk V, Suomela J Improved approximation
algorithms for relay placement. from http://webstaff.itn.liu.se/valpo40/pages/papers.html

Fleischer L, JainK,WilliamsonDP (2006) Iterative rounding 2-approximation algorithms forminimum-cost
vertex connectivity problems. J Comput Syst Sci 72:838–867

Frank A (2011) Connections in combinatorial optimization. Oxford University Press, Oxford
Frank A, Tardos E (1989) An application of submodular flows. Linear Algebr Appl 114(115):320–348
GabowHN (1993)A representation for crossing set familieswith applications to submodular flow problems.

In: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, SODA ’93,
pages 202–211, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics

Gröpl C, Hougardy S, Nierhoff T, Prömel HJ (2001) Approximation algorithms for the Steiner tree prob-
lem in graphs. In: Du D-Z, Cheng X (eds) Steiner trees in industries. Kluwer Academic Publishers,
Dordrecht, pp 235–279

Kashyap A, Khuller S, Shayman M (2006) Relay placement for higher order connectivity in wireless sen-
sor networks. INFOCOM 2006. 25th IEEE International Conference on Computer Communications.
Proceedings, pp 1–12

Kashyap A, Khuller S, Shayman MA (2011) Relay placement for fault tolerance in wireless networks in
higher dimensions. Comput Geom 44(4):206–215

Khuller S, Raghavachari B (1996) Improved approximation algorithms for uniform connectivity problems.
J Algorithms 21:433–450

Lin G-H, Xue G (1999) Steiner tree problem with minimum number of Steiner points and bounded edge-
length. Inf Process Lett 69(2):53–57

Lloyd EL,XueG (2007) Relay node placement inwireless sensor networks. IEEETransComput 56(1):134–
138

Mandoiu II, Zelikovsky AZ (2000) A note on the MST heuristic for bounded edge-length Steiner trees with
minimum number of Steiner points. Inf Process Lett 75(4):165–167

Martini H, Swanepoel KJ (2006) Low-degree minimal spanning trees in normed spaces. Appl Math Lett
19(2):122–125

Nutov Z, Yaroshevitch A (2009) Wireless network design via 3-decompositions. Inf Process Lett
109(19):1136–1140

123

http://arxiv.org/abs/1304.7571
http://webstaff.itn.liu.se/valpo40/pages/papers.html


J Comb Optim (2016) 31:1280–1297 1297

Robins G, Salowe JS (1995) Low-degree minimum spanning trees. Discret Comput Geom 14(2):151–165
Tang J, Hao B, Sen A (2006) Relay node placement in large scale wireless sensor networks. Comput

Commun 29:490–501
Zelikovsky A (1996) Better approximation bounds for the network and Euclidean Steiner tree problems.

Technical Report CS-96-06, Department of Computer Science, University of Virginia
Zelikovsky AZ (1993) An 11/6-approximation algorithm for the network Steiner problem. Algorithmica

9(5):463–470
ZhangW,XueG,Misra S (2007) Fault-tolerant relay node placement in wireless sensor networks: Problems

and algorithms. INFOCOM 2007. Proceedings 26th IEEE International Conference on Computer
Communications. pp 1649–1657

123


	Improved approximation algorithms for single-tiered relay placement
	Abstract
	1 Introduction
	1.1 Related work

	2 Proof of Theorem 1
	3 Proof of Lemma 2
	4 Proof of Theorem 2
	5 Conclusion
	Acknowledgments
	References




