
J Comb Optim (2016) 31:1061–1089
DOI 10.1007/s10878-014-9810-5

Cardinality constraints and systems of restricted
representatives

Ioannis Mourtos

Published online: 28 October 2014
© Springer Science+Business Media New York 2014

Abstract Cardinality constraints have received considerable attention from the Con-
straint Programming community as (so-called) global constraints that appear in the
formulation of several real-life problems, while also having an interesting combinato-
rial structure. After discussing the relation of cardinality constraints with well-known
combinatorial problems (e.g., systems of restricted representatives), we study the poly-
tope defined by the convex hull of vectors satisfying two such constraints, in the case
where all variables share a common domain. We provide families of facet-defining
inequalities that are polytime separable, together with a condition for when these fam-
ilies of inequalities define a convex hull relaxation. Our results also hold for the case
of a single such constraint.

Keywords Global cardinality constraint · Polyhedral combinatorics · Constraint
programming

1 Motivation

The cardinality constraint, initially introduced as the global cardinality constraint
(Regin 1996), restricts the number of occurrences of values assigned to a set of vari-
ables. Each value is given a lower bound and an upper bound, and the constraint
requires that the number of occurrences of each of the values falls within these bounds
in this set of variables. This constraint can be written as (Hooker 2012, Sect. 7.10.1)
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cardinali t y(x, J ; l, u),

x j ∈ Dj , j ∈ J.

Let
⋃

j∈J D j = D = {d0, . . . , d|D|−1} be the set of all values and K = {0, . . . , |D|−
1} the set indexing it. The constraint states that each value dk (k ∈ K ) must occur at
least lk and at most uk times among the variables {x j : j ∈ J }, where l ≤ u (i.e.,
lk ≤ uk for all k ∈ K ). Without loss of generality, let d0 < · · · < d|K |−1.

This constraint has several applications (Bulatov andMarx 2010), including instruc-
tion scheduling (vanBeek andWilken 2001) and car sequencing (Quimper et al. 2005).
This has motivated an extensive literature within the Constraint Programming (CP)
community in the form of procedures that reduce the set of solutions through tighten-
ing the domain of each variable. In CP terms, this research effort aims at accomplish-
ing various forms of consistency (see Hooker 2012 for related definitions) including
arc-consistency (Regin 1996), cost-based arc consistency (Regin 2002) and bounds
consistency (Katriel and Thiel 2005; Quimper et al. 2005). A generalization of the
cardinality constraint, discussed in Samer and Szeider (2011), is the extended global
cardinality constraint, in which the number of occurrences of each value dk ∈ D must
belong to a set of (not necessarily subsequent) integers, called the cardinality set of
dk .Another interesting extension of the cardinality constraint to set, multiset and tuple
variables appears in Quimper and Walsh (2006).

In contrast, the literature from an Integer Programming (IP) perspective remains
limited. Two families of valid inequalities for the single cardinality constraint appear
in (Hooker, 2012, Sect. 7.10.1), together with a claim that these inequalities describe
the convex hull of vectors satisfying a cardinality constraint. Preliminary results are
presented in Mourtos (2013) regarding two cardinality constraints in the special case
where all variables share a common domain D = {0, . . . , |D| − 1} = K . These
results include a condition for the associated polytope to be full-dimensional, and,
given that the polytope is full-dimensional, conditions for the inequalities of Hooker
(2012) to be facet-defining. The polyhedral study of multiple cardinality constraints,
e.g., the dimension and the facets of the associated polytope, is also limited. Notably,
results of this kind exist for the multiple alldifferent constraints (Bergman and Hooker
2014; Magos and Mourtos 2011; Magos et al. 2012) (the alldifferent constraint is
a special case of the cardinality constraint, in which lk = 0 and uk = 1 for all
k ∈ K ).

Multiple cardinality constraints give rise to a cardinality system, i.e., a set C of
cardinality constraints inwhich all variables share the same domain (i.e., x j ∈ D,∀ j ∈
J ) and all constraints admit the same lower and upper bounds on the occurrence of
each value. The formulation

cardinali t y(x, Jc; l, u), c ∈ C, (1)

dictates that each value dk ∈ D must occur at least lk and at most uk times (l ≤ u) in
each constraint c ∈ C, where J = ⋃

c∈C Jc is the set of all variables.
The polyhedral study of global constraints has been the common theme of several

recent papers. A typical such paper considers a constraint
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constraint (x, J ; ...) ⊆
⊗

j∈J
D j , where x j ∈ Dj , j ∈ J,

where J is the set of variables and
⊗

j∈J D j is the external product of the domains
of all the variables. Then, such a paper considers the polytope defined by the convex
hull of vectors satisfying such a constraint, assuming that Dj = D ( j ∈ J ); i.e.,
the polytope P = conv{x ∈ D|J | : x satisfies constraint (x, J ; ...)}. Obtaining
valid inequalities for P allows the formulation of LP-relaxations for the constraint in
hand, while using (in the formulation) only the facet-defining among these inequalities
results in a ‘tight’ relaxation. A formulation containing all facet-defining inequalities
provides a convex hull relaxation. There are several arguments in support of such
relaxations regarding the effective integration of CP and IP methods (Hooker 2012;
Milano et al. 2002).

Furthermore, it remains important to obtain these relaxations using just the vari-
ables appearing originally, without including any additional 0 − 1 variables (as in
Hooker 2012, Sect 7.10.2). At the very least, this approach results in a significant
reduction in the number of variables, since the standard approach replaces each vari-
able x j ∈ D with |D| binary variables zi j through setting x j = ∑

i∈D i · zi j (see, for
example, Williams and Yan 2001). Constraints for which this has been accomplished
via finding some (or all) of the facets of P include alldifferent (Williams and Yan
2001), cumulative scheduling (Hooker and Yan 2002), cardinality rules (Balas et al.
2004; Yan and Hooker 1999) and circuit (Kaya and Hooker 2011). Such polytopes are
also of interest from a technical perspective, since the polyhedral combinatorics liter-
ature focuses on examining polytopes defined on binary, rather than n-ary, variables.
The facet-defining inequalities of the polytopes arising from n-ary formulations are
typically quite different from the facet-defining inequalities of the associated binary
polytopes (e.g., Kaya and Hooker 2011). Another benefit is that valid inequalities
defined in the original n-ary space can be ‘translated’ into a binary model in order to
further strengthen it (Bergman and Hooker 2014).

The cardinality constraint is of particular interest also because of its relation to
fundamental combinatorial problems. To better illustrate this relation, consider the
‘variable-value’ graph G(VG , EG), defined by VG = {x j : j ∈ J } ∪ D and EG =
{(x j , d) : j ∈ J, d ∈ Dj }. An example is shown at Fig. 1. For each v ∈ VG, define

δ(v) = {e ∈ EG : e is incident to v}. Given a vector b ∈ Z |VG |
+ , a subset S of edges

(i.e., S ⊆ EG ) is a simple b-edge cover if |S ∩ δ(v)| ≥ bv (Schrijver, 2004, Sect.
21.9) and a simple b-matching if |S ∩ δ(v)| ≤ bv (Schrijver, 2004, Sect. 21.3). In
other words, a subset of edges is a simple b-edge cover if the subset includes at least
bv edges incident to node v (for each v ∈ V ) and a simple b-matching if the subset
includes at most bv such edges.

For each e ∈ EG let ye ∈ {0, 1} and, for each v ∈ VG , define y(v) = ∑{ye :
e ∈ δ(v)}. It is clear that there is a 1− 1 correspondence between vectors x satisfying
cardinali t y(x, J ; l, u) and subsets of EG satisfying

y(x j ) = 1, j ∈ J,

ld ≤ y(d) ≤ ud , d ∈ D.
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Fig. 1 Graph G for
cardinali t y(x, {1, 2, 3, 4}; [0, 1], [4, 2]),
x j ∈ Dj = {0, 1}.

Therefore, cardinali t y(x, J ; l, u) is an n-ary representation of the subsets of edges
that are simple (ė, l)-edge covers and (ė, u)-matchings of graph G, where ė =
[1 · · · 1] ∈ R|J |. Considering the example of Fig. 1, notice that the ordered pair
appearing besides each node denotes the smallest and the largest number of edges
to be incident to it, e.g., node ‘x1’ must have exactly one edge incident to it (since
variable x1 must receive a value) whereas node ‘1’ must have at least 1 and at most
2 edges incident to it (since value 0 must be received by at least l1 = 1 and at
most u1 = 2 variables). The ‘broken’ edges at Fig. 1 correspond to the solution
x1 = x2 = 0, x3 = x4 = 1.

As another example, consider the collection of sets {Dj , j ∈ J }where⋃
j∈J D j =

D and l, u ∈ Z |D|
+ with l ≤ u. According to Ford and Fulkerson (1958), a system

of restricted representatives (SRR) with respect to l and u is a sequence (x1, . . . x|J |)
such that

x j ∈ Dj , ld ≤ |{ j ∈ J : x j = d}| ≤ ud for all d ∈ D =
⋃

j∈J
D j . (2)

In this way, each vector x satisfying cardinali t y(x, J ; l, u) is an SRR and vice-versa.
Equivalently, a cardinality constraint models transversals (Mirsky 1971) with lower
and upper bounds (Schrijver (2004),Theorems 22.17 and 22.18]. We recall that a
transversal with respect to the collection of sets {Dj , j ∈ J } is a sequence of pairwise
different elements (d1, . . . , d|J |) such that d j ∈ Dj , while a transversal with lower

and upper bounds l, u ∈ Z |D|
+ (l ≤ u) is a sequence (x1, . . . x|J |) satisfying (2).

The ‘variable-value’ graph can be generalized for a cardinality system (1), the
only difference being that VG now includes one node for each variable occurring in
any Jc, c ∈ C. For that graph, the problem of simultaneous matchings (Kutz et al.
2008) asks for “a subset of edges that is simultaneously a perfect matching for each
constraint set in C” (i.e., for each {x j , j ∈ Jc}, c ∈ C). As observed in Kutz et al.
(2008), a solution to this problem corresponds to a solution for multiple alldifferent
constraints and vice-versa. Accordingly, a solution of a cardinality system corresponds
to a solution to the problem of simultaneous (ė, l)-edge covers and (ė, u)-matchings
(and simultaneous SRRs/transversals) and vice-versa. Since the cardinality system
generalizes simultaneous matchings (Kutz et al. 2008, Theorem 1) implies that it
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remainsNP-complete to find a feasible solution to a cardinality system having |C | ≥ 2
if the domains of the variables are not the same.

In this paper, we pursue a polyhedral study of the cardinality system (and SRRs) by
examining the polytope defined by the convex hull of vectors satisfying two cardinality
constraints, in the case where all variables share a common domain D of arbitrary, yet
pairwise different, real numbers. We establish the dimension of this polytope (Sect.
2) and examine which inequalities of two known families are facet-defining (Sect.
3). Then, we provide a condition for these families to define a convex hull relaxation
(Sect. 4).

2 The polytope and its dimension

Let |C | = 2 and let J = J1 ∪ J2 be the set indexing the variables belonging to at least
one of the cardinality constraints. The cardinality system is written as

cardinali t y(x, J1; l, u), (3)

cardinali t y(x, J2; l, u), (4)

x j ∈ D,∀ j ∈ J. (5)

Note that the above system assumes that the bounds on the number of occurrences
of each domain value are the same for both constraints. However, these bounds can
differ from one constraint to the other. Therefore, let us emphasize that this paper
concentrates on the case where the bounds are the same for both constraints, since
several of the results presented here do not generalize when these bounds differ from
one constraint to the other.

Let J1∩ J2 = T and I1 = J1\T, I2 = J2\T , i.e., the set T indexes the variables that
are common to both constraints, while I1 and I2 are the sets of variables appearing
exclusively in the first and the second constraint, respectively. Notice that T = ∅
implies that the constraints are variable-wise disjoint while I1 = ∅ or I2 = ∅ yields
|C | = 1, since one constraint would be ‘dominated’ by the other. Thus, we only
consider cardinality systems for which none of I1, I2 or T is empty. The polytope of
two cardinality constraints, namely PI , is defined by

PI = conv{x ∈ D|J | : (3), (4) are satisfied}.

A point of PI ∩ D|J | satisfying (3) and (4) is hereafter called a vertex; i.e., PI is the
convex hull of its vertices. We use the term ‘vertex’ with a slight abuse of terminology,
meaning that a vertex here is not necessarily a face of PI with dimension 0. That is, a
vertex is defined here as a point of PI , whose coordinates are all from the set D, that
is feasible with respect to (3) and (4).

To facilitate our presentation, we denote as o(x; c, k) the number of occurrences
of value dk in constraint c at vertex x, i.e., o(x; c, k) = ∣

∣{ j ∈ Jc : x j = dk}
∣
∣ . In

addition, we define the following notation to enable us to compactly represent changes
to vertices.
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Table 1 A cardinality system of two constraints

Predicate I1 T I2

1 x1 x2 x3 x4 x5
2 x4 x5 x6 x7 x8

l = [0, 0, 1, 0], u = [1, 1, 2, 1]
x 2 2 1 3 0 2 2 1
x̃ = x (5 ↔ {1, 6}) 0 2 1 3 2 0 2 1
x̄ = x̃(1 ↔ 2) 2 0 1 3 2 0 2 1
l = [0, 0, 2, 0], u = [2, 2, 3, 1]
x 2 2 2 0 0 2 2 2
x̃ = x (5 ↔ {1, 6}) 0 2 2 0 2 0 2 2
x̄ = x (1; 0 → 3) 3 2 2 0 0 2 2 2
x̌ 0 0 1 2 2 1 0 0

Notation For two vertices x ′, x̃ ∈ PI :
(i) x̃ = x ′( j1; dk → dk′) denotes that x̃ is derived from x ′ by only changing the

value of variable x j1 ( j1 ∈ J ) from dk to dk′ ({k, k′} ⊆ K ); i.e., x ′
j1

= dk �= dk′

while x̃ j1 = dk′ and x̃ j = x ′
j for all j ∈ J\{ j1}.

(ii) x̃ = x ′( j1 ↔ j2) denotes that x̃ is derived from x ′ by only swapping the values
of variables x j1 and x j2 ({ j1, j2} ⊆ J ); i.e., x ′

j1
�= x ′

j2
while x̃ j1 = x ′

j2
, x̃ j2 = x ′

j1
and x̃ j = x ′

j for all j ∈ J\{ j1, j2}.
(iii) x̃ = x ′(t ↔ {i1, i2}) denotes that x̃ is derived from x ′ by only swapping the value

of variable xt (t ∈ T ) with the common value of variables xi1 (i1 ∈ I1) and xi2
(i2 ∈ I2); formally, x ′

i1
= x ′

i2
�= x ′

t while x̃t = x ′
i1
, x̃i1 = x̃i2 = x ′

t and x̃ j = x ′
j

for all j ∈ J\{i1, i2, t}. Note that this operation will always preserve feasibility.
Examples appear in Table 1, which assumes D = {0, 1, 2, 3}.
Occasionally, it becomes convenient, and unambiguous, to say that a value dk

(k ∈ K ) appears in S (S ⊆ J ) at a vertex x ∈ PI to denote that x j = dk for some
j ∈ S. Accordingly, we may say that a value dk (k ∈ K ) appears at least (or at
most) o times in S (S ⊆ J ) in predicate c (c ∈ C) at a vertex x ∈ PI to denote that
o(x; c, k) ≥ o (≤ o).

We assume without loss of generality that |J1| ≤ |J2|. Then, one may establish that

PI �= ∅ if and only if
∑

k∈K lk ≤ |J1| ≤ |J2| ≤
∑

k∈K uk . (6)

Let us also stipulate that 0 ≤ lk ≤ uk and uk ≥ 1 for all k ∈ K .

A degenerate case arises if lk = |J1| for some value dk . In this case, all the variables
in the first constraint must receive the same value at all vertices. Thus, the study of PI
reduces to the study of a single cardinality constraint. Hence, assume hereafter that
lk < |J1| for all k ∈ K . Since |J1| ≤ |J2|, this assumption implies also that lk < |J2|
for all k ∈ K .
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Let us provide a vertex of PI , which will be used in the following proofs. Let the
variables in any x ∈ PI be indexed, starting with the variables in I1, then T, then I2;
i.e.,

x = (
x1, . . . , x|I1|, x|I1|+1, . . . , x|I1|+|T |, x|I1|+|T |+1, . . . , x|I1|+|T |+|I2|

)
. (7)

Also, assuming |D| ≥ 2, let lk0 = max{lk : k ∈ K } and lk1 = max{lk : k ∈ K\{k0}};
i.e., dk0 and dk1 are the values with the largest and the second largest lower bounds.
For simplicity let k0 = 0 and k1 = 1; i.e., l0 ≥ l1 ≥ lk for all k ∈ K\{0, 1}. The same
argument works if the domain values dk0 and dk1 are not the domain values with the
lower index.

Now, consider the vertex x ′ with x ′
1 = d0, x ′|I1|+|T | = d1, variables x ′

2, . . . , x
′
l0

assigned value d0 only if l0 > 1, variables x ′
l0+1, . . . , x

′
l0+l1−1 assigned value d1 only

if l1 > 1, and, for each k = 2, . . . , |K | − 1, the next lk variables assigned value dk .
Up to this point, the number of variables assigned in J1 is

• 2 (i.e., x ′
1 and x ′|I1|+|T |), if l0 = 0 thus lk = 0 for all k ∈ K\{0}, or

• l0 + 1, if l0 ≥ 1 but l1 = 0 thus lk = 0 for all k ∈ K\{0, 1}, or
• ∑

k∈K lk, if l0 ≥ l1 ≥ 1.

These variables exist in J1, since |J1| ≥ 2 because I1 and T are both non-empty,
|J1| > l0 by assumption and |J1| ≥ ∑

k∈K lk by (6). Hence, the number of m =
max{∑k∈K lk, l0+1, 2}variables assigned so far in J1 (i.e., x ′

1, . . . , x
′
m−1 and x

′|I1|+|T |)
suffices to satisfy all lower bounds.

Since |J1| ≤ ∑
k∈K uk, there are sufficient occurrences of values to be assigned to

the remaining variables in J1. Hence the first among the variables x ′
m, . . . , x ′|I1|+|T |−1

are assigned value d0 until d0 occurs u0 times, the next variables are assigned value d1
until d1 occurs u1 times, and so on, until variable x ′|I1|+|T |−1 is assigned. This assigns
values to all variables in J1 = I1 ∪ T .

In addition, let x ′|I1|+|T |+ j = x ′
j , j = 1, . . . , |I1| (this is possible since |I1| ≤ |I2|)

and all variables x ′|I1|+|T |+ j , j = |I1| + 1, . . . , |I2|, assigned any value dk whose
upper bound uk has not been reached. This assignment of values to variables in J2
is feasible since setting x ′|I1|+|T |+ j = x ′

j , j = 2, . . . , |I1| satisfies the lower bounds,
while |J2| ≤ ∑

k∈K uk implies that there are sufficient occurrences of values in I2 to
satisfy the constraint. Therefore, x ′ satisfies (3) and (4), thus it is a vertex of PI .

Regarding the example of Table 1 for l = [0, 0, 1, 0] and u = [1, 1, 2, 1], vertex
x ′ is obtained by assigning x ′

1 = 2 (since l2 is the maximum lower bound), x ′
5 = 0

(i.e., value 0 plays the role of d1), then assigning x ′
2 = 2 to reach the upper bound for

value 2 and x ′
3 = 1, x ′

4 = 3 to reach the upper bounds for the remaining values; lastly,
x ′
5+ j = x ′

j , j = 1, 2, 3. For l = [0, 0, 2, 0], u = [2, 2, 3, 1], x ′ has x ′
1 = x ′

2 = 2,
x ′
5 = 0, then x ′

3 = 2 and x ′
4 = 0 to reach the upper bounds for values 2 and 0 and,

lastly, x ′
5+ j = x ′

j , j = 1, 2, 3.
Studying PI becomes meaningful if it contains more than one vertex.

Proposition 1 PI has more than one vertex if and only if |D| ≥ 2.

Proof If D = {d0}, PI has a single vertex x ′ with x ′
j = d0 for all j ∈ J.
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To show the ‘if’ part, consider the vertex x ′ described above. Observe that x ′
1 =

x ′|I1|+|T |+1 = d0 and x ′|I1|+|T | = d1 �= d0. The point x̃ = x ′(|I1| + |T | ↔ {1, |I1| +
|T |+ 1}) satisfies (3) and (4) (i.e., x̃ is a vertex of PI ), since the number of times each
value appears in each constraint at x̃ remains as in x ′. Vertex x ′ is different from x̃ ,
since x ′

1 = d0 whereas x̃1 = d1. ��

It is known (e.g., Schrijver 2004) that PI is full-dimensional if and only if no
equality αx = α0 is satisfied by all x ∈ PI . If, for some c ∈ C , |Jc| = ∑

k∈K lk , then
each value dk appears exactly lk times in Jc at all vertices of PI , thus the equality

∑

j∈Jc
x j =

∑

k∈K lk · dk (8)

is satisfied by all vertices of PI (and hence by all x ∈ PI ). In a similar manner,
|Jc| = ∑

k∈K uk for some c ∈ C , implies that all x ∈ PI satisfy

∑

j∈Jc
x j =

∑

k∈K uk · dk . (9)

On the other hand, if, for all c ∈ C ,

∑

k∈K lk < |Jc| <
∑

k∈K uk, (10)

one would expect that no equality having
∑

j∈Jc x j as its left-hand side is satisfied by
all x ∈ PI . This may not be true, i.e., it may be that, although (10) holds, an equality
having

∑
j∈Jc x j as its left-hand side, but with a right-hand side different from (8) and

(9), is satisfied by all x ∈ PI . Let us provide an example.

Example 1 Let I1 = {1, 2}, T = {3, 4} and I2 = {5, 6}, D = {d0, d1}, l = [2, 1]
and u = [2, 6]. Since |J1| = 4 > l0 + l1 = 3, the equality x1 + x2 + x3 + x4 =
l0d0 + l1d1 = 2d0 +d1 is satisfied by no x ∈ PI . However, value d0 occurring at most
twice in J1 forces value d1 to occur at least twice (despite l1 = 1). Thus, the equality
x1 + x2 + x3 + x4 = 2(d0 + d1) is satisfied by all x ∈ PI .

Let us add the conditions that, for all k ∈ K ,

lk ≥ |J2| −
∑

k′∈K\{k} uk′ , (11)

uk ≤ |J1| −
∑

k′∈K\{k} lk′ . (12)

These conditions can be adopted without loss of generality. If, for example, lk <

|J2| − ∑
k′∈K\{k} uk′ , value k must appear at least l

′
k = |J2| − ∑

k′∈K\{k} uk′ times,

hence replacing lk with l
′
k yields a cardinality systemwith an identical set of solutions.

For Example 1, l1 = 1 is replaced by l ′1 = 2. Given (11) and (12), (10) becomes a
necessary and sufficient condition for PI to be full-dimensional.

123



J Comb Optim (2016) 31:1061–1089 1069

Theorem 2

dim PI =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|J | if
∑

k∈K lk < |J1| ≤ |J2| <
∑

k∈K uk,
|J | − 1 if

∑
k∈K lk = |J1| < |J2| <

∑
k∈K uk,

|J | − 1 if
∑

k∈K lk < |J1| < |J2| = ∑
k∈K uk,

|J | − 2 if |J1| = |J2| = ∑
k∈K lk

|J | − 2 if |J1| = |J2| = ∑
k∈K uk

|J | − 2 if |J1| = ∑
k∈K lk and |J2| = ∑

k∈K uk.

We first provide some preliminary results, with proof, that will be used in the proof
of the theorem.

Proposition 3 If equality αx = α0 is satisfied by all x ∈ PI then (i) αi = λc for all
i ∈ Ic, c ∈ C and (ii) αt = λ1 + λ2 for all t ∈ T .

Proof To show (i), let c = 1. For |I1| = 1, the proposition trivially holds. Therefore,
assume |I1| ≥ 2. Let the variables be indexed as in (7).

Consider the vertices x ′ and x̃ from the proof of Proposition 1 and recall that x ′
1 = d0

and x̃1 = d1 while x ′
2 = x̃2. Since variable x1 receives a different value at vertices x ′

and x̃ , while variable x2 receives the same value at both x ′ and x̃ , x ′
1 �= x ′

2 or x̃1 �= x̃2.
Therefore there exists some vertex x̂ with x̂1 = dk �= x̂2 = dk′ . It is clear that the
vertex x̄ = x̂(1 ↔ 2) ∈ PI . Since αx = α0 for all x ∈ PI , equation α x̂ = α x̄ yields,
after deleting identical terms,

α1(dk − dk′) = α2(dk − dk′).

Therefore, α1 = α2 since dk′ �= dk . Since index 2 could have been assigned to any
variable in I1\{1}, all of the coefficients of the variables in I1 must be equal to α1.

The same reasoning holds for the coefficients associated with the variables in I2.
Therefore, let λ1 and λ2 be the coefficients of the variables in I1 and I2, respectively.

To show (ii), take the vertices x ′ and x̃ from the proof of Proposition 1. Then,
equation αx ′ = α x̃ yields, after deleting identical terms,

(λ1 + λ2)(d0 − d1) = α|I1|+|T |(d0 − d1),

so that α|I1|+|T | = λ1 + λ2. As any variable with index in T could have been chosen
as x|I1|+|T |, each such variable’s coefficient must be λ1 + λ2, finishing the proof. ��

For the system of Table 1 and l = [0, 0, 1, 0], u = [1, 1, 2, 1], α x̄ = α x̃ yields
α1 = α2 = λ1, while αx ′ = α x̃ yields α5 = α1 + α6 = λ1 + λ2.

Lemma 4 For any vertex x ∈ PI and c ∈ C, if o(x; c, k′) > lk′ for some k′ ∈ K ,

there is k̃ ∈ K\{k′} such that o(x; c, k̃) < uk̃ .
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Proof Assuming that o(x; c, k) = uk for all k ∈ K\{k′} yields

|Jc| =
∑

k∈K\{k′}
o(x; c, k) + o(x; c, k′)

=
∑

k∈K\{k′}
uk + o(x; c, k′) >

∑

k∈K\{k′}
uk + lk′ ≥ |Jc|,

a contradiction (notice that the last ‘≥’ follows from (11)). ��
Proposition 5 For c ∈ C, if

∑
k∈K lk < |Jc| <

∑
k∈K uk and αx = α0 is satisfied

by all x ∈ PI then αi = 0 for all i ∈ Ic.

Proof Let c = 1 and take x ′ from the proof of Proposition 1. Since
∑

k∈K lk < |J1|,
some value dk′ appears more that lk′ times in J1; i.e., o(x; c, k′) > lk′ . Then, by
Lemma 4, o(x ′; c, k̃) < uk̃ for some value dk̃ �= dk′ .

If value dk′ appears in I1, let i1 ∈ I1 be an index where this occurs; i.e., x ′
i1

=
dk′ , i1 ∈ I1. Observe that x̄ = x ′(i1; dk′ → dk̃) is a vertex of PI since o(x̄; 1, k̃) =
o(x ′; 1, k̃)+1 ≤ uk̃ and o(x̄; 1, k′) = o(x ′; 1, k′)−1 ≥ lk′ . Since αx = α0 is satisfied
by all x ∈ PI , αx ′ = α x̄ yields

αi1dk′ = αi1dk̃ . (13)

Otherwise, value dk′ appears only in T (i.e., x ′
i1

�= dk′ ) hence let t ∈ T be an index
where this occurs; i.e., x ′

t = dk′ , t ∈ T . By construction of x ′, x ′|I1|+|T |+i1
= x ′

i1
�= dk′ ,

hence the vertex x̃ = x ′(t ↔ {i1, |I1| + |T | + i1}) ∈ PI has x̃i1 = dk′ . As in the
argument above, the vertex x̄ = x̃(i1; dk′ → dk̃) ∈ PI , thus α x̃ = α x̄ yields (13).

Equation (13) yields αi1 = 0. By Proposition 3i, λ1 = 0 hence αi = 0 for all
i ∈ I1. ��

For the system of Table 1 and l = [0, 0, 2, 0] and u = [2, 2, 3, 1], αx ′ = α x̄ yields
α1 = 0.

Let us now show the proof of Theorem 2.

Proof (Theorem 2) Consider some equality αx = α0 that is satisfied by all x ∈ PI .
Then, α j , j ∈ J, can be expressed in terms of scalars λ1 and λ2 as in Proposition 3i–ii.

If
∑

k∈K lk < |J1| ≤ |J2| <
∑

k∈K uk, Proposition 5 yields that αi = 0 for all
i ∈ I1 ∪ I2. Hence, Proposition 3i implies λ1 = λ2 = 0 and, then, Proposition 3ii
yields αt = 0 for all t ∈ T ; i.e., α j = 0 for all j ∈ J. Thus, no equality is satisfied by
all x ∈ PI , therefore PI is full-dimensional.

For all other cases, an equality (8) or (9) holds for J1 or J2 (or both).
Regarding the second and the third case of Theorem 2, for which dim PI = |J |−1,

let us show the proof only for the third case. Thus, let
∑

k∈K lk < |J1| < |J2| =∑
k∈K uk . Since

∑
k∈K lk < |J1| <

∑
k∈K uk , Proposition 5 yields ai = 0 for all

i ∈ I1, thus Proposition 3i implies λ1 = 0. Given that, Proposition 3i-ii yield α j =
λ2, j ∈ I2 ∪ T = J2. Notice also that, at any vertex x of PI , |J2| = ∑

k∈K uk implies
that each value dk appears uk times at J2. Therefore,
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α0 = αx =
∑

j∈I1
α j x j +

∑

j∈J2
α j x j =

∑

j∈J2
λ2x j = λ2

∑

k∈K ukdk .

Thus, any αx = α0 satisfied by all x ∈ PI is a multiple of
∑

j∈J2 x j = ∑
k∈K ukdk .

Hence, the latter is the only equality (up to scalar multiplication) satisfied by all
x ∈ PI , thus dim PI = |J |−1.Regarding the second case of Theorem 2, an analogous
argument shows that α0 = λ1

∑
k∈K lkdk .

Regarding the last three cases of Theorem 2, for which dim PI = |J |−2, we prove
that

α0 = (λ1 + λ2)
∑

k∈K lkdk

for the fourth case,

α0 = (λ1 + λ2)
∑

k∈K ukdk

for the fifth case, and,

α0 = λ1
∑

k∈K lkdk + λ2
∑

k∈K ukdk (14)

for the last case. Let us illustrate the proof only for the last case of Theorem 2, since
the remaining cases can be shown in a similar manner. For that case, |J1| = ∑

k∈K lk
and |J2| = ∑

k∈K uk imply that, at any vertex x ∈ PI , each value dk appears exactly
lk times in J1 and uk times in J2. Then, using Proposition 3, (14) is written as

α0 = αx =
∑

j∈I1
α j x j +

∑

j∈T α j x +
∑

j∈I2
α j x j

= λ1
∑

j∈I1
x j + (λ1 + λ2)

∑

j∈T x j + λ2
∑

j∈I2
x j

= λ1
∑

j∈I1∪T
x j + λ2

∑

j∈I2∪T
x j = λ1

∑

j∈J1
x j + λ2

∑

j∈J2
x j

= λ1
∑

k∈K lkdk + λ2
∑

k∈K ukdk .

Therefore, any αx = α0 satisfied by all x ∈ PI is a linear combination of the equalities∑
j∈J1 x j = ∑

k∈K lkdk and
∑

j∈J2 x j = ∑
k∈K ukdk . Thus, these two are the only

equalities (up to scalar multiplication) satisfied by all x ∈ PI . In addition, they are
linearly independent, since the sets of variables in their left-hand side are different.
That is, since the variables indexed by I1 appear only in the first equality, whereas the
variables indexed by I2 appear only in the second one, no equality is linearly dependent
on the other. Hence, these equalities form a minimum equation system of rank 2 for
PI , thus dim PI = |J | − 2. ��
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3 Facet-defining inequalities

To identify the facets of PI , let us recall some definitions from (Hooker, 2012, Sect.
7.10.1). For c ∈ C,

pc(k) = min

{

uk, |Jc| −
∑k−1

i=0
pc(i) −

∑|K |−1

i=k+1
li

}

, k = 0, . . . , |K | − 1,

(15)

qc(k) = min

{

uk, |Jc| −
∑|K |−1

i=k+1
qc(i) −

∑k−1

i=0
li

}

, k = |K | − 1, . . . , 0.

(16)

As also discussed in (Hooker, 2012, Sect. 7.10.1), pc(k) and qc(k) are the number of
occurrences of value dk if

∑
j∈Jc x j is minimized and maximized, respectively.

In more detail, the sum of all |Jc| variables of constraint c ∈ C is minimized once
the smallest value d0 has the largest number of occurrences, denoted as pc(0). That
number cannot be larger than u0 and, in addition, it cannot exceed |Jc| − ∑|K |−1

i=1 li ,
since each value dk, k ∈ K\{0} must also occur at least lk times. Then, the number of
occurrences of value d1 is bounded not only by u1 but also by |Jc|− pc(0)−∑|K |−1

i=2 li ,
since value 0 occurs pc(0) times and each value dk, k ∈ K\{0, 1} must occur at least
lk times. Repeating this procedure for k = 0, . . . , |K | − 1 (in that order) yields pc(k)
as the number of occurrences of value dk, k ∈ K when

∑
j∈Jc x j is minimized. The,

in a sense, inverse procedure computes qc(k), k = |K | − 1, . . . , 0; i.e., the number
of occurrences of value d|K |−1 in a maximum sum of all variables is computed first,
followed by the number of occurrences of value d|K |−2 and so on.

For S ⊆ Jc, let pc(|S|, k) or qc(|S|, k) denote the number of occurrences of value
dk once the sum of |S| variables is minimized or maximized, respectively. Hence, for
c ∈ C and S ⊆ Jc, we define

pc(|S|, k) = min

{

pc(k), |S| −
∑k−1

i=0
pc(|S|, i)

}

, k = 0, . . . , |K | − 1,

(17)

qc(|S|, k) = min

{

qc(k), |S| −
∑|K |−1

i=k+1
qc(|S|, i)

}

, k = |K | − 1, . . . , 0.

(18)

That is, the sum of variables indexed by S is minimized by selecting value d0
min{pc(0), |S|} times, value d1 min{pc(1), |S| − pc(|S|, 0)} times (since value d0
already occurs pc(|S|, 0) times in S) and so on. Accordingly, this sum is maximized
by selecting value d|K |−1 min{qc(|K | − 1), |S|}, value d|K |−2 min{qc(|K | − 2), |S| −
qc(|S|, |K | − 1)} times (since value d|K |−1 already occurs qc(|S|, |K | − 1) times in
S) and so on.

Notice that pc(|S|, k) and qc(|S|, k) vary not only with respect to |S| but also with
respect to c, i.e., to |Jc|. Hence, to provide a concise presentation hereafter, let us
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assume that |J1| = |J2| = n and omit ‘c’ from the definitions (15), (16), (17) and
(18). The results hold even if |J1| �= |J2|.
Example 2 With respect to the system of Table 1, for l = [0, 0, 2, 0] and u =
[2, 2, 3, 1], notice that p(0) = 2, p(1) = 1, p(2) = 2, p(3) = 0. Also, p(3, 0) =
p(0), p(3, 1) = p(1), p(3, 2) = p(3, 3) = 0, while p(4, 0) = p(0), p(4, 1) =
p(1), p(4, 2) = 1 < p(2), p(4, 3) = 0. Moreover, q(0) = 0, q(1) = 1, q(2) = 3
and q(3) = 1; also, q(4, 3) = 1, q(4, 2) = 3, q(4, 1) = q(4, 0) = 0, while
q(3, 3) = 1, q(3, 2) = 2, q(3, 1) = q(3, 0) = 0.

It now becomes apparent that the inequalities

∑

j∈S x j ≥
∑

k∈K p(|S|, k) · dk, S ⊆ Jc, c ∈ C, (19)
∑

j∈S x j ≤
∑

k∈K q(|S|, k) · dk, S ⊆ Jc, c ∈ C, (20)

are valid for PI . Although the number of inequalities (19) or (20) per constraint is
2n − 1 (i.e., the number of all subsets of an n-set except for the empty subset), both
families of inequalities are separable in O(n log n) steps (Hooker, 2012, Sect. 7.10.1).
For |S| = 1, (19) and (20) reduce to the trivial inequalities d0 ≤ x j ≤ d|K |−1, j ∈ J.
Also, p(n, k) = p(k), q(n, k) = q(k), hence for |S| = n (19) and (20) can be written
as

∑

j∈Jc
x j ≥

∑

k∈K p(k) · dk, c ∈ C, (21)
∑

j∈Jc
x j ≤

∑

k∈K q(k) · dk, c ∈ C. (22)

Let us summarize some direct consequences of (15)-(18), to be utilized in the
following proofs.

Corollary 6 (i) lk ≤ p(|S|, k) ≤ p(k) ≤ uk, k ∈ K , S ⊆ Jc, c ∈ C

(ii) lk ≤ q(|S|, k) ≤ q(k) ≤ uk, k ∈ K , S ⊆ Jc, c ∈ C
(iii)

∑
k∈K p(k) = ∑

k∈K q(k) = n
(iv)

∑
k∈K p(|S|, k) = ∑

k∈K q(|S|, k) = |S|, S ⊆ Jc, c ∈ C

The following two lemmas, showing which of inequalities (19) and (20) cannot
be facet-defining for PI , appear in Mourtos (2013) for the special case where D =
{0, . . . , |D| − 1} = K . The proofs for arbitrary D, following analogous arguments,
are presented here for completeness.

Lemma 7 (i) Inequalities (19) are redundant for 2 ≤ |S| ≤ p(0) and for n− p(|K |−
1) ≤ |S| ≤ n − 1.

(ii) Inequalities (20) are redundant for 2 ≤ |S| ≤ q(|K | − 1) and for n − q(0) ≤
|S| ≤ n − 1.
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Proof We only show (i), since (ii) can be shown in a similar manner. For 2 ≤ |S| ≤
p(0), (17) implies p(|S|, 0) = |S| but p(|S|, k) = 0 for k ∈ K\{0}. Thus, (19),
reduces to

∑

j∈S x j ≥ |S| · d0,

hence equals the sum of inequalities x j ≥ d0, j ∈ S.

For n − p(|K | − 1) ≤ |S| ≤ n − 1, (17) yields p(|S|, k) = p(k), for all k ∈
K\{|K | − 1}, since n − p(|K | − 1) ≤ |S|. Hence,

p(|S|, |K | − 1) = min{p(|K | − 1), |S| −
∑

k∈K\{|K |−1} p(|S|, k)}
= min{p(|K | − 1), |S| −

∑

k∈K\{|K |−1} p(k)}. (23)

By Corollary 6iii,
∑

k∈K\{|K |−1} p(k) = n − p(|K | − 1) thus (23) becomes

p(|S|, |K | − 1) = min{p(|K | − 1), |S| − n + p(|K | − 1)},

implying p(|S|, |K | − 1) = |S| − n + p(|K | − 1), since |S| ≤ n − 1. But then, (19),
written as

∑

j∈S x j ≥ (|S| − n + p(|K | − 1)) · d|K |−1 +
∑

k∈K\{|K |−1} p(k) · dk,

can be obtained by adding (21) and inequalities −x j ≥ −d|K |−1, j ∈ Jc\S. ��
Let Pl(S) = {x ∈ PI : x satisfies (19) at equality} and Pu(S) = {x ∈ PI : x

satisfies (20) at equality} be the face defined by (19) and (20), respectively (S ⊆ Jc, c ∈
C). The faces Pl(Jc) and Pu(Jc) are defined accordingly. Define also Kl(S) = {k ∈
K : p(|S|, k) = p(k)} as the subset of values that appear in S at any vertex of Pl(S)

as many times as they appear in Jc at any vertex of Pl(Jc). The set Ku(S) = {k ∈
K : q(|S|, k) = q(k)} has an analogous interpretation.

Lemma 8 (i)
∑

k∈Kl (S) p(k) + ∑
k∈K\Kl (S) lk ≥ n implies Pl(S) ⊆ Pl(Jc)

(ii)
∑

k∈Ku(S) q(k) + ∑
k∈K\Ku(S) lk ≥ n implies Pu(S) ⊆ Pu(Jc)

Proof We only show (i), since the proof of (ii) is almost identical. At an arbitrary
vertex x ∈ Pl(S), o(x; c, k) = p(k) for any k ∈ Kl(S), by the definition of Kl(S).

Also, o(x; c, k) = lk for any k ∈ K\Kl(S), since the opposite, i.e., o(x; c, k′) > lk′
for some k′ ∈ K\Kl(S), yields

n =
∑

k∈K o(x; c, k) =
∑

k∈Kl (S)
o(x; c, k) +

∑

k∈K\Kl (S)
o(x; c, k)

>
∑

k∈Kl (S)
p(k) +

∑

k∈K\Kl (S)
lk ≥ n,
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a contradiction. In addition, p(k) = lk for all k ∈ K\Kl(S), since the opposite, i.e.,
p(k′) > lk′ for some k′ ∈ K\Kl(S), yields (through Corollary 6iii)

n =
∑

k∈K p(k) =
∑

k∈Kl (S)
p(k) +

∑

k∈K\Kl (S)
p(k) >

∑

k∈Kl (S)
p(k)

+
∑

k∈K\Kl (S)
lk ≥ n,

a contradiction. But then, at any vertex x ∈ Pl(S), each value dk appears p(k) times
thus x ∈ Pl(Jc). Since a face of PI is the convex hull of vertices in it, Pl(S) ⊆ Pl(Jc).

��
Example 2 (cont.) Since p(0) = 2,Lemma7i yields that (19) is redundant for |S| = 2.
By Lemma 8i, since |S| = 3 implies Kl(S) = {0, 1} and l2 = 2, p(3, 0) + p(3, 1) +
l2 = 5 = n hence Pl(S) ⊆ Pl(Jc), c ∈ C. In the same manner, Lemma 8i yields that
Pl(S) ⊆ Pl(Jc) for |S| = 4.

Since Lemma 7ii does not apply (because q(3) = 1 and q(0) = 0), (19) is not
redundant for |S| ∈ {4, 3, 2}. Also, Ku(S) = {2, 3} for |S| = 4 and Ku(S) = {3} for
|S| = 3, 2, thus no Pl(S) for |S| ∈ {4, 3, 2} is contained in Pl(Jc), c ∈ C by Lemma
8ii (observe that q(3) + l2 = 3 < n).

Note that Lemmas 7 and 8 hold irrespectively of whether |C | = 2 or |J1| = |J2| =
n, since neither condition is assumed within the corresponding proofs.

Let us discuss the consequences of |J1| = |J2| = n. Given |J1| = |J2| = n, if
|J1| = ∑

k∈K lk then |J2| = ∑
k∈K lk , hence each value dk appears exactly lk times

in both J1 and J2 at any vertex of PI . Then, it can only be that lk = uk for all k ∈ K
(this follows also from (11) and (12)). Hence, |J1| = ∑

k∈K lk , given |J1| = |J2| = n,
implies

∑
k∈K lk = n = ∑

k∈K uk , in which case (8) coincides with (9) for both J1
and J2.

In addition, |J1| = |J2| yields that (8) holds for J1 if and only if it holds also for
J2. Thus, dim PI ∈ {|J |, |J |−2}. Notice that, if dim PI = |J |−2 (i.e., if

∑
k∈K lk =

n = ∑
k∈K uk), equalities (8) for J1 and J2 are part of the minimum equation system

of PI , thus not defining proper faces of PI (i.e., Pl(J1) = Pl(J2) = PI ).
Now, Pl(S) cannot be a facet of PI if (19) is redundant or Pl(S) is contained in

another proper face of PI . Thus, Lemmas 7 and 8 provide conditions under which
Pl(S) is not a facet of PI . Specifically, Lemma 8 provides a condition under which
Pl(S) is contained in the face Pl(J1) or Pl(J2). Therefore, if Pl(J1) and Pl(J2) are
proper faces of PI , Lemma 8 (if its condition holds) yields that Pl(S) is not a facet.
However, if

∑
k∈K lk = n = ∑

k∈K uk , both Pl(J1) and Pl(J2) are not proper faces
of PI (because Pl(J1) = Pl(J2) = PI ), hence Lemma 8, even if its condition holds,
does not yield that Pl(S) is not a facet. That is, Lemma 8 may yield that Pl(S) is not
a facet only if

∑
k∈K lk < n <

∑
k∈K uk . Following the same reasoning, we add the

condition that, if
∑

k∈K lk = n = ∑
k∈K uk , then S is not equal to J1 or J2. Let us

introduce a definition encompassing all these conditions, listed here only for Pl(S).

Definition 9 For c ∈ C , an S ⊆ Jc is non-dominated with respect to (19) if S satisfies
the following:
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(i) p(0) < |S| < n − p(|K | − 1) or |S| = 1 or |S| = n;
(ii) if

∑
k∈K lk < n <

∑
k∈K uk , then Pl(S) �⊂ Pl(Jc);

(iii) if
∑

k∈K lk = n = ∑
k∈K uk , then S ⊂ Jc.

Theorem 10 For c ∈ C if S ⊆ Jc is non-dominated then Pl(S) is a facet of PI ; i.e.,

dim Pl(S) =
{ |J | − 1 if

∑
k∈K lk < n <

∑
k∈K uk,

|J | − 3 otherwise.

We prove Theorem 10 only for Pl(S), after proving some intermediate results.

Lemma 11 For c ∈ C, let S ⊆ Jc be non-dominated. If
∑

k∈K lk < n <
∑

k∈K uk,
there is a vertex x ∈ Pl(S) such that o(x; c, k) > lk for some value dk (k ∈ K )

appearing in Jc\S.
Proof Let c = 1 and S ⊆ J1. Assume to the contrary that, at any vertex x ∈ Pl(S),
o(x; 1, k) = lk for any value dk appearing in J1\S. This implies that, at any vertex
x ∈ Pl(S), any value dk such that o(x; 1, k) > lk appears only in S. Then, since by
(17) a value dk appears p(|S|, k) times in S, it follows that o(x; 1, k) = p(|S|, k) for
any value dk such that o(x; 1, k) > lk . Let KS = {k ∈ K : dk appears only in S} and
notice that the above imply

n =
∑

k∈K
o(x; 1, k) =

∑

k∈KS

o(x; 1, k) +
∑

k∈K\KS

o(x; 1, k)

=
∑

k∈KS

p(|S|, k) +
∑

k∈K\KS

lk . (24)

By Corollary 6i, p(k) ≥ p(|S|, k) ≥ lk for all k ∈ K . It must be that p(k) = p(|S|, k)
for all k ∈ KS and p(k) = lk for all k ∈ K\KS since the opposite (i.e., p(k′) >

p(|S|, k′) for some k′ ∈ KS or p(k′) > lk′ for some k′ ∈ K\KS) yields through (24)
and Corollary 6iii,

n =
∑

k∈K
p(k) =

∑

k∈KS

p(k) +
∑

k∈K\KS

p(k) >
∑

k∈KS

p(|S|, k) +
∑

k∈K\KS

lk = n,

a contradiction. But then, at any vertex x ∈ Pl(S), each value dk appears p(k) times
in J1 thus x ∈ Pl(J1). It follows that Pl(S) ⊆ Pl(J1), which, given

∑
k∈K lk < n <∑

k∈K uk , contradicts Definition 9ii. ��
Proposition 12 For c ∈ C, let S ⊆ Jc be non-dominated. If |Jc\S| ≥ 2 (resp.
|Ic\S| ≥ 2), there is a vertex of Pl(S) at which two different values appear in Jc\S
(resp. Ic\S).
Proof Let c = 1, S ⊆ J1, |J1\S| ≥ 2 and |I1\S| ≥ 2. We first show that there is a
vertex of Pl(S) at which two different values appear in J1\S.

For
∑

k∈K lk = n = ∑
k∈K uk , Corollary 6i yields lk = p(k) = uk for all k ∈ K .

That is, at any vertex x ∈ Pl(S), each value dk appears exactly pk = uk ≥ 1 times in
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J1, hence value d|K |−1 appears at least once in J1. Since Pl(S) contains the vertices
minimizing the sum of variables indexed by S, value d|K |−1 appears in J1\S because
it is the largest domain value (hence the last one considered by (17)). Also, since value
d|K |−1 appears p(|K |−1) times in J1, while the set J1\S contains |J1|−|S| = n−|S|
variables and n − |S| > p(|K | − 1) (by Definition 9i), not all variables in J1\S can
receive value d|K |−1. Thus, d|K |−1 and some other value appear in J1\S.

For
∑

k∈K lk < n <
∑

k∈K uk , Lemma 11 implies that there is a vertex x ∈ Pl(S)

such that o(x; 1, k′) > lk′ for some value dk′ appearing in J1\S. Then, Lemma 4
implies that there is a k̃ ∈ K\{k′} such that o(x; 1, k̃) < uk̃ . The vertex x̌ with
x̌ j = x j , j ∈ J1, and x̌|I1|+|T |+ j = x j , j = 1, . . . , |I1|, also belongs to Pl(S)

since all variables indexed by S ⊆ J1 are as in x ∈ Pl(S). By construction of x̌ ,
o(x̌; 1, k) = o(x̌; 2, k) for all k ∈ K , hence o(x̌; 1, k′) = o(x̌; 2, k′) > lk′ and
o(x̌; 1, k̃) = o(x̌; 2, k̃) < uk̃ . If a single value appears in J1\S at x̌ then x̌ j1 =
x̌ j2 = dk′ for some j1, j2 ∈ J1\S ( j1, j2 exist because |J1\S| ≥ 2). The vertex
x̄ = x̌( j1; dk′ → dk̃) belongs to Pl(S) since all variables indexed by S are as in
x̌ ∈ Pl(S). Moreover, x̄ j1 = dk̃ and x̄ j1 = dk′ thus two different values appear in
J1\S at vertex x̄ ∈ Pl(S).

Hence, let x̄ ∈ Pl(S) denote a vertex at which two different values appear in
J1\S. It remains to show that there is a vertex of Pl(S) at which two different values
appear in I1\S. Assume that this does not hold for vertex x̄ . Consider the vertex
x ′ ∈ Pl(S) with x ′

j = x̄ j , j ∈ J1, and x ′|I1|+|T |+ j = x̄ j , j = 1, . . . , |I1|; i.e.,
o(x ′; 1, k) = o(x ′; 2, k) for all k ∈ K . Since at vertex x ′ two different values appear
in J1\S but not in I1\S, a value appearing in T \S differs from a value appearing
in I1\S. Hence let x ′

i1
= x ′

i2
= dk′ and x ′

t = dk̃ �= dk′ , where i1, i2 ∈ I1\S (since
|I1\S| ≥ 2) and t ∈ T \S. By construction of x ′, x ′|I1|+|T |+i1

= dk′ hence the vertex

x̃ = x ′(t ↔ {i1, |I1| + |T | + i1}) belongs to Pl(S) and has x̃i1 = dk̃ and x̃i2 = dk′ . ��
Proposition 13 For c ∈ C, let S ⊆ Jc be non-dominated. Ifαx = α0 for all x ∈ Pl(S)

then
(i) αi = λc, i ∈ Ic\S,

(i i) αt = λ1 + λ2, t ∈ T \S,

(i i i) αi = λc + μ, i ∈ Ic ∩ S,

(iv) αt = λ1 + λ2 + μ, t ∈ T ∩ S.

Proof Let S ⊆ J1.

(i) αi = λ1, i ∈ I1\S
Take vertex x̃ from the proof of Proposition 12. It is clear that the vertex x̄ =

x̃(i1 ↔ i2) ∈ Pl(S). Since αx = α0 for all x ∈ Pl(S), αx ′ = α x̃ yields, after
deleting identical terms,

αi1(dk′ − dk̃) = αi2(dk′ − dk̃).

Therefore, αi1 = αi2 since dk̃ �= dk′ . Since index i2 could have been assigned to any
variable in (I1\S)\{i1}, all of the coefficients of the variables in I1\S must be equal
to αi1 .
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Regarding the coefficients associatedwith the variables in I2, let i3 = |I1|+|T |+i1
and i4 = |I1| + |T | + i2. Recall that, by construction of x̃, x̃i3 = x̃i1 = dk̃ and
x̃i4 = x̃i2 = dk′ . Since the vertex x̄ = x̃(i3 ↔ i4) ∈ Pl(S), αx = α0 yields αi3 = αi4 .

Since i4 could have been assigned to any variable in I2\{i3}, all of the coefficients of
the variables in I2 must be equal to αi3 .

Therefore, let λ1 and λ2 be the coefficients of the variables in I1 and I2, respectively.

(ii) αt = λ1 + λ2, t ∈ T \S
Take vertices x ′, x̃ ∈ Pl(S) from the proof of Proposition 12. Since αx = α0 for

all x ∈ Pl(S), αx ′ = α x̃ yields, after deleting identical terms,

αt (dk′ − dk̃) = (
αi1 + α|I1|+|T |+i1

)
(dk′ − dk̃).

Therefore, dk̃ �= dk′ implies αt = λ1 + λ2. As any variable with index in T \S could
be chosen as xt , each such variable’s coefficient must be λ1 + λ2.

(iii) αi = λ1 + μ, i ∈ I1 ∩ S

The proof for |I1∩S| = 1 is trivial, thus assume |I1∩S| ≥ 2.Take vertex x ′ ∈ Pl(S)

from the proof of Proposition 12. Definition 9i (i.e., p(0) < |S|) yields that d0 and
some other value, say d1, appear in J1 ∩ S at x ′. Thus let x ′

i1
= d0, i1 ∈ I1 ∩ S and

i2 ∈ (I1 ∩ S)\{i1}.
If value d1 appears in I1 ∩ S, consider x ′

i2
. If x ′

i2
= d1, the vertex x̄ = x ′(i1 ↔

i2) ∈ Pl(S), since the values appearing in S are as in x ′. Since αx = α0 for all
x ∈ Pl(S), αx ′ = α x̄ yields

αi1(d0 − d1) = αi2(d0 − d1) (25)

Otherwise, let i3 ∈ (I1 ∩ S)\{i1, i2} such that x ′
i3

= d1. The vertex x̌ = x ′(i2 ↔ i3) ∈
Pl(S) has x̌i1 = d0 and x̌i2 = d1. After deriving the vertex x̄ = x̌(i1 ↔ i2) ∈ Pl(S),

α x̌ = α x̄ yields (25).
If value d1 appears in T ∩S, let x ′

t = d1, t ∈ (T ∩S).Recall that, by construction of
x ′, x ′|I1|+|T |+i1

= x ′
i1

= d0. Thus, the vertex x̃ = x ′(t ↔ {i1, |I1|+ |T |+ i1}) belongs
to Pl(S) and has x̃i1 = d1 and x̃i2 = d0. After deriving the vertex x̄ = x̃(i1 ↔ i2) ∈
Pl(S), α x̃ = α x̄ yields (25).

For all cases, (25) implies αi1 = αi2 . Since index i2 could have been assigned to
any variable in (I1 ∩ S)\{i1}, all of the coefficients of the variables in I1 ∩ S must be
equal to αi1 .

(iv) αt = λ1 + λ2 + μ, t ∈ T ∩ S

Take the vertices x ′ and x̃ from the proof of (iii). Since αx = α0 for all x ∈
Pl(S), αx ′ = α x̃ yieldsαt = αi1+α|I1|+|T |+i1 .Because i1 ∈ I1∩S and |I1|+|T |+i1 ∈
I2, the result follows from (i) and (iii). ��
Example 2 (cont.) Considering Table 1, for l = [0, 0, 2, 0] and u = [2, 2, 3, 1], recall
that no inequality (19) for |S| = 2, 3, 4 is facet-defining. Hence let S = J1. The vertex
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x̌, appearing last in Table 1, belongs to Pl(S) thus let x̌ play the role of x ′ in the proof
of Proposition 13. After deriving vertex x̄ = x̌(1 ↔ 3), α x̌ = α x̄ yields α1 = α3.

After deriving vertex x̃ = x̌(4 ↔ {1, 6}), α x̌ = α x̃ yields α4 = α1 + α6. Notice that
all vertices derived belong to Pl(S).

Proposition 14 For c ∈ C, let S ⊆ Jc be non-dominated. If
∑

k∈K lk < n <∑
k∈K uk and αx = α0 is satisfied by all x ∈ Pl(S) then αi = 0 for all i ∈ Ic\S.

Proof Let c = 1 and S ⊆ J1. Since
∑

k∈K lk < n <
∑

k∈K uk , Lemma 11 implies that
there is a vertex x ∈ Pl(S) such that some value dk′ appears in J1\S and o(x; 1, k′) <

lk′ , k′ ∈ K . Then, Lemma 4 implies that that o(x; 1, k̃) < uk̃ for some value dk̃ �= dk′ .
Consider the vertex x ′ ∈ Pl(S) with x ′

j = x j , j ∈ J1 and x ′|I1|+|T |+ j = x ′
j , j =

1, . . . , |I1|. If value dk′ appears in I1\S let x ′
i1

= dk′ , i1 ∈ I1\S, and observe that

x̃ = x ′(i1; dk′ → dk̃) ∈ Pl(S) since no variable indexed by S changes its value. Since
αx = α0 is satisfied by all x ∈ Pl(S), αx ′ = α x̃ yields, after deleting identical terms,

αi1dk′ = αi1dk̃ . (26)

Otherwise, value dk′ appears in T \S hence x ′
t = dk′ , t ∈ T \S and x ′

i1
�= dk′ . By

construction of x ′, x ′|I1|+|T |+i1
= x ′

i1
�= dk′ hence the vertex x̄ = x ′(t ↔ {i1, |I1| +

|T | + i1}) ∈ Pl(S) has x̄i1 = dk′ . It is clear that the vertex x̃ = x̄(i1; dk′ → dk̃) ∈
Pl(S), thus α x̄ = α x̃ yields (26).

Thus, (26) yieldsαi1 = 0.ByProposition 13i, λ1 = 0 henceαi = 0 for all i ∈ I1\S.

��
Let us now show the proof of Theorem 10.

Proof (Theorem 10) Assume that αx = α0 holds for all x ∈ Pl(S).
For

∑
k∈K lk < n <

∑
k∈K uk , Proposition 14 yields that αi = 0, i ∈ (I1 ∪ I2)\S,

hence λ1 = λ2 = 0 by Proposition 13i and αt = 0, t ∈ T \S by Proposition 13ii;
i.e., α j = 0 for all j ∈ J\S. Also, Proposition 13iii–iv yield that α j = μ for all
j ∈ S. Therefore, (19) is the only equality (up to scalar multiplication) satisfied by all
x ∈ Pl(S), thus dim Pl(S) = dim PI − 1.

For
∑

k∈K lk = n = ∑
k∈K uk , recall that equality (8) (which coincides with (9))

holds for both J1 and J2. We show that αx = α0 is a linear combination of (8) for
J1, J2 and (19) taken as equality. Since α j , j ∈ J , can be expressed in terms of scalars
λ1, λ2 and μ as in Proposition 13i–iv, it remains to show that, using these scalars, α0
is a linear combination of the right-hand sides of equality (19) and equalities (8) for
J1, J2. Notice that S = J1 and S = J2 are dominated in this case, since falsifying
Definition 9iii. Thus, let without loss of generality S ⊂ J1 hence I2 ∩ S = ∅. Then,
given that each value dk appears exactly lk times in both J1 in J2,

α0 = αx =
∑

j∈I1
α j x j +

∑

j∈T α j x +
∑

j∈I2
α j x j

=
∑

j∈I1∩S
α j x j +

∑

j∈I1\S
α j x j +

∑

j∈T∩S
α j x j

+
∑

j∈T \S α j x +
∑

j∈I2
α j x j
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= (λ1 + μ)
∑

j∈I1∩S
x j + λ1

∑

j∈I1\S
x j + (λ1 + λ2 + μ)

∑

j∈T∩S
x j + (λ1

+λ2)
∑

j∈T \S x j + λ2
∑

j∈I2
x j

= λ1
∑

j∈I1
x j + μ

∑

j∈I1∩S
x j + λ2

∑

j∈I2
x j + (λ1

+λ2)
∑

j∈T x j + μ
∑

j∈T∩S
x j

= λ1
∑

j∈I1∪T
x j + λ2

∑

j∈I2∪T
x j + μ

∑

j∈S x j = λ1
∑

j∈J1
x j

+λ2
∑

j∈J2
x j + μ

∑

j∈S x j

= λ1
∑

k∈K lkdk

+λ2
∑

k∈K lkdk + μ
∑

k∈K p(|S|, k) · dk .

It follows that αx = α0 is a linear combination of
∑

j∈J1 x j = ∑
k∈K lkdk ,∑

j∈J2 x j = ∑
k∈K lkdk, and (19) taken as equality. Thus, these are the only three

equalities (up to scalar multiplication) satisfied by all x ∈ Pl(S). Since they are
also linearly independent, the minimum equation system for Pl(S) is of rank 3 and
dim Pl(S) = |J | − 3 = dim PI − 1, by Theorem 2. ��

4 A convex hull relaxation

In this section we show the following.

Theorem 15 If lk = 0 for all k ∈ K , PI is described by inequalities (19) and (20).

To prove this, we show that the face of PI defined by any inequality, which is valid
for PI , is contained in a face defined by (19) or (20). We illustrate the result with
respect to an inequality αx ≥ β (α ∈ R

|J |, β ∈ R
+), since the proof for an inequality

αx ≤ β (α ∈ R
|J |, β ∈ R

+) is analogous. Let P(α,β) = {x ∈ PI : αx = β} be
the face of PI induced by αx ≥ β. To prove Theorem 15, it suffices to show that all
vertices in P(α,β) also satisfy at equality one of (19) or (20), since any face of PI is
the convex hull of vertices appearing in it.

Let J ∗
1 , J ∗

2 , T ∗ and J ′
2 be subsets of variables that, as shown later in this section,

are defined in terms of vector α (for simplicity, we omit α from the notation).

Theorem 16 Assume lk = 0 for all k ∈ K . If J ∗
2 �⊂ J ∗

1 or |J ∗
1 | + |J ′

2\T ∗| ≤
∑

k∈K uk − 1, all vertices of P(α,β) satisfy at equality (19) for S = J ∗
1 .

Notice that the negation of the condition inTheorem16 reads ‘if J ∗
2 ⊂ J ∗

1 and |J ∗
1 |+

|J ′
2\T ∗| ≥ ∑

k∈K uk’. Thus, the following result completes the proof of Theorem 15.

Theorem 17 Assume lk = 0 for all k ∈ K . If J ∗
2 ⊂ J ∗

1 and |J ∗
1 | + |J ′

2\T ∗| ≥
∑

k∈K uk, all vertices of P(α,β) satisfy (20) for S = J ′
2\T ∗ at equality.
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That is, given any αx ≥ β, all vertices in P(α,β) satisfy Eq. (19) with S = J ∗
1 or Eq.

(20) with S = J ′
2\T ∗, based on the conditions of Theorems 16 and 17, respectively.

To introduce the notation that is necessary for showing these theorems, define

γT (α) = max{0,max{αt : t ∈ T }}, (27)

γc(α) = max{0,max{αi : i ∈ Ic}}, c ∈ C, (28)

γ (α) = max{γT (α), γ1(α) + γ2(α)}. (29)

Notice that at least one entry of vectorαmust be positive, since otherwise the inequality
is of the ‘≤’ type. This implies that at least one of γT (α), γ1(α) or γ2(α) is positive,
thus γ (α) > 0. Since γT (α) and γc(α) denote the maximum coefficient in T and Ic,
respectively, γ (α) is the maximum sum of coefficients of any J ′ ⊆ J that includes at
most one variable per constraint; i.e.,

γ (α) = max{
∑

j∈J ′⊆J
α j : ∣

∣J ′ ∩ Jc
∣
∣ ≤ 1}.

Since all the following proofs examine an arbitrary, yet given, face P(α,β), we omit α
from our notation hereafter, e.g., we write γ instead of γ (α).Let us define J ∗ as the set
of variables that appear in some J ′ ⊆ J such that

∣
∣J ′ ∩ Jc

∣
∣ ≤ 1 and

∑
j∈J ′ α j = γ.

Formally,

J ∗ =
⋃

c∈C {i ∈ Ic : αi > 0, αi + γC\{c} = γ } ∪ {t ∈ T : αt = γ }. (30)

Notice that J ∗ �= ∅ follows from γ > 0. For c ∈ C, define J ∗
c = J ∗ ∩ Jc and,

accordingly, I ∗
c = J ∗ ∩ Ic, T ∗ = J ∗ ∩ T . Thus, J ∗

1 �⊂ J ∗
2 implies J ∗

1 \J ∗
2 = I ∗

1 �= ∅
or J ∗

1 = J ∗
2 = T ∗.

Since J ∗
1 ⊂ J ∗

2 and J ∗
2 ⊂ J ∗

1 cannot hold simultaneously, we adopt the convention
that J ∗

1 �⊂ J ∗
2 and either J ∗

2 ⊂ J ∗
1 or J ∗

2 �⊂ J ∗
1 . In addition:

• for J ∗
2 ⊂ J ∗

1 , define the set I ′
2 = I2\{i ∈ I2 : αi = 0} and J ′

2 = I ′
2 ∪ T , i.e., I ′

2
and J ′

2 exclude variables in I2 with a zero coefficient in αx ≥ β;
• for J ∗

2 �⊂ J ∗
1 , assume that |J ∗

1 | ≤ |J ∗
2 |.

That is, if noneof the J ∗
1 , J

∗
2 is a proper subset the other, J ∗

1 is the setwith the smallest
cardinality, whereas if J ∗

2 ⊂ J ∗
1 clearly J ∗

1 is the set with the largest cardinality. All
the above can be made without loss of generality since the roles of the two constraints
can be interchanged.

Example 3 For the system of Table 1 and l = [0, 0, 2, 0], u = [2, 2, 3, 1], Table 2
shows the vectorα of a valid inequalityαx ≥ β.Basedon (27)–(30),γ = γT = γ1 = 2
and γ2 = 0. Also, J ∗ = {1, 2, 4} thus J ∗

2 ⊂ J ∗
1 . Observe that αi ≤ 0 for all i ∈ I2.

For this vector α, Theorem 16 yields P(α,β) ⊆ Pl(J ∗
1 ).

Lemma 18 (i) j ∈ J ∗ implies α j > 0;
(ii) for c ∈ C, i1 ∈ I ∗

c and i2 ∈ Ic\I ∗
c imply αi2 < αi1;
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Table 2 A cardinality system and a vector α

Predicate I1 T I2

1 x1 x2 x3 x4 x5
2 x4 x5 x6 x7 x8

α 2 2 1 2 1 0 -1 -1
x 0 1 3 2 2 3 1 1
x̃ = x (4 ↔ 7) 0 1 3 1 2 3 2 1
x̄ 0 1 2 1 2 2 3 1
x̌ = x̄(8; 1 → 2) 0 1 2 1 2 2 3 2
x̂ 1 1 2 0 0 1 3 2
ẋ = x̂(5 ↔ {1, 6}) 0 1 2 0 1 0 1 2

(iii) t1 ∈ T ∗, t2 ∈ T \T ∗ imply αt1 > αt2;
(iv) t ∈ T ∗, i1 ∈ I1\I ∗

1 and i2 ∈ I2\I ∗
2 imply αt > αi1 + αi2;

(v) t ∈ T \T ∗, i1 ∈ I ∗
1 and i2 ∈ I ∗

2 imply αt < αi1 + αi2;
(vi) I ∗

1 �= ∅ = I ∗
2 impliesαi ≤ 0 for all i ∈ I2 andαt < αi1 for all t ∈ T \T ∗, i1 ∈ I ∗

1 ;
(vii) t ∈ T ∗ implies αt > γ1 if J ∗

2 �⊂ J ∗
1 and αt = γ1 if J ∗

2 ⊂ J ∗
1 .

Proof Notice that (i) follows from (30) for j ∈ I ∗
c , c ∈ C . For j ∈ T ∗, assuming to

the contrary that α j ≤ 0 yields γ ≤ 0 by (30) hence a contradiction to γ > 0.
To show (ii), let c = 1. Observe that i1 ∈ I ∗

1 yields αi1 + γ2 = γ by (30). Then,
assuming to the contrary that αi2 ≥ αi1 yields αi2 +γ2 ≥ αi1 +γ2 = γ, thus implying
i2 ∈ I ∗

1 by (30), a contradiction. In an similar manner one can prove (iii).
To prove (iv), observe that t ∈ T ∗ yields αt = γ by (30), while γ2 ≥ αi2 by (28).

Thus, assuming to the contrary that αi1 +αi2 ≥ αt yields αi1 +γ2 ≥ γ hence i1 ∈ I ∗
1 ,

a contradiction to i1 ∈ I1\I ∗
1 .

To prove (v), notice that i1 ∈ I ∗
1 and i2 ∈ I ∗

2 imply, respectively, αi1 = γ1 and
αi2 = γ2. Hence αi1 + αi2 = γ . Thus, assuming to the contrary that αt ≥ αi1 + αi2
yields αt ≥ γ hence t ∈ T ∗, a contradiction to t ∈ T \T ∗.

To show (vi), let to the contrary αi > 0 for some i ∈ I2. This yields γ2 > 0 (by
(28)), hence there is i2 ∈ I2 such that αi2 = γ2 = max{ai : i ∈ I2} > 0. Since
I ∗
1 �= ∅, there is also i1 ∈ I ∗

1 such that αi1 = γ1 > 0 and αi1 + γ2 = γ by (30). The
latter is equivalent to γ1 + αi2 = γ , thus yielding i2 ∈ I ∗

2 by (30), a contradiction to
I ∗
2 = ∅.
Since αi ≤ 0 for all i ∈ I2, γ2 = 0. Then, assuming to the contrary that αt ≥ αi1

yields αt ≥ αi1 + γ2 = γ hence t ∈ T ∗, a contradiction to t ∈ T \T ∗.
To show (vii) for J ∗

2 �⊂ J ∗
1 , let to the contrary αt ≤ γ1 and notice that I ∗

1 �= ∅
and J ∗

2 �⊂ J ∗
1 yield I ∗

2 �= ∅ and, hence, γ2 > 0 (by (28) and (i) shown above); then,
αt ≤ γ1 < γ1 + γ2 = γ yields t ∈ T \T ∗ by (30), a contradiction to t ∈ T ∗. For
J ∗
2 ⊂ J ∗

1 , observe I ∗
1 �= ∅ yields I ∗

2 = ∅, therefore αi ≤ 0 for all i ∈ I2 (by (vi)
shown above) hence γ2 = 0; then, (30) yields γ = αt = γ1. ��

In several of the following proofs, the result is established by assuming x ′ ∈ P(α,β)

and then deriving a vertex x̃ ∈ PI such that α x̃ < αx ′ = β, thus showing a contra-
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diction to the hypothesis that αx ≥ β is valid for PI . To avoid repeating the same
argument, we show only the derivation of vertex x̃ from x ′ and then establish that
α x̃ − αx ′ < 0.

We list two intermediate lemmas, whose proofs appear in the Appendix. The first
lemma applies always to J ∗

1 and also to J ∗
2 if J ∗

2 �⊂ J ∗
1 . The second lemma applies

only to J ∗
2 if J ∗

2 ⊂ J ∗
1 .

Lemma 19 Assume lk = 0 for all k ∈ K . For any vertex x ′ ∈ P(α,β) and c ∈ C such
that J ∗

c �⊂ J ∗
C\{c},

(i) if x ′
i = dk, i ∈ I ∗

c , any value dk′ < dk appears uk′ times in J ∗
c ∪ T ;

(ii) if x ′
t = dk, t ∈ T ∗, any value dk′ < dk appears uk′ times in J ∗

c .

Example 3 (cont.) In Table 2, vertex x ′ violates Lemma 19i: although x ′
4 = 2, {4} =

T ∗, value 1 < 2 appears fewer than u1 = 2 times in J ∗
1 . To show that x ′ cannot

belong to P(α,β), notice that l2 = 0 < 2 = o(x ′; 1, 2) = o(x ′; 2, 2) and, in addition,
o(x ′; 1, 1) < 2 = o(x ′; 2, 1). Then, the vertex x̃ = x ′(4 ↔ 7) belongs to PI , while
α x̃ − αx ′ = (α4 − α7) · (1− 2) = (2+ 1) · (−1) < 0. Thus, x ′ ∈ P(α,β) would yield
α x̃ < β, a contradiction to αx ≥ β being valid for PI . In fact, α4 > α7 holds because
α4 > 0 (by Lemma 18i) and α7 ≤ 0 (by Lemma 18vi since J ∗

2 ⊂ J ∗
1 yields I ∗

2 = ∅).
Lemma 20 Assume lk = 0 for all k ∈ K . For any vertex x ′ ∈ P(α,β) and J ∗

2 ⊂ J ∗
1 ,

if x ′
i = dk, i ∈ I ′

2, any value dk′ > dk appears uk′ times in J ′
2\T ∗.

Example 3 (cont.) In Table 2, vertex x̄ violates Lemma 20: although J ∗
2 ⊂ J ∗

1 , I ′
2 =

{7, 8} and x̄8 = 1, value 2 > 1 appears fewer than u2 = 3 times in J ′
2\T ∗ = {5, 7, 8}.

Since l1 = 0 and o(x̄; 2, 2) < 3, the vertex x̌ = x̄(8; 1 → 2) belongs to PI , while
α x̌ − α x̄ = α8 · (2 − 1) = (−1) · 1 < 0; in fact, α8 < 0 by Lemma 18vi and the
definition of I ′

2. Alternatively, the vertex x̊ = x̄(6 ↔ 8) (not shown in Table 2) also
yields α x̊ − α x̄ < 0 since α6 = 0; i.e., 6 ∈ I2\I ′

2.

Let us outline of the proof of Theorem 16. This theorem holds if and only if, at
any vertex of P(α,β), all values dk (k ∈ K ) appear p(|J ∗

1 |, k) times in J ∗
1 . Hence, it

suffices to show a contradiction if a vertex x ′ ∈ P(α,β) does not have this property;
i.e., if

∑
j∈J∗

1
x ′
j >

∑
k∈K p(|J ∗

1 |, k) · dk . Then, at vertex x ′, some value dk′ appears

fewer than p(|J ∗
1 |, k′) times in J ∗

1 , whereas some value dk > dk′ appears more than
p(|J ∗

1 |, k) times (i.e., at least once) in J ∗
1 . Then, if dk̃ is the maximum value appearing

in J ∗
1 , it must be dk̃ > dk′ . Using Lemma 19 for J ∗

1 , we prove that dk̃ appears in I ∗
1 and

dk′ appears in T \T ∗. Then, we distinguish two cases, defined by whether J ∗
2 �⊂ J ∗

1 .
For J ∗

2 �⊂ J ∗
1 , notice that Lemma 19 applies to both J ∗

1 and J ∗
2 . Then, if dk̃ appears

also in I ∗
2 , we show the contradiction directly by obtaining a vertex x̃ ∈ PI such that

α x̃ < αx ′. For dk̃ not appearing in I ∗
2 , we establish a contradiction to Lemma 19i for

J ∗
2 by showing that some value dk̂ > dk̃ appears in I ∗

2 and that the value dk̃ (smaller
than dk̂) appears fewer than uk̃ times in J ∗

2 ∪ T . This is done by a combinatorial
argument relying on |J ∗

1 | ≤ |J ∗
2 |, Lemma 19i for J ∗

1 (‘any value dk < dk̃ appear uk
times in J ∗

1 ∪ T ’) and the fact that dk̃ appears in I ∗
1 but not in I ∗

2 .
For J ∗

2 ⊂ J ∗
1 , we show the contradiction directly or through Lemma 20 by showing

that dk̃ appears in I ′
2 and some value dk̂ > dk̃ appears fewer than uk̂ times in J ′

2\T ∗.
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Example 3 (cont.) In Table 2, vertex x̂ belongs not to Pl(J ∗
1 ). Then, value 0 appears

fewer than p(|J ∗
1 |, 0) = p(3, 0) = 2 times in J ∗

1 , while value 1 appears more than
p(|J ∗

1 |, 1) = 1 times in J ∗
1 . Observe that x̂1 = 1 (1 ∈ I ∗

1 ) and x̂5 = 0 (5 ∈ T \T ∗),
thus Lemma 18vi yields α5 = 1 < α1 = 2 (since J ∗

2 ⊂ J ∗
1 yields I ∗

2 = ∅). Moreover,
x̂6 = 1 (6 ∈ I2\I ′

2 and α6 = 0). Then, ẋ = x̂(5 ↔ {1, 6}) is a vertex of PI while
α ẋ − α x̂ = (α5 − α1 − α6) · (1− 0) = (−1) · 1 < 0, a contradiction to αx ≥ β being
valid for PI . That is, vertex x̂ not belonging to Pl(J ∗

1 ) implies that x̂ cannot belong
to P(α,β).

Proof of Theorem 16 Assume to the contrary that there is a vertex x ′ ∈ P(α,β) such
that

∑
j∈J∗

1
x ′
j >

∑
k∈K p(|J ∗

1 |, k) · dk . Then, there is a value dk′ that appears fewer

than p(|J ∗
1 |, k′) times in J ∗

1 . As discussed above, if dk̃ = max{x ′
j : j ∈ J ∗

1 }, then
it must be dk̃ > dk′ . The value dk̃ cannot appear in T ∗, since that would contradict
Lemma 19ii for J ∗

1 because the value dk′ < dk̃ appears fewer than p(|J ∗
1 |, k′) ≤ uk′

times in J ∗
1 . Thus, let x

′
ii

= dk̃ for some i1 ∈ I ∗
1 . Also by Lemma 19i, value dk′ < dk̃

appears uk′ times in J ∗
1 ∪ T . Then, since dk′ appears fewer than p(|J ∗

1 |, k′) ≤ uk′
times in J ∗

1 , dk′ must appear in T \T ∗; i.e., x ′
t = dk′ for some t ∈ T \T ∗.

Case 16.1 J ∗
2 �⊂ J ∗

1

Since i1 ∈ I ∗
1 �= ∅, J ∗

2 �⊂ J ∗
1 yields I ∗

2 �= ∅.

If dk̃ appears also in I ∗
2 , let i2 ∈ I ∗

2 be an index where this occurs, i.e., x ′
i2

= dk̃ .
Then, for the vertex x̃ = x ′(t ↔ {i1, i2}) ∈ PI , it holds that α x̃ − αx ′ = (αt − αi1 −
αi2) · (dk̃ − dk′) < 0, because dk̃ > dk′ and αt1 < αi1 + αi2 by Lemma 18v (since
i1 ∈ I ∗

1 , i2 ∈ I ∗
2 and t ∈ T \T ∗).

Otherwise, x ′
i �= dk̃ for all i ∈ I ∗

2 . Then, J
∗
2 �⊂ J ∗

1 together with the definition of J ∗
1

imply |J ∗
1 | ≤ |J ∗

2 | (recall that, if J ∗
2 �⊂ J ∗

1 , J
∗
1 is the set having the smallest cardinality).

Since T \T ∗ is a subset of neither J ∗
1 nor J ∗

2 , it follows that |J ∗
1 ∪ (T \T ∗)| ≤ |J ∗

2 ∪
(T \T ∗)|; i.e., |J ∗

1 ∪ T | ≤ |J ∗
2 ∪ T |. Since, by Lemma 19i for J ∗

1 , all values smaller
than dk̃ appear the maximum number of times in J ∗

1 ∪ T (and dk̃ appears in I ∗
1 ), and

at least as many values appear in J ∗
2 ∪ T but dk̃ appears not in I ∗

2 , some value dk̂ > dk̃
appears in I ∗

2 . That is, x ′
i2

= dk̂, i2 ∈ I ∗
2 . Also, dk̃ appearing in I ∗

1 but not in I ∗
2 and

|J ∗
1 ∪ T | ≤ |J ∗

2 ∪ T | together imply that the value dk̃ < dk̂ appears fewer than uk̃
times in J ∗

2 ∪ T, a contradiction to Lemma 19i for J ∗
2 .

Case 16.2 J ∗
2 ⊂ J ∗

1

It is clear that J ∗
2 ⊂ J ∗

1 yields I ∗
2 = ∅. In that case, i1 ∈ I ∗

1 implies αt < αi1 (by
Lemma 18vi).

If o(x ′; 2, k̃) < uk̃, then x̃ = x ′(t ↔ i1) is a vertex of PI satisfying α x̃ − αx ′ =
(αt − αi1) · (dk̃ − dk′) < 0, since dk̃ > dk′ and αt1 < αi1 .

Otherwise o(x ′; 2, k̃) = uk̃ . This, together with dk̃ appearing in I1, imply that dk̃
also appears in I2. Thus, let x ′

i2
= dk̃, i2 ∈ I2, where αi2 ≤ 0 by Lemma 18vi. For

αi2 = 0, derive x̃ = x ′(t ↔ {i1, i2}) ∈ PI and notice that, as above, α x̃ − αx ′ =
(αt − αi1) · (dk̃ − dk′) < 0.

For αi2 < 0, i2 ∈ I ′
2 by the definition of I ′

2. We show that there is a value dk̂ > dk̃
appearing fewer than uk̂ times in J ′

2\T ∗ thus contradicting Lemma 20. Observe that
I ∗
2 = ∅ implies J ∗

2 = T ∗. Then, the hypothesis |J ∗
1 |+|J ′

2\T ∗| ≤ ∑
k∈K uk −1, using
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the fact that T \T ∗ is not a subset of J ∗
1 but T \T ∗ ⊂ J ′

2\T ∗, yields |J ∗
1 ∪ (T \T ∗)|+

|J ′
2\T | ≤ ∑

k∈K uk − 1; i.e., |J ∗
1 ∪ T | + |I ′

2| ≤ ∑
k∈K uk − 1. That is, some value dk̂

appears fewer than uk̂ times in J ∗
1 ∪T∪ I ′

2 ⊃ J ′
2 (where dk̂ �= dk̃ since o(x

′; 2, k̃) = uk̃)
thus appearing fewer than uk̂ times in J ′

2 (and hence in J ′
2\T ∗). Since all values smaller

than dk̃ appear the maximum number of times in J ∗
1 ∪ T (by Lemma 19i), it must be

dk̂ > dk̃ . The proof is now complete. ��
The proof of Theorem 17 is quite similar, hence appearing in the Appendix.
Notice that Theorem 15 holds also for the case of a single cardinality constraint.

That is, if lk = 0 for all k ∈ K , inequalities (19) and (20) describe the polytope defined
as the convex hull of vectors satisfying a single cardinality constraint. For the same
case, it has been claimed (Hooker 2012, Sect. 4.13.1)without a proof, that the polytope
is completely described by inequalities (19) and (20), irrespectively of the values of
lk, k ∈ K . However, if some of the lks are strictly positive, the polytope associated
with a single cardinality constraint has further facets not induced by (19) and (20) and,
therefore, the result claimed in (Hooker 2012, Sect. 4.13.1) does not hold. An example
suffices to show that.

Example 4 Consider the constraint cardinali t y(x, {1, 2, 3, 4}; [0, 1, 0], [2, 2, 2])
and let PI denote the polytope defined by the convex hull of integer vectors satisfying
that constraint. Notice that l1 = 1 while l0 = l2 = 0. By Theorem 2, dim PI = 4,
thus any inequality satisfied at equality by 4 affinely independent points of PI is
facet-defining. The inequality

x1 + x2 − x3 − x4 ≤ 3

is satisfied at equality by the vertices x̌ = (2, 1, 0, 0), x̄ = (1, 2, 0, 0), x̌ =
(2, 2, 1, 0), and x̂ = (2, 2, 0, 1). The matrix D = [ x̌ T x̄ T x̌T x̂T ], after deduct-
ing from the second row its first row multiplied by 0.5 (and replacing the second row
by the result), becomes upper triangular hence non-singular. It follows that these four
vertices are linearly, and thus affinely, independent.

A second counter-example of two cardinality constraints is

cardinali t y(x, {1, 2, 3}; [0, 1, 0], [2, 2, 2]),
cardinali t y(x, {3, 4, 5}; [0, 1, 0], [2, 2, 2]).

In this case, Theorem 2 yields dim PI = 5, while the inequality x1 + x2 − x3 ≥ 1
becomes facet-defining. Overall, the polyhedral study of the cardinality constraint
(and system) requires further investigation for arbitrary values of lk, k ∈ K .

5 Concluding remarks

In this paper, we advance the polyhedral study of the cardinality system, thus offering
also a polyhedral approach to systems of restricted representatives. For the case of
two cardinality constraints, apart from providing necessary and sufficient conditions
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for known families of valid inequalities to be facet-defining, we show a condition
under which these families completely describe the associated polytope PI . This con-
dition, together with the polytime separability of these inequalities (Hooker 2012,
Sect. 7.10.1), establishes polynomial solvability for the problem of optimizing a lin-
ear function over PI (Grötschel et al. 1981).

Motivated by the relationship between the alldifferent system and graph coloring
(Magos and Mourtos 2011), we may also consider the following representation for
the cardinality system (1) Define the constraint graph G#(VG# , EG# ) as VG# = J and
EG# = {(i, j) : i, j ∈ Jc for some c ∈ C}; i.e., G# has one node per variable and two
nodes are connected if and only if the associated variables appear together in some
cardinality constraint. Then, any c ∈ C can be associated with a complete subgraph in
G# in the sense that Jc is a set of pairwise connected nodes. Then, if D is regarded as a
set of colors, wemay define the cardinality coloring ofG# as a coloring in which color
d is received by at least ld and at most ud nodes in any maximal clique of G#. Thus,
the solutions to the cardinality system are exactly the cardinality colorings of G#.

Whether this relationship can be insightful for the facietal structure of the cardinality
system or for graph coloring remains to be investigated.
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6 Appendix

Proof of Lemma 19 (i) x ′
i1

= dk, i ∈ I ∗
1

Assume to the contrary that some value dk′ < dk appears fewer than uk′ times in
J ∗
1 ∪ T . If o(x ′; 1, k′) < uk′ and given lk = 0, derive the vertex x̃ = x ′(i1; dk →

dk′) ∈ PI ; α x̃ − αx ′ = αi1 · (dk′ − dk) < 0 since i1 ∈ I ∗
1 yields αi1 > 0 (by Lemma

18i) and dk′ < dk .
Otherwise, o(x ′; 1, k′) = uk′ . Then, value dk′ appearing fewer than uk′ times in

J ∗
1 ∪ T implies that dk′ appears in I1\I ∗

1 ; i.e., x ′
i2

= dk′ for some i2 ∈ I1\I ∗
1 . Then,

for the vertex x̃ = x ′(i1 ↔ i2) ∈ PI , α x̃ − αx ′ = (αi1 − αi2) · (dk′ − dk) < 0 since
αi1 > αi2 (by Lemma 18ii) and dk′ < dk .

(ii) x ′
t1 = dk, t1 ∈ T ∗

Assume to the contrary that some value dk′ < dk appears fewer than uk′ times in
J ∗
1 .

If x ′
t2 = dk′ for some t2 ∈ T \T ∗, then for the vertex x̃ = x ′(t1 ↔ t2) ∈ PI , α x̃ −

αx ′ = (αt1 − αt2) · (dk′ − dk) < 0 since αt1 > αt2 (by Lemma 18iii) and dk′ < dk .
Otherwise, x ′

t �= dk′ for all t ∈ T \T ∗. Then, four cases are defined by whether
o(x ′; 1, k′) or o(x ′; 2, k′) is less than uk′ (recall that lk = 0).

Case 19.1 (o(x ′; 1, k′) < uk′ , o(x ′; 2, k′) < uk′ ):] For x̃ = x ′(t1; dk → dk′), α x̃ −
αx ′ = αt1 · (dk′ − dk) < 0 since t1 ∈ T ∗ yields αt1 > 0 (by Lemma 18i).
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Case 19.2 (o(x ′; 1, k′) < uk′ , o(x ′; 2, k′) = uk′ ): Since dk′ appears more times in
J2 than in J1, it appears in I2; i.e., x ′

i2
= dk′ for some i2 ∈ I2. For

x̃ = x ′(t1 ↔ i2), α x̃ − αx ′ = (αt1 − αi2) · (dk′ − dk) < 0 since αt1 > αi2 .

The latter follows from Lemma 18vii for I ∗
2 �= ∅ (since αt1 > γ2 ≥ αi2 )

and from Lemma 18i and 18vi for I ∗
2 = ∅ (since αt1 > 0 ≥ αi2 ).

Case 19.3 (o(x ′; 1, k′) = uk′ , o(x ′; 2, k′) < uk′ ): Since value dk′ appears uk times in
J1 but not in T \T ∗ and appears fewer than uk times in J ∗

1 = I ∗
1 ∪ T ∗, it

must appear in I1\I ∗
1 ; i.e., x ′

i1
= dk′ for some i1 ∈ I1\I ∗

1 . For x̃ = x ′(t1 ↔
i1), α x̃ − αx ′ = (αt1 − αi1) · (dk′ − dk) < 0 since αt1 > αi1 . The latter
holds because the opposite, i.e., αt1 ≤ αi1 , implies γ ≤ αi1 hence i1 ∈ I ∗

1 ,

a contradiction to i1 ∈ I1\I ∗
1 .

Case 19.4 (o(x ′; 1, k′) = uk′ , o(x ′; 2, k′) = uk′ ): As in Case 19.3, o(x ′; 1, k′) =
uk′ implies that x ′

i1
= dk′ for some i1 ∈ I1\I ∗

1 . This, together with
o(x ′; 1, k′) = uk′ = o(x ′; 2, k′) imply that x ′

i2
= dk′ for some i2 ∈ I2.

For x̃ = x ′(t ↔ {i1, i2}), α x̃ − αx ′ = (αt1 − αi1 − αi2) · (dk′ − dk) < 0,
since αt1 − αi1 − αi2 > 0. If i2 ∈ I2\I ∗

2 , the latter holds by Lemma 18iv.
If i2 ∈ I ∗

2 , it holds because the opposite, i.e., αt1 ≤ αi1 + αi2 , implies
i1 ∈ I ∗

1 , a contradiction to i1 ∈ I1\I ∗
1 .

��
Proof of Lemma 20 Let x ′

i2
= dk for some i2 ∈ I ′

2. J
∗
2 ⊂ J ∗

1 implies I ∗
1 �= ∅ and

I ∗
2 = ∅, hence i2 ∈ I ′

2 implies αi2 < 0 (by Lemma 18vi and the definition of I ′
2).

Assume to the contrary that some value dk′ > dk appears fewer than uk′ times in
J ′
2\T ∗

2 . Recall that lk = 0.
If o(x ′; 2, k′) < uk′ , the vertex x̃ = x ′(i2; dk → dk′) ∈ PI since lk = 0. Then,

α x̃ − αx ′ = αi2 · (dk′ − dk) < 0 since αi2 < 0 and dk′ > dk .
Otherwise, o(x ′; 2, k′) = uk′ . Then, value dk′ appears uk′ times in J2 but fewer

than uk′ times in J ′
2\T ∗, hence it appears in I2\I ′

2 = {i ∈ I2 : αi = 0} or in T ∗.
Case 20.1 (x ′

i3
= dk′ , i3 ∈ I2\I ′

2): Recall that x
′
i2

= dk , i2 ∈ I ′
2. For x̃ = x ′(i2 ↔

i3), α x̃ − αx ′ = (αi2 − αi3) · (dk′ − dk) < 0 since αi2 < 0 = αi3 and
dk′ > dk .

Case 20.2 (x ′
t = dk′ , t ∈ T ∗): If value dk appears also in I1, let i1 ∈ I1 be an

index where this occurs; i.e., x ′
i1

= dk . Also, αt1 = γ1 by Lemma 18vii
(because I ∗

1 �= ∅ = I ∗
2 ) and αi1 ≤ γ1 by (28), thus αi1 ≤ αt1 . Then, for

x̃ = x ′(t ↔ {i1, i2}), α x̃ − αx ′ = (αi1 + αi2 − αt1) · (dk′ − dk) < 0 since
αi1 ≤ αt1, αi2 < 0 and dk′ > dk .

Otherwise, value dk appears not in I1 but appears in I2 (because x ′
i2

= dk, i2 ∈
I ′
2) hence o(x ′; 1, k) < uk . Then, the vertex x̃ = x ′(i2 ↔ t) ∈ PI yields

α x̃ − αx ′ = (αi2 − αt ) · (dk′ − dk) < 0 since αi2 < 0 and αt > 0 by Lemma
18i (because t ∈ T ∗).

��
Proof of Theorem 17 Observe that J ∗

1 ⊃ J ∗
2 implies I ∗

1 �= ∅ and I ∗
2 = ∅, hence

αi ≤ 0 for all i ∈ I2 by Lemma 18vi. The result holds if and only if all values
dk, k ∈ K appear q(|J ′

2\T ∗|, k) times in J ′
2\T ∗, at all vertices of P(α,β).
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Assume to the contrary that there is a vertex x ′ ∈ P(α,β) with
∑

j∈J ′
2\T ∗ x ′

j <
∑

k∈K q(|J ′
2\T ∗|, k) · dk . Then, at vertex x ′, some value dk̃ appears fewer than

q(|J ′
2\T ∗|, k̃) times in J ′

2\T ∗, whereas some other value dk < dk̃ appears more
than q(|J ′

2\T ∗|, k) times in J ′
2\T ∗. Then, if dk′ = min{x ′

j : j ∈ J ′
2\T ∗} it must be

dk′ < dk̃ . Since q(|J ′
2\T ∗|, k̃) ≤ uk̃, value dk̃ appears fewer than uk̃ times in J ′

2\T ∗.
Thus, if dk′ appears in I ′

2 (i.e., if x
′
i2

= dk′ for some i2 ∈ I ′
2), Lemma 20 is contradicted.

Hence let x ′
t2 = dk′ , t2 ∈ T \T ∗. The hypothesis |J ∗

1 |+ |J ′
2\T ∗| ≥ ∑

k∈K uk yields
that each valuedk occursuk times in J ∗

1 ∪(J ′
2\T ∗).Therefore, valuedk̃, since appearing

fewer than uk̃ times in J ′
2\T ∗ must appear in J ∗

1 ; i.e., x ′
t1 = dk̃ for some t1 ∈ T ∗ or

x ′
i1

= dk̃ for some i1 ∈ I ∗
1 . In the former case, for x̃ = x ′(t1 ↔ t2), α x̃ − αx ′ =

(αt2 − αt1) · (dk̃ − dk′) < 0 since αt1 > αt2 (by Lemma 18iii) and dk̃ > dk′ . In
the latter case, αt2 < αi1 (by Lemma 18vi) and the contradiction is established by
using the vertex x̃ = x ′(t2 ↔ {i1, i2}) (if x ′

i2
= dk̃, for some i2 ∈ I2) or the vertex

x̃ = x ′(t2 ↔ i1) (if dk̃ appears not in I2). ��
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